The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

DATABASE STORAGE AND TRANSPARENT MEMORY LOADING OF BIG SPATIAL
DATASETS IMPLEMENTED WITH THE DUAL HALF-EDGE DATA STRUCTURE

Pawel Boguslawski®", Patryk Balak?, Chris Gold®

2 Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
b Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
(pawel.boguslawski, patryk.balak)@upwr.edu.pl, chris.gold@gmail.com

Commission 1V, WG IV/I

KEY WORDS: data structures, 3D modelling, DBMS, big data, dual half-edge, city model, BIM

ABSTRACT:

3D spatial models covering big areas, such as cities, are widely developed in recent years. Loading of a whole model from a hard
drive into a computer memory is often not possible due to big amount of data and memory size limitations. Optimisation techniques
based on spatial indexing, such as tiling, are applied in order to load at least a part of a model as soon as possible, while the
remaining parts are collected in the background. It is especially useful in visualisation of cities. A similar idea is proposed for a
transparent loading of a model implemented with the dual half-edge (DHE) data structure and stored in a database. The existing
DHE-based solutions require the whole model to be present in the memory, which is a considerable limitation in case of models
covering big areas and including detailed representations of city objects, such as buildings and their interiors. The prototype
mechanism developed in this work includes loading and unloading of model parts at a level of single edges as well as model tiling.
This allows for spatial analysis without complete loading a big amount of data into memory.

1. INTRODUCTION

Spatial models of real objects are currently more often
represented in three dimensions (Buyukdemircioglu and
Kocaman, 2020). Modern computers provide computational
power and big storage capacity, which is necessary for such a
representation. Comparing to traditional 2D or 2.5D models, 3D
approach offers direct relations between the real world and a
model resulting in accurate visualisation as well as better spatial
analysis results. It however requires a big amount of resources,
e.g. computer memory. Computing centres may be able to deal
with such big models, but it is always justified to use any
methods to reduce the load and reduce the computational
requirements.

Big spatial models are stored in files, e.g. a BIM model of a
building stored using the IFC format (1ISO 16739:2018, 2018),
or databases, e.g. a city model stored in 3D CityDB
implementing the CityGML standard (Yao et al., 2018). The
selection of the storage form depends mostly on requirements
for data exchange among users. However, in case of
visualisation or spatial analysis, the model must be eventually
loaded in a computer memory. Models covering big areas, for
instant a city, consisted of many detailed objects are too big to
fit into memory. On the other hand, solutions, which perform all
spatial operations entirely in a database environment (Goudarzi
et al., 2015) are not efficient in terms of computation time.

One of the solutions is to divide a model into small parts, called
tiles, store them in a database or file, and load them when
necessary. They form a mesh of tiles covering the whole area
taken by the model (Campos et al., 2020; Oliveira and Rocha,
2013). For instance, in visualisation of a city model, selected
tiles are loaded if they are in a close range from an observer
(usually it is a camera in a rendering engine). This applies to

* corresponding author

models consisted of individual objects with a simple geometry,
e.g. building envelopes in a city model. A vector tiling concept
was proposed as a part of an open standard developed by Open
Geospatial Consortium (OGC, 2018). It includes, among others,
regular tiling and geoJSON format, which are utilised in this
research. Vector tiling is implemented in the OGC format
designed for streaming massive 3D data — 3D Tiles (OGC,
2019). Tile sets may include different formats organised using
an internal data structure.

Another example might be a triangular irregular network (TIN)
representing a digital terrain model, which is too big to be
loaded at once. In this case, it is necessary to deal with one
complex model instead of many unconnected objects. Individual
edges or triangles can be assigned to tiles and displayed when
necessary. It works well in case of visualisation, when the focus
is put on the geometry but not topology, i.e. connections
between individual elements. However, if the model is intended
for further analysis, topology is essential and should be
preserved in parts loaded into computer memory. The same
applies to complex models, such as BIM models. In order to
perform spatial analysis of a building interior, a logical network
together with the geometry is expected to be present in
computer memory. This is needed by various graph-based
applications, e.g. indoor navigation and route planning.

