
DATABASE STORAGE AND TRANSPARENT MEMORY LOADING OF BIG SPATIAL

DATASETS IMPLEMENTED WITH THE DUAL HALF-EDGE DATA STRUCTURE

Pawel Boguslawskia,*, Patryk Balaka, Chris Goldb

a Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

b Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom

(pawel.boguslawski, patryk.balak)@upwr.edu.pl, chris.gold@gmail.com

Commission IV, WG IV/I

KEY WORDS: data structures, 3D modelling, DBMS, big data, dual half-edge, city model, BIM

ABSTRACT:

3D spatial models covering big areas, such as cities, are widely developed in recent years. Loading of a whole model from a hard

drive into a computer memory is often not possible due to big amount of data and memory size limitations. Optimisation techniques

based on spatial indexing, such as tiling, are applied in order to load at least a part of a model as soon as possible, while the

remaining parts are collected in the background. It is especially useful in visualisation of cities. A similar idea is proposed for a

transparent loading of a model implemented with the dual half-edge (DHE) data structure and stored in a database. The existing

DHE-based solutions require the whole model to be present in the memory, which is a considerable limitation in case of models

covering big areas and including detailed representations of city objects, such as buildings and their interiors. The prototype

mechanism developed in this work includes loading and unloading of model parts at a level of single edges as well as model tiling.

This allows for spatial analysis without complete loading a big amount of data into memory.

* corresponding author

1. INTRODUCTION

Spatial models of real objects are currently more often

represented in three dimensions (Buyukdemircioglu and

Kocaman, 2020). Modern computers provide computational

power and big storage capacity, which is necessary for such a

representation. Comparing to traditional 2D or 2.5D models, 3D

approach offers direct relations between the real world and a

model resulting in accurate visualisation as well as better spatial

analysis results. It however requires a big amount of resources,

e.g. computer memory. Computing centres may be able to deal

with such big models, but it is always justified to use any

methods to reduce the load and reduce the computational

requirements.

Big spatial models are stored in files, e.g. a BIM model of a

building stored using the IFC format (ISO 16739:2018, 2018),

or databases, e.g. a city model stored in 3D CityDB

implementing the CityGML standard (Yao et al., 2018). The

selection of the storage form depends mostly on requirements

for data exchange among users. However, in case of

visualisation or spatial analysis, the model must be eventually

loaded in a computer memory. Models covering big areas, for

instant a city, consisted of many detailed objects are too big to

fit into memory. On the other hand, solutions, which perform all

spatial operations entirely in a database environment (Goudarzi

et al., 2015) are not efficient in terms of computation time.

One of the solutions is to divide a model into small parts, called

tiles, store them in a database or file, and load them when

necessary. They form a mesh of tiles covering the whole area

taken by the model (Campos et al., 2020; Oliveira and Rocha,

2013). For instance, in visualisation of a city model, selected

tiles are loaded if they are in a close range from an observer

(usually it is a camera in a rendering engine). This applies to

models consisted of individual objects with a simple geometry,

e.g. building envelopes in a city model. A vector tiling concept

was proposed as a part of an open standard developed by Open

Geospatial Consortium (OGC, 2018). It includes, among others,

regular tiling and geoJSON format, which are utilised in this

research. Vector tiling is implemented in the OGC format

designed for streaming massive 3D data – 3D Tiles (OGC,

2019). Tile sets may include different formats organised using

an internal data structure.

Another example might be a triangular irregular network (TIN)

representing a digital terrain model, which is too big to be

loaded at once. In this case, it is necessary to deal with one

complex model instead of many unconnected objects. Individual

edges or triangles can be assigned to tiles and displayed when

necessary. It works well in case of visualisation, when the focus

is put on the geometry but not topology, i.e. connections

between individual elements. However, if the model is intended

for further analysis, topology is essential and should be

preserved in parts loaded into computer memory. The same

applies to complex models, such as BIM models. In order to

perform spatial analysis of a building interior, a logical network

together with the geometry is expected to be present in

computer memory. This is needed by various graph-based

applications, e.g. indoor navigation and route planning.

