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ABSTRACT: 

 

3D spatial models covering big areas, such as cities, are widely developed in recent years. Loading of a whole model from a hard 

drive into a computer memory is often not possible due to big amount of data and memory size limitations. Optimisation techniques 

based on spatial indexing, such as tiling, are applied in order to load at least a part of a model as soon as possible, while the 

remaining parts are collected in the background. It is especially useful in visualisation of cities. A similar idea is proposed for a 

transparent loading of a model implemented with the dual half-edge (DHE) data structure and stored in a database. The existing 

DHE-based solutions require the whole model to be present in the memory, which is a considerable limitation in case of models 

covering big areas and including detailed representations of city objects, such as buildings and their interiors. The prototype 

mechanism developed in this work includes loading and unloading of model parts at a level of single edges as well as model tiling. 

This allows for spatial analysis without complete loading a big amount of data into memory. 

 

 

 
* corresponding author 

1. INTRODUCTION 

Spatial models of real objects are currently more often 

represented in three dimensions (Buyukdemircioglu and 

Kocaman, 2020). Modern computers provide computational 

power and big storage capacity, which is necessary for such a 

representation. Comparing to traditional 2D or 2.5D models, 3D 

approach offers direct relations between the real world and a 

model resulting in accurate visualisation as well as better spatial 

analysis results. It however requires a big amount of resources, 

e.g. computer memory. Computing centres may be able to deal 

with such big models, but it is always justified to use any 

methods to reduce the load and reduce the computational 

requirements. 

 

Big spatial models are stored in files, e.g. a BIM model of a 

building stored using the IFC format (ISO 16739:2018, 2018), 

or databases, e.g. a city model stored in 3D CityDB 

implementing the CityGML standard (Yao et al., 2018). The 

selection of the storage form depends mostly on requirements 

for data exchange among users. However, in case of 

visualisation or spatial analysis, the model must be eventually 

loaded in a computer memory. Models covering big areas, for 

instant a city, consisted of many detailed objects are too big to 

fit into memory. On the other hand, solutions, which perform all 

spatial operations entirely in a database environment (Goudarzi 

et al., 2015) are not efficient in terms of computation time. 

 

One of the solutions is to divide a model into small parts, called 

tiles, store them in a database or file, and load them when 

necessary. They form a mesh of tiles covering the whole area 

taken by the model (Campos et al., 2020; Oliveira and Rocha, 

2013). For instance, in visualisation of a city model, selected 

tiles are loaded if they are in a close range from an observer 

(usually it is a camera in a rendering engine). This applies to 

models consisted of individual objects with a simple geometry, 

e.g. building envelopes in a city model. A vector tiling concept 

was proposed as a part of an open standard developed by Open 

Geospatial Consortium (OGC, 2018). It includes, among others, 

regular tiling and geoJSON format, which are utilised in this 

research. Vector tiling is implemented in the OGC format 

designed for streaming massive 3D data – 3D Tiles (OGC, 

2019). Tile sets may include different formats organised using 

an internal data structure. 

 

Another example might be a triangular irregular network (TIN) 

representing a digital terrain model, which is too big to be 

loaded at once. In this case, it is necessary to deal with one 

complex model instead of many unconnected objects. Individual 

edges or triangles can be assigned to tiles and displayed when 

necessary. It works well in case of visualisation, when the focus 

is put on the geometry but not topology, i.e. connections 

between individual elements. However, if the model is intended 

for further analysis, topology is essential and should be 

preserved in parts loaded into computer memory. The same 

applies to complex models, such as BIM models. In order to 

perform spatial analysis of a building interior, a logical network 

together with the geometry  is expected to be present in 

computer memory. This is needed by various graph-based 

applications, e.g. indoor navigation and route planning. 

 

Implementation of the aforementioned models requires an 

appropriate data structure, which is suitable for a boundary 

representation and is able to store the geometry and topology at 

the same time. There are several data structures available 

(Arroyo Ohori et al., 2015): the cell-tuple structure (Brisson, 

1989), combinatorial maps or G-maps (Lienhardt, 1991) are 

widely recognised n-dimensional solutions. The dual half-edge 

(DHE) (Boguslawski and Gold, 2016) or Compact Abstract Cell 
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Complexes (Ujang et al., 2019) are relatively new concepts, 

which can be also considered for the anticipated task. In this 

research, the DHE was selected, because it can be implemented 

in a database environment using a simple table structure. There 

are only two atomic construction elements, i.e. half-edges and 

nodes, which can be stored in two tables (Goudarzi et al., 2015). 

Thanks to the duality concept, other entity types are available 

without any additional tables: 3D cell, face, edge and vertex. 

Semantic information in a form of attributes is attached to an 

atomic element and can be considered as attached to a cell, face, 

edge or vertex. For instance, an attribute describing a room 

number can be attached to a dual vertex representing the room 

cell, which is a single record in a table. In Figure 1 the model 

consists of two cells, which are identified as individual dual 

vertices – attributes can be attached to these vertices. They are 

linked by a dual edge. 

 

 
 

Figure 1. Two primal cells and their dual nodes linked by a 

dual edge (black dashed line). 

DHE is a topological data structure. Each half-edge consists of 

five pointers: V, S, NV, NF and D, which point at other elements 

of the model. V points at the node assigned to the half-edge. 