Implementation of the aforementioned models requires an
appropriate data structure, which is suitable for a boundary
representation and is able to store the geometry and topology at
the same time. There are several data structures available
(Arroyo Ohori et al., 2015): the cell-tuple structure (Brisson,
1989), combinatorial maps or G-maps (Lienhardt, 1991) are
widely recognised n-dimensional solutions. The dual half-edge
(DHE) (Boguslawski and Gold, 2016) or Compact Abstract Cell

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License. 9



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

Complexes (Ujang et al., 2019) are relatively new concepts,
which can be also considered for the anticipated task. In this
research, the DHE was selected, because it can be implemented
in a database environment using a simple table structure. There
are only two atomic construction elements, i.e. half-edges and
nodes, which can be stored in two tables (Goudarzi et al., 2015).
Thanks to the duality concept, other entity types are available
without any additional tables: 3D cell, face, edge and vertex.
Semantic information in a form of attributes is attached to an
atomic element and can be considered as attached to a cell, face,
edge or vertex. For instance, an attribute describing a room
number can be attached to a dual vertex representing the room
cell, which is a single record in a table. In Figure 1 the model
consists of two cells, which are identified as individual dual
vertices — attributes can be attached to these vertices. They are
linked by a dual edge.

o -10

Figure 1. Two primal cells and their dual nodes linked by a
dual edge (black dashed line).

DHE is a topological data structure. Each half-edge consists of
five pointers: V, S, Nv, Nr and D, which point at other elements
of the model. V points at the node assigned to the half-edge.
Two half-edges forming an edge are linked by S. The next half-
edge around a shared node is pointed by Nv, while the next half-
edge in a loop forming a face is pointed by Nr. A couple of
primal and dual half-edges are linked by D. The pointers are
used to define basic navigation operators Sym, Nexty, Nextr, and
Dual, which directly use S, Nv, Nr and D respectively. Basic
operators are used to define compound operators: Nexte and
Adjacent. Selected operators are shown in Figure 2.

a)

Sym Nexty Nextg

d)

o---t1- -1

€4 2

Nextg

Figure 2. Navigation operators: a) Sym, b) Nexty, ¢) Nextr,
d) Nexte, e) Adjacent (Boguslawski and Gold, 2016).

Another advantage of using the DHE is availability of
construction operators providing an intuitive way to create and
update the model. A set of operators conforms to Computer-
Aided Design (CAD) modelling rules, which makes the
construction process user friendly. The only limitation of the
DHE is that it is capable of representing only 3D models.
Further development would be necessary to extend it to higher
dimensions. However, in the presented research it is not
required.

In this paper, a simple method for a progressive loading of a 3D
model geometry and topology stored in a database using the
DHE data structure will be presented. A programming user
interface allows for a transparent loading from a database to a
computer memory and reverse operation of database updating,
where modified elements are put back in the database. The
proposed solution do not deal with individual basic elements,
which in case of this research are half-edges and edges.

2. METHODOLOGY

There are two spatial models investigated in this research. The
first one is a 2D TIN, which is used to present the principles of
the described idea and test its efficiency. The second one is an
indoor model of a building introduced to present a 3D approach.
Pre-prepared models were imported to a PostgreSQL database.
Time efficiency of data loading from the database to computer
memory was tested for bulk and atomic single-edge queries.
Comparative analysis provides a relative ratio indicator of the
computation time. The developed prototype implementation is
based on Python, which is a script programming language.
Thus, absolute computation time, also provided in this paper,
can be improved by reimplementation of the code in a compiled
language, e.g. C++.

2.1 Inputdata

Three input datasets were used to develop spatial models: a list
of points representing locations of Polish cities, a building mock
dataset generated in Autodesk Revit and a city model in the
CityGML format. All datasets were processed and implemented
using the DHE data structure.

The list of cities and the city model are open datasets obtained
from the Head Office of Geodesy and Cartography (GUGIK)
via the national geoportal’. The dataset including all Polish
cities and villages was filtered in order to retrieve information
on location of cities. There are 124,799 items in total, including
954 cities (as of December 2021). Filtered data was used to
compute TIN consisted of 2,845 edges and 1,892 triangles (see
Figure 3).

Abt‘h'iwav‘
A RS AT 7
NIE f‘ = <1 thd; 5

S }'ﬂ‘ﬂ'

base map: Stamen Design, data: OpenStrectMap “;"' o e

Figure 3. TIN model: triangulation of points representing
locations of Polish cities.