Implementation of the aforementioned models requires an

appropriate data structure, which is suitable for a boundary

representation and is able to store the geometry and topology at

the same time. There are several data structures available

(Arroyo Ohori et al., 2015): the cell-tuple structure (Brisson,

1989), combinatorial maps or G-maps (Lienhardt, 1991) are

widely recognised n-dimensional solutions. The dual half-edge

(DHE) (Boguslawski and Gold, 2016) or Compact Abstract Cell

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

9

Complexes (Ujang et al., 2019) are relatively new concepts,

which can be also considered for the anticipated task. In this

research, the DHE was selected, because it can be implemented

in a database environment using a simple table structure. There

are only two atomic construction elements, i.e. half-edges and

nodes, which can be stored in two tables (Goudarzi et al., 2015).

Thanks to the duality concept, other entity types are available

without any additional tables: 3D cell, face, edge and vertex.

Semantic information in a form of attributes is attached to an

atomic element and can be considered as attached to a cell, face,

edge or vertex. For instance, an attribute describing a room

number can be attached to a dual vertex representing the room

cell, which is a single record in a table. In Figure 1 the model

consists of two cells, which are identified as individual dual

vertices – attributes can be attached to these vertices. They are

linked by a dual edge.

Figure 1. Two primal cells and their dual nodes linked by a

dual edge (black dashed line).

DHE is a topological data structure. Each half-edge consists of

five pointers: V, S, NV, NF and D, which point at other elements

of the model. V points at the node assigned to the half-edge.

Two half-edges forming an edge are linked by S. The next half-

edge around a shared node is pointed by NV, while the next half-

edge in a loop forming a face is pointed by NF. A couple of

primal and dual half-edges are linked by D. The pointers are

used to define basic navigation operators Sym, NextV, NextF, and

Dual, which directly use S, NV, NF and D respectively. Basic

operators are used to define compound operators: NextE and

Adjacent. Selected operators are shown in Figure 2.

Figure 2. Navigation operators: a) Sym, b) NextV, c) NextF,

d) NextE, e) Adjacent (Boguslawski and Gold, 2016).

Another advantage of using the DHE is availability of

construction operators providing an intuitive way to create and

update the model. A set of operators conforms to Computer-

Aided Design (CAD) modelling rules, which makes the

construction process user friendly. The only limitation of the

DHE is that it is capable of representing only 3D models.

Further development would be necessary to extend it to higher

dimensions. However, in the presented research it is not

required.

In this paper, a simple method for a progressive loading of a 3D

model geometry and topology stored in a database using the

DHE data structure will be presented. A programming user

interface allows for a transparent loading from a database to a

computer memory and reverse operation of database updating,

where modified elements are put back in the database. The

proposed solution do not deal with individual basic elements,

which in case of this research are half-edges and edges.

2. METHODOLOGY

There are two spatial models investigated in this research. The

first one is a 2D TIN, which is used to present the principles of

the described idea and test its efficiency. The second one is an

indoor model of a building introduced to present a 3D approach.

Pre-prepared models were imported to a PostgreSQL database.

Time efficiency of data loading from the database to computer

memory was tested for bulk and atomic single-edge queries.

Comparative analysis provides a relative ratio indicator of the

computation time. The developed prototype implementation is

based on Python, which is a script programming language.

Thus, absolute computation time, also provided in this paper,

can be improved by reimplementation of the code in a compiled

language, e.g. C++.

2.1 Input data

Three input datasets were used to develop spatial models: a list

of points representing locations of Polish cities, a building mock

dataset generated in Autodesk Revit and a city model in the

CityGML format. All datasets were processed and implemented

using the DHE data structure.

The list of cities and the city model are open datasets obtained

from the Head Office of Geodesy and Cartography (GUGiK)

via the national geoportal1. The dataset including all Polish

cities and villages was filtered in order to retrieve information

on location of cities. There are 124,799 items in total, including

954 cities (as of December 2021). Filtered data was used to

compute TIN consisted of 2,845 edges and 1,892 triangles (see

Figure 3).

Figure 3. TIN model: triangulation of points representing

locations of Polish cities.

1 https://mapy.geoportal.gov.pl

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

10

The 3D mock dataset is a 11-storey building model generated in

Autodesk Revit. It was exported to the gbXML format and

processed in order to filter indoor spaces and openings (i.e.

doors and windows) as well as to retrieve information about

spatial relations among individual spaces based on methodology

presented by Boguslawski et al. (2016). The result model (see

Figure 4) is a cell complex consisted of a set of indoor spaces

and zero-volume openings. Each cell is associated with a dual

vertex and adjacent cells are connected by dual edges (dual

structure is not shown in the picture). In total, there are 2,730

vertices and 19,224 edges in the model (including primal and

dual edges). It should be noted that adjacent cells do not share

edges, but each cell have their own set edges even the geometry

of adjacent edges is the same. Thus, in order to display the

building model there are 3,066 unique-geometry edges selected.

Figure 4. Mock dataset: a building model.

The third example, the city model shown in Figure 5, covers a

certain area of interest (about 80x80 km) in the south part of

Poland, in the Silesian Voivodship. It consists of 554,763

buildings in CityGML LoD2. The model converted to the DHE

representation an stored in a database includes 63,594,268

primal and dual edges (stored in 127,188,536 rows in a

database) and 11,047,740 vertices. In this case, there are

15,898,567 geometrically unique edges and 10,492,976 vertices

in the primal, which are used for visualisation of the model.

In the conversion process the ‘Cardboard and Tape’

construction method is used to build a model (Boguslawski and

Gold, 2010). The geometry of buildings in original CityGML

files is represented as a set of faces, where a face is a list of

consecutive vertices around the boundary. Individual faces of

the DHE model are created based on the list of vertices and then

joined by matching edges, which form a closed cell. Missing

faces necessary to make a closed cell are detected and reported

during the construction process. Thus, the final model consists

of topologically valid cells representing buildings.

For the clarity of presentation, basic ideas related to

programming interface for data loading will be illustrated using

the TIN model, while the building and city models will be used

as a proof of concept.

Figure 5. City model: 554,763 buildings in CityGML LoD2.

2.2 Database storage

Models implemented using DHE can be stored in two tables:

vertex (see Table 1) and half-edge (see Table 2) storing the

geometry and topology accordingly. Each entity, vertex and

half-edge, is identified by id. v in the half-edge table is a foreign

key from the vertex table, while s, nv, nf and d are identifiers of

linked entities from the half-edge table. Attrib stores attributes

attached to a vertex or edge in the JSON format.

Name Type
Not

NULL

Primary

key

id bigint x x

x double x

y double x

z double x

attrib varchar

Table 1. Vertex table

Name Type
Not

NULL

Primary

key

id bigint x x

v bigint x

s bigint x

nv bigint x

nf bigint x

d bigint x

attrib varchar

Table 2. Half-edge table.

2.3 DHE implementation

Transparent loading of a model from a database to computer

memory requires new implementation of DHE navigation

operators. The original version was designed to deal with a

complete model present in computer memory. In the new

concept, a model may be loaded only partially. Thus, in case of

missing elements (usually on boundaries of the loaded model),

they will be collected from a database when necessary. For the

clarity of description it is assumed that all vertices are loaded

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

11

into the memory in advance, while provided examples will

focus on operations related to half-edges.

Original navigation operators: Sym, NextV, NextF and Dual, are

functions, which return one of the pointers of the DHE data

structure: s, nv, nf and d respectively. In the new version they

work in the same way, if a certain pointer points at a half-edge,

which is already loaded. Otherwise, an attribute with the target

half-edge id is added and a navigation operator is ‘redirected’ to

a special function, which role is to collect the half-edge from a

database. This means that collection of a half-edge from a

database is triggered by a navigation operator. Once the half-

edge is loaded, the navigation operator works in a standard way.

In this implementation, there is a list of loaded half-edges

included (the list is implemented as a Python dictionary). This

allows for a quick check up of available half-edges and

incremental loading of missing ones if required. The following

pseudo-code shows the idea by providing only one operator –

Sym. The rest of operators: NextV, NextF and Dual may be

readily implemented based on the provided example.