L https://mapy.geoportal.gov.pl

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License. 10



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

The 3D mock dataset is a 11-storey building model generated in
Autodesk Revit. It was exported to the gbXML format and
processed in order to filter indoor spaces and openings (i.e.
doors and windows) as well as to retrieve information about
spatial relations among individual spaces based on methodology
presented by Boguslawski et al. (2016). The result model (see
Figure 4) is a cell complex consisted of a set of indoor spaces
and zero-volume openings. Each cell is associated with a dual
vertex and adjacent cells are connected by dual edges (dual
structure is not shown in the picture). In total, there are 2,730
vertices and 19,224 edges in the model (including primal and
dual edges). It should be noted that adjacent cells do not share
edges, but each cell have their own set edges even the geometry
of adjacent edges is the same. Thus, in order to display the
building model there are 3,066 unique-geometry edges selected.

g0 H =

1
1T I

|

Figure 4. Mock dataset: a building model.

The third example, the city model shown in Figure 5, covers a
certain area of interest (about 80x80 km) in the south part of
Poland, in the Silesian Voivodship. It consists of 554,763
buildings in CityGML LoD2. The model converted to the DHE
representation an stored in a database includes 63,594,268
primal and dual edges (stored in 127,188,536 rows in a
database) and 11,047,740 vertices. In this case, there are
15,898,567 geometrically unique edges and 10,492,976 vertices
in the primal, which are used for visualisation of the model.

In the conversion process the ‘Cardboard and Tape’
construction method is used to build a model (Boguslawski and
Gold, 2010). The geometry of buildings in original CityGML
files is represented as a set of faces, where a face is a list of
consecutive vertices around the boundary. Individual faces of
the DHE model are created based on the list of vertices and then
joined by matching edges, which form a closed cell. Missing
faces necessary to make a closed cell are detected and reported
during the construction process. Thus, the final model consists
of topologically valid cells representing buildings.

For the clarity of presentation, basic ideas related to
programming interface for data loading will be illustrated using
the TIN model, while the building and city models will be used
as a proof of concept.

base map: Stamen Design, data: OpenStreetMap

Figure 5. City model: 554,763 buildings in CityGML LoD2.

2.2 Database storage

Models implemented using DHE can be stored in two tables:
vertex (see Table 1) and half-edge (see Table 2) storing the
geometry and topology accordingly. Each entity, vertex and
half-edge, is identified by id. v in the half-edge table is a foreign
key from the vertex table, while s, nv, nf and d are identifiers of
linked entities from the half-edge table. Attrib stores attributes
attached to a vertex or edge in the JSON format.

Not | Primary
Name | Type NULL key
id bigint X X
X double X
y double X
z double X
attrib | varchar
Table 1. Vertex table
Not | Primary
Name | Type NULL key
id bigint X X
v bigint X
S bigint X
nv bigint X
nf bigint X
d bigint X
attrib | varchar

Table 2. Half-edge table.

2.3 DHE implementation

Transparent loading of a model from a database to computer
memory requires new implementation of DHE navigation
operators. The original version was designed to deal with a
complete model present in computer memory. In the new
concept, a model may be loaded only partially. Thus, in case of
missing elements (usually on boundaries of the loaded model),
they will be collected from a database when necessary. For the
clarity of description it is assumed that all vertices are loaded

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License. 11



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

into the memory in advance, while provided examples will
focus on operations related to half-edges.

Original navigation operators: Sym, NextV, NextF and Dual, are
functions, which return one of the pointers of the DHE data
structure: s, nv, nf and d respectively. In the new version they
work in the same way, if a certain pointer points at a half-edge,
which is already loaded. Otherwise, an attribute with the target
half-edge id is added and a navigation operator is ‘redirected’ to
a special function, which role is to collect the half-edge from a
database. This means that collection of a half-edge from a
database is triggered by a navigation operator. Once the half-
edge is loaded, the navigation operator works in a standard way.

In this implementation, there is a list of loaded half-edges
included (the list is implemented as a Python dictionary). This
allows for a quick check up of available half-edges and
incremental loading of missing ones if required. The following
pseudo-code shows the idea by providing only one operator —
Sym. The rest of operators: NextV, NextF and Dual may be
readily implemented based on the provided example.