Input:

 eList – a global key-value list of loaded half-edges

 (originally empty)

 vList – a global key-value list of pre-loaded vertices

 from the vertex table

class dhe

 id: integer (identifier)

 v, s, nv, nf, d: dhe = NULL

 attrib: {} // a key-value list of attributes

 Sym = &getSFromStorage //assign the getSFromStorage

 //method to the Sym operator

 method getSFromStorage()

 if attrib['s'] != NULL

 setSym(getEdgeFromDB(attrib['s']))

 return s

 method setSym(he)

 if he == NULL

 if s != NULL

 attrib['s'] =s.id

 s = NULL

 Sym =&getSFromStorage

 else

 s = he

 Sym =&getSym //assign the getSym

 //method to the Sym pointer

 attrib.remove('s')

 method getEdgeFromDB(edgeId)

 he = eList[id] //get a half-edge from eList

 if he == NULL

 rec = executeSQL("SELECT id, v, s, nv, nf, d, attrib

 FROM half-edge WHERE id="+edgeId)

 ID, IDV, IDSym, IDNextV, IDNextF, IDD, attrib=rec

 he = new dhe

 he.id = ID

 eList[ID] = he

 he.v = vList[IDV]

 he.attrib['s'] = IDSym

 he.attrib['nv'] = IDNextV

 he.attrib['nf'] = IDNextF

 he.attrib['d'] = IDD

 return he

dhe is a class representing an individual half-edge. When a new

object is created, an identifier is assigned to the id property. The

rest of properties are set to an empty value, i.e. NULL, and

navigation operators are set to special methods, which read data

from a database. In order to initiate the model, the root edge

should be explicitly read by calling getEdgeFromDB (e.g.

rootEdge = getEdgeFromDB(1)), which will fill the attrib

property with identifiers of linked half-edges. Once an operator

is called for a newly created edge e, e.g. e.Sym(), an identifier

e.attrib['s'] is used to collect a new half-edge from a database

using the getEdgeFromDB function, which is then assigned to

e.s. e.Sym is redirected to the getSym function, which sets the

standard role of the Sym operator.

In any case, when getEdgeFromDB is called, the availability of

the half-edge is checked in eList, which includes loaded half-

edges. If it is not loaded then the database is queried. A similar

idea of loading may be applied to vList, which is a list of

vertices in the memory. In this example, it is assumed that all

vertices are preloaded and put on the list.

The navigation operators query a database each time there is no

required half-edge present in eList. Thus, the number of queries

is the same as the number of half-edges to be collected. In order

to reduce the number of queries, a modified version of

getEdgeFromDB was tested. Instead of collecting and

processing half-edge by half-edge, full edges, i.e. two half-

edges linked by s, are collected in one query. Modifications

affecting the code are related to the SQL query and assignment

of s. A half-edge of a given id and the coupling half-edge s are

loaded from the database and two dhe objects are created at the

same time.

Another important aspect of the loading mechanism is

transferring half-edges from the memory back to the database,

which allows for releasing of memory resources. In this

implementation, the focus will be put only on attributes.

Changes of the model, its geometry or topology, and

propagation of these changes to the database will not be

considered. The following pseudo-code shows the

putEdgeToDB method, which removes a half-edge from a list of

loaded half-edges, updates the attrib field and removes

references to the removed entity from other loaded half-edges.

For the sake of clarity, the following code includes only

operations related to the s pointer, while the rest: nv, nf and d

can be implemented in a similar way.

method putEdgeToDB(he):

 eList.remove(he.id)

 executeSQL("UPDATE half-edge SET attrib='"+

 he.attrib+"' WHERE id"+ he.id) //update edge attributes

 //in the database

 rec = executeSQL("SELECT id FROM half-edge

 WHERE s="+he.id+" OR nv="+he.id+" OR

 nf="+he.id+" OR d="+he.id //collect all half-edges

 //linked to he

 for all in rec

 ID = rec

 he = eList[ID]

 if he != NULL and he.s != NULL and he.s.id == id:

 he.setSym(NULL) //do the same for nv, nf and d

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

12

2.4 Graph traversal functions

Models implemented using the DHE data structure form a

graph, which can be traversed using graph algorithms. In order

to test the new implementation, two graph-based functions were

developed:

• getCellEdges – takes a root half-edge parameter and returns a

list of edges forming a cell, i.e. polyhedron; breadth-first

graph traversal algorithm is applied;

• getAllEdges – calls getCellEdges for each cell in a complex

and returns all edges of a model in one space – primal or dual;

dual graph is used to go from one cell to another.

A function for a bulk load was also provided. It collects all half-

edges from a database in a single query and put them on the list

– eList. It should be noted that the computation time of

getCellEdges and getAllEdges will be affected if the bulk load is

done before the functions are called, as no database query is

made if a half-edge exists on the list. The computation time of

graph-based functions will be referenced to the time of a bulk

load.

3. RESULTS

The code was run on a computer with following properties: Intel

Core i9-11900K, 32 GB RAM, Windows 10 (64-bit), Python

3.10, PostgreSQL 14.1.

3.1 Model loading

A computation time of a bulk load from a database was

compared with model loading using graph-based functions

presented in section 2.4. They were applied for TIN and

building models (shown in Figure 3 and Figure 4). In case of the

TIN model, getCellEdges was applied as there is only one cell

in this 2D model. In case of the building model, getAllEdges is

applied in order to collect edges from all the cells.

Computation time of the TIN model loading is provided in

Table 3. It is an average value of five independent computation

attempts for each function version. The bulk load results in

collection of 5,690 half-edges from a database, while

getCellEdges returns a list of 2,845 edges. It should be noted

that existence of dual edges in the TIN model is not necessary,

as the model consists of one cell. Therefore the dual structure is

not included in the database. This also demonstrates that

incomplete models can be also utilised in this new approach,

which was not possible with the original DHE version.

Function version
Computation

time [s]

Computation

time ratio

bulk load 0.022 1

getCellEdges (preloaded) 0.026 1.17

getCellEdges (half-edge) 0.341 15.53

getCellEdges (edge) 0.304 13.85

Table 3. Loading time of the TIN model.

The bulk option is the fastest one comparing to any version of

getCellEdges, because there is only one database query

performed. However, getCellEdges is only 1.17 times slower

when the model is preloaded. This shows that graph traversal is

relatively fast comparing to data collection from a database.

The bigger difference is observed when the model is collected

half-edge by half-edge (15.53 times slower) and edge by edge

(13.85 times slower). There are respectively 5,690 and 2,845

separate database queries necessary to read the model.

The building model consists of 642 cells built of 38,448 primal

and dual half-edges. There are about 6.75 times more-half edges

than in the TIN model, while the bulk load time is 7.34 times

higher. The execution time of getAllEdges for the preloaded

model, half-edge by half-edge and edge by edge versions is

1.24, 12.86 and 11.80 times higher respectively.

Function version
Computation

time [s]

Computation

time ratio

bulk load 0.161 1

getAllEdges (preloaded) 0.203 1.24

getAllEdges (half-edge) 2.080 12.86

getAllEdges (edge) 1.895 11.80

Table 4. Loading time of the building model.

A time of model visualisation is not taken into consideration in

above analysis.

3.2 Database updating

In the following experiment, edges from the original TIN model

(see Figure 6a) were removed from the memory. 250 and 750

edges (see Figure 6b and c) that were loaded first by

getCellEdges were put back to the database including their

attributes using putEdgeToDB (see section 2.3). Next, some

edges were reloaded (see Figure 6d). This shows that the model

can be partially present in the memory, while the rest can be

loaded when necessary. Also some edges may be unloaded in

case the model takes too much space in the memory.

Figure 6. TIN model: a) original; b) 250 edges removed; c) 750

edges removed; d) new edges reloaded.

3.3 Model tiling

In order to present a big data application, a part of the city

model (5x5 km area covering the city of Katowice shown in

Figure 7) was used to prepare a set of regular tiles (1x1 km) in

the geoJSON format. 10,301 buildings where divided into 25

tiles, with the number of buildings varying from 15 to 1,438. An

average time of a database query and geoJSON file preparation

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

13

for a single tile is 170 s. A fragment of the 3D city model is

shown in Figure 8.

Figure 7. A fragment of the city model, 5x5 km including

10,301 buildings.

Figure 8. 3D city model in the geoJSON format.

4. CONCLUSIONS

In the paper, a database storage of big spatial models in

boundary representation implemented with the DHE data

structure as well as a transparent mechanism of loading the

model to computer memory was shown. Parts of a model may

be also put back in the database while preserving semantic

information attached to atomic entities as attributes. The

functionality of the proposed solution was tested in a prototype

developed in Python in connection with PostgreSQL.

Loading of partial models is an important issue when dealing

with big spatial datasets. They may represent an area of a city or

country and include terrain model, buildings, transportation

network and other infrastructures. They are too big to be put as

a whole in computer memory. Excessive data is transferred to a

virtual memory on a hard drive, which significantly extends the

access time and influences efficiency of analysis. Also, the time

necessary to load the model on edge-by-edge basis is high and

needs an optimised solution. A mechanism based on regular

tiling, where a tile covering a relatively small part of the model

is loaded in bulk, was presented using a city model consisted of

several thousands of buildings.