Input:
eList — a global key-value list of loaded half-edges
(originally empty)
vList — a global key-value list of pre-loaded vertices
from the vertex table

class dhe
id: integer (identifier)
v, s, nv, nf, d: dhe = NULL
attrib: {3 // a key-value list of attributes
Sym = &getSFromStorage //assign the getSFromStorage
/Imethod to the Sym operator

method getSFromsStorage()
if attrib['s] 1= NULL
setSym(getEdgeFromDB(attrib['s))
return s

method setSym(he)
if he == NULL
if s 1= NULL
attrib['s’] =s.id
s=NULL
Sym =&getSFromStorage
else
s=he
Sym =&getSym //assign the getSym
/Imethod to the Sym pointer
attrib.remove('s’)

method getEdgeFromDB(edgeld)

he = eList[id] //get a half-edge from eL.ist

if he == NULL
rec = executeSQL("SELECT id, v, s, nv, nf, d, attrib

FROM half-edge WHERE id="+edgeld)

ID, IDV, IDSym, IDNextV, IDNextF, IDD, attrib=rec
he = new dhe
he.id = ID
eList[ID] = he
he.v = vList[IDV]
he.attrib['s'] = IDSym
he.attrib['nv'] = IDNextV
he.attrib['nf’] = IDNextF
he.attrib['d'] = IDD

return he

dhe is a class representing an individual half-edge. When a new
object is created, an identifier is assigned to the id property. The
rest of properties are set to an empty value, i.e. NULL, and
navigation operators are set to special methods, which read data
from a database. In order to initiate the model, the root edge
should be explicitly read by calling getEdgeFromDB (e.g.
rootEdge = getEdgeFromDB(1)), which will fill the attrib
property with identifiers of linked half-edges. Once an operator
is called for a newly created edge e, e.g. e.Sym(), an identifier
e.attrib['s"] is used to collect a new half-edge from a database
using the getEdgeFromDB function, which is then assigned to
e.s. e.Sym is redirected to the getSym function, which sets the
standard role of the Sym operator.

In any case, when getEdgeFromDB is called, the availability of
the half-edge is checked in eList, which includes loaded half-
edges. If it is not loaded then the database is queried. A similar
idea of loading may be applied to vList, which is a list of
vertices in the memory. In this example, it is assumed that all
vertices are preloaded and put on the list.

The navigation operators query a database each time there is no
required half-edge present in eList. Thus, the number of queries
is the same as the number of half-edges to be collected. In order
to reduce the number of queries, a modified version of
getEdgeFromDB was tested. Instead of collecting and
processing half-edge by half-edge, full edges, i.e. two half-
edges linked by s, are collected in one query. Modifications
affecting the code are related to the SQL query and assignment
of s. A half-edge of a given id and the coupling half-edge s are
loaded from the database and two dhe objects are created at the
same time.

Another important aspect of the loading mechanism is
transferring half-edges from the memory back to the database,
which allows for releasing of memory resources. In this
implementation, the focus will be put only on attributes.
Changes of the model, its geometry or topology, and
propagation of these changes to the database will not be
considered. The following pseudo-code shows the
putEdgeToDB method, which removes a half-edge from a list of
loaded half-edges, updates the attrib field and removes
references to the removed entity from other loaded half-edges.
For the sake of clarity, the following code includes only
operations related to the s pointer, while the rest: nv, nf and d
can be implemented in a similar way.

method putEdgeToDB(he):
eList.remove(he.id)
executeSQL("UPDATE half-edge SET attrib=""+
he.attrib+" WHERE id"+ he.id) //update edge attributes
//in the database

rec = executeSQL("SELECT id FROM half-edge
WHERE s="+he.id+" OR nv="+he.id+" OR
nf="+he.id+" OR d="+he.id //collect all half-edges
/Ninked to he

for all in rec
ID =rec
he = eList[ID]

if he I= NULL and he.s '= NULL and he.s.id == id:
he.setSym(NULL) //do the same for nv, nf and d

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License. 12



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

2.4 Graph traversal functions

Models implemented using the DHE data structure form a
graph, which can be traversed using graph algorithms. In order
to test the new implementation, two graph-based functions were
developed:

e getCellEdges — takes a root half-edge parameter and returns a
list of edges forming a cell, i.e. polyhedron; breadth-first
graph traversal algorithm is applied;

e getAllEdges — calls getCellEdges for each cell in a complex
and returns all edges of a model in one space — primal or dual;
dual graph is used to go from one cell to another.

A function for a bulk load was also provided. It collects all half-
edges from a database in a single query and put them on the list
— eList. It should be noted that the computation time of
getCellEdges and getAllEdges will be affected if the bulk load is
done before the functions are called, as no database query is
made if a half-edge exists on the list. The computation time of
graph-based functions will be referenced to the time of a bulk
load.

3. RESULTS

The code was run on a computer with following properties: Intel
Core i9-11900K, 32 GB RAM, Windows 10 (64-bit), Python
3.10, PostgreSQL 14.1.

3.1 Model loading

A computation time of a bulk load from a database was
compared with model loading using graph-based functions
presented in section 2.4. They were applied for TIN and
building models (shown in Figure 3 and Figure 4). In case of the
TIN model, getCellEdges was applied as there is only one cell
in this 2D model. In case of the building model, getAllEdges is
applied in order to collect edges from all the cells.

Computation time of the TIN model loading is provided in
Table 3. It is an average value of five independent computation
attempts for each function version. The bulk load results in
collection of 5,690 half-edges from a database, while
getCellEdges returns a list of 2,845 edges. It should be noted
that existence of dual edges in the TIN model is not necessary,
as the model consists of one cell. Therefore the dual structure is
not included in the database. This also demonstrates that
incomplete models can be also utilised in this new approach,
which was not possible with the original DHE version.

Functi . Computation | Computation
unction version . . -
time [s] time ratio
bulk load 0.022 1
getCellEdges (preloaded) 0.026 1.17
getCellEdges (half-edge) 0.341 15.53
getCellEdges (edge) 0.304 13.85

Table 3. Loading time of the TIN model.

The bulk option is the fastest one comparing to any version of
getCellEdges, because there is only one database query
performed. However, getCellEdges is only 1.17 times slower
when the model is preloaded. This shows that graph traversal is
relatively fast comparing to data collection from a database.

The bigger difference is observed when the model is collected
half-edge by half-edge (15.53 times slower) and edge by edge

(13.85 times slower). There are respectively 5,690 and 2,845
separate database queries necessary to read the model.

The building model consists of 642 cells built of 38,448 primal
and dual half-edges. There are about 6.75 times more-half edges
than in the TIN model, while the bulk load time is 7.34 times
higher. The execution time of getAllEdges for the preloaded
model, half-edge by half-edge and edge by edge versions is
1.24,12.86 and 11.80 times higher respectively.

. . Computation | Computation
Function version . - -
time [s] time ratio
bulk load 0.161 1
getAllEdges (preloaded) 0.203 1.24
getAllEdges (half-edge) 2.080 12.86
getAllEdges (edge) 1.895 11.80

Table 4. Loading time of the building model.

A time of model visualisation is not taken into consideration in
above analysis.

3.2 Database updating

In the following experiment, edges from the original TIN model
(see Figure 6a) were removed from the memory. 250 and 750
edges (see Figure 6b and c) that were loaded first by
getCellEdges were put back to the database including their
attributes using putEdgeToDB (see section 2.3). Next, some
edges were reloaded (see Figure 6d). This shows that the model
can be partially present in the memory, while the rest can be
loaded when necessary. Also some edges may be unloaded in
case the model takes too much space in the memory.

Figure 6. TIN model: a) original; b) 250 edges removed; ¢) 750
edges removed; d) new edges reloaded.

3.3 Model tiling

In order to present a big data application, a part of the city
model (5x5 km area covering the city of Katowice shown in
Figure 7) was used to prepare a set of regular tiles (1x1 km) in
the geoJSON format. 10,301 buildings where divided into 25
tiles, with the number of buildings varying from 15 to 1,438. An
average time of a database query and geoJSON file preparation

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License. 13



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

for a single tile is 170 s. A fragment of the 3D city model is
shown in Figure 8.

base map: Stamen Design, data: OpenStreetMap

Figure 7. A fragment of the city model, 5x5 km including
10,301 buildings.

Wy
4 g2 & [
ey ™

2 \ B k. I | .y f:\\
Figure 8. 3D city model in the geoJSON format.

4. CONCLUSIONS

In the paper, a database storage of big spatial models in
boundary representation implemented with the DHE data
structure as well as a transparent mechanism of loading the
model to computer memory was shown. Parts of a model may
be also put back in the database while preserving semantic
information attached to atomic entities as attributes. The
functionality of the proposed solution was tested in a prototype
developed in Python in connection with PostgreSQL.