The city model retrieved from open datasets stored in the

CityGML format was implemented with the DHE. This required

3D topology reconstruction in order to introduce a valid model

with required topological connections among model entities, i.e.

half-edges, which allowed testing topological validity of

original data.

One of developments envisaged in a future is an automated

mechanism for loading of optimal number of edges from a

database. In this solution, tiles will be loaded and unloaded

depending on utilisation of the memory. Edges, which were not

accessed for a long period of time will be stored back in the

database.

Future works also include propagation of geometry and

topology changes done in a computer memory back to a

database. This is an essential functionality in case of dynamic

models.

The last but not least planned improvement is implementation

of the proposed solutions using compiled programming

languages, e.g. C++ or Delphi. This should significantly

improve computation time efficiency.

ACKNOWLEDGEMENTS

This work was supported by the National Science Centre

(NCN), Poland as part of the research program OPUS, project

no.: UMO-2021/41/B/ST10/03178.

REFERENCES

Arroyo Ohori, K., Ledoux, H., Stoter, J., 2015. An evaluation

and classification of nD topological data structures for the

representation of objects in a higher-dimensional GIS.

International Journal of Geographical Information Science 29,

825-849.

Boguslawski, P., Gold, C., 2010. Euler Operators and

Navigation of Multi-shell Building Models, in: Neutens, T.,

Maeyer, P. (Eds.), Developments in 3D Geo-Information

Sciences. Springer, pp. 1-16.

Boguslawski, P., Gold, C., 2016. The Dual Half-Edge—A

Topological Primal/Dual Data Structure and Construction

Operators for Modelling and Manipulating Cell Complexes.

ISPRS International Journal of Geo-Information 5, 19.

Boguslawski, P., Mahdjoubi, L., Zverovich, V., Fadli, F., 2016.

Automated Construction of Variable Density Navigable

Networks in a 3D Indoor Environment for Emergency

Response. Automation in Construction 72, 115-128.

Brisson, E., 1989. Representing geometric structures in d

dimensions: topology and order, Proceedings of the fifth annual

symposium on Computational geometry. ACM, Saarbruchen,

West Germany.

Buyukdemircioglu, M., Kocaman, S., 2020. Reconstruction and

Efficient Visualization of Heterogeneous 3D City Models.

Remote Sensing 12, 2128.

Campos, R., Quintana, J., Garcia, R., Schmitt, T., Spoelstra, G.,

M. A. Schaap, D., 2020. 3D Simplification Methods and Large

Scale Terrain Tiling. Remote Sensing 12, 437.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

14

Goudarzi, M., Asghari, M., Boguslawski, P., Rahman, A.A.,

2015. DUAL HALF EDGE DATA STRUCTURE IN DATABASE

FOR BIG DATA IN GIS. ISPRS Ann. Photogramm. Remote

Sens. Spatial Inf. Sci. II-2/W2, 41-45.

ISO 16739:2018, 2018. Industry Foundation Classes (IFC) for

data sharing in the construction and facility management

industries.

Lienhardt, P., 1991. Topological models for boundary

representation: a comparison with n-dimensional generalized

maps. Computer Aided Design 23, 59-82.

OGC, 2018. OGC Testbed-13: Vector Tiles Engineering Report.

Open Geospatial Consortium.

OGC, 2019. 3D Tiles Specification 1.0. Open Geospatial

Consortium.

Oliveira, N., Rocha, J.G., 2013. Tiling 3D Terrain Models, in:

Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-

Q., Taniar, D., Apduhan, B.O., Gervasi, O. (Eds.),

Computational Science and Its Applications – ICCSA 2013.

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 550-561.

Ujang, U., Anton Castro, F., Azri, S., 2019. Abstract

Topological Data Structure for 3D Spatial Objects. ISPRS

International Journal of Geo-Information 8, 102.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,

Donaubauer, A., Adolphi, T., Kolbe, T.H., 2018. 3DCityDB - a

3D geodatabase solution for the management, analysis, and

visualization of semantic 3D city models based on CityGML.

Open Geospatial Data, Software and Standards 3, 5.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-9-2022 | © Author(s) 2022. CC BY 4.0 License.

15