Loading of partial models is an important issue when dealing
with big spatial datasets. They may represent an area of a city or
country and include terrain model, buildings, transportation
network and other infrastructures. They are too big to be put as
a whole in computer memory. Excessive data is transferred to a
virtual memory on a hard drive, which significantly extends the
access time and influences efficiency of analysis. Also, the time
necessary to load the model on edge-by-edge basis is high and
needs an optimised solution. A mechanism based on regular
tiling, where a tile covering a relatively small part of the model
is loaded in bulk, was presented using a city model consisted of
several thousands of buildings.

The city model retrieved from open datasets stored in the
CityGML format was implemented with the DHE. This required
3D topology reconstruction in order to introduce a valid model
with required topological connections among model entities, i.e.
half-edges, which allowed testing topological validity of
original data.

One of developments envisaged in a future is an automated
mechanism for loading of optimal number of edges from a
database. In this solution, tiles will be loaded and unloaded
depending on utilisation of the memory. Edges, which were not
accessed for a long period of time will be stored back in the
database.

Future works also include propagation of geometry and
topology changes done in a computer memory back to a
database. This is an essential functionality in case of dynamic
models.

The last but not least planned improvement is implementation
of the proposed solutions using compiled programming
languages, e.g. C++ or Delphi. This should significantly
improve computation time efficiency.

ACKNOWLEDGEMENTS

This work was supported by the National Science Centre
(NCN), Poland as part of the research program OPUS, project
no.: UMO-2021/41/B/ST10/03178.

REFERENCES

Arroyo Ohori, K., Ledoux, H., Stoter, J., 2015. An evaluation
and classification of nD topological data structures for the
representation of objects in a higher-dimensional GIS.
International Journal of Geographical Information Science 29,
825-849.

Boguslawski, P., Gold, C., 2010. Euler Operators and
Navigation of Multi-shell Building Models, in: Neutens, T.,
Maeyer, P. (Eds.), Developments in 3D Geo-Information
Sciences. Springer, pp. 1-16.

Boguslawski, P., Gold, C., 2016. The Dual Half-Edge—A
Topological Primal/Dual Data Structure and Construction
Operators for Modelling and Manipulating Cell Complexes.
ISPRS International Journal of Geo-Information 5, 19.

Boguslawski, P., Mahdjoubi, L., Zverovich, V., Fadli, F., 2016.
Automated Construction of Variable Density Navigable
Networks in a 3D Indoor Environment for Emergency
Response. Automation in Construction 72, 115-128.

Brisson, E., 1989. Representing geometric structures in d
dimensions: topology and order, Proceedings of the fifth annual
symposium on Computational geometry. ACM, Saarbruchen,
West Germany.

Buyukdemircioglu, M., Kocaman, S., 2020. Reconstruction and
Efficient Visualization of Heterogeneous 3D City Models.
Remote Sensing 12, 2128.

Campos, R., Quintana, J., Garcia, R., Schmitt, T., Spoelstra, G.,
M. A. Schaap, D., 2020. 3D Simplification Methods and Large
Scale Terrain Tiling. Remote Sensing 12, 437.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License. 14



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

Goudarzi, M., Asghari, M., Boguslawski, P., Rahman, AA.,
2015. DUAL HALF EDGE DATA STRUCTURE IN DATABASE
FOR BIG DATA IN GIS. ISPRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci. 11-2/W2, 41-45.

1SO 16739:2018, 2018. Industry Foundation Classes (IFC) for
data sharing in the construction and facility management
industries.

Lienhardt, P., 1991. Topological models for boundary
representation: a comparison with n-dimensional generalized
maps. Computer Aided Design 23, 59-82.

OGC, 2018. OGC Testhed-13: Vector Tiles Engineering Report.
Open Geospatial Consortium.

OGC, 2019. 3D Tiles Specification 1.0. Open Geospatial
Consortium.

Oliveira, N., Rocha, J.G., 2013. Tiling 3D Terrain Models, in:
Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-
Q., Taniar, D., Apduhan, B.O. Gervasi, O. (Eds.),
Computational Science and Its Applications — ICCSA 2013.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 550-561.

Ujang, U., Anton Castro, F., Azri, S., 2019. Abstract
Topological Data Structure for 3D Spatial Objects. ISPRS
International Journal of Geo-Information 8, 102.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P,
Donaubauer, A., Adolphi, T., Kolbe, T.H., 2018. 3DCityDB - a
3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards 3, 5.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIlI-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.