Two half-edges forming an edge are linked by S. The next half-

edge around a shared node is pointed by NV, while the next half-

edge in a loop forming a face is pointed by NF. A couple of 

primal and dual half-edges are linked by D. The pointers are 

used to define basic navigation operators Sym, NextV, NextF, and 

Dual, which directly use S, NV, NF and D respectively. Basic 

operators are used to define compound operators: NextE and 

Adjacent. Selected operators are shown in Figure 2. 

 

 

Figure 2. Navigation operators: a) Sym, b) NextV, c) NextF,  

d) NextE, e) Adjacent (Boguslawski and Gold, 2016). 

 

Another advantage of using the DHE is availability of 

construction operators providing an intuitive way to create and 

update the model. A set of operators conforms to Computer-

Aided Design (CAD) modelling rules, which makes the 

construction process user friendly. The only limitation of the 

DHE is that it is capable of representing only 3D models. 

Further development would be necessary to extend it to higher 

dimensions. However, in the presented research it is not 

required.  

In this paper, a simple method for a progressive loading of a 3D 

model geometry and topology stored in a database using the 

DHE data structure will be presented. A programming user 

interface allows for a transparent loading from a database to a 

computer memory and reverse operation of database updating, 

where modified elements are put back in the database. The 

proposed solution do not deal with individual basic elements, 

which in case of this research are half-edges and edges. 

 

2. METHODOLOGY 

There are two spatial models investigated in this research. The 

first one is a 2D TIN, which is used to present the principles of 

the described idea and test its efficiency. The second one is an 

indoor model of a building introduced to present a 3D approach. 

Pre-prepared models were imported to a PostgreSQL database. 

Time efficiency of data loading from the database to computer 

memory was tested for bulk and atomic single-edge queries. 

Comparative analysis provides a relative ratio indicator of the 

computation time. The developed prototype implementation is 

based on Python, which is a script programming language. 

Thus, absolute computation time, also provided in this paper, 

can be improved by reimplementation of the code in a compiled 

language, e.g. C++. 

 

2.1 Input data 

Three input datasets were used to develop spatial models: a list 

of points representing locations of Polish cities, a building mock 

dataset generated in Autodesk Revit and a city model in the 

CityGML format. All datasets were processed and implemented 

using the DHE data structure. 

 

The list of cities and the city model are open datasets obtained 

from the Head Office of Geodesy and Cartography (GUGiK) 

via the national geoportal1. The dataset including all Polish 

cities and villages was filtered in order to retrieve information 

on location of cities. There are 124,799 items in total, including 

954 cities (as of December 2021). Filtered data was used to 

compute TIN consisted of 2,845 edges and 1,892 triangles (see 

Figure 3). 

 

 

Figure 3. TIN model: triangulation of points representing 

locations of Polish cities. 

 

 
1 https://mapy.geoportal.gov.pl 
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The 3D mock dataset is a 11-storey building model generated in 

Autodesk Revit. It was exported to the gbXML format and 

processed in order to filter indoor spaces and openings (i.e. 

doors and windows) as well as to retrieve information about 

spatial relations among individual spaces based on methodology 

presented by Boguslawski et al. (2016). The result model (see 

Figure 4) is a cell complex consisted of a set of indoor spaces 

and zero-volume openings. Each cell is associated with a dual 

vertex and adjacent cells are connected by dual edges (dual 

structure is not shown in the picture). In total, there are 2,730 

vertices and 19,224 edges in the model (including primal and 

dual edges). It should be noted that adjacent cells do not share 

edges, but each cell have their own set edges even the geometry 

of adjacent edges is the same. Thus, in order to display the 

building model there are 3,066 unique-geometry edges selected. 

 

 

Figure 4. Mock dataset: a building model. 

 

The third example, the city model shown in Figure 5, covers a 

certain area of interest (about 80x80 km) in the south part of 

Poland, in the Silesian Voivodship. It consists of 554,763 

buildings in CityGML LoD2. The model converted to the DHE 

representation an stored in a database includes 63,594,268 

primal and dual edges (stored in  127,188,536 rows in a 

database) and 11,047,740 vertices. In this case, there are 

15,898,567 geometrically unique edges and 10,492,976 vertices 

in the primal, which are used for visualisation of the model. 

 

In the conversion process the ‘Cardboard and Tape’  

construction method is used to build a model (Boguslawski and 

Gold, 2010). The geometry of buildings in original CityGML 

files is represented as a set of faces, where a face is a list of 

consecutive vertices around the boundary. Individual faces of 

the DHE model are created based on the list of vertices and then 

joined by matching edges, which form a closed cell. Missing 

faces necessary to make a closed cell are detected and reported 

during the construction process. Thus, the final model consists 

of topologically valid cells representing buildings. 

 

For the clarity of presentation, basic ideas related to 

programming interface for data loading will be illustrated using 

the TIN model, while the building and city models will be used 

as a proof of concept. 

 

Figure 5. City model: 554,763 buildings in CityGML LoD2. 

 

2.2 Database storage 

Models implemented using DHE can be stored in two tables: 

vertex (see Table 1) and half-edge (see Table 2) storing the 

geometry and topology accordingly. Each entity, vertex and 

half-edge, is identified by id. v in the half-edge table is a foreign 

key from the vertex table, while s, nv, nf and d are identifiers of 

linked entities from the half-edge table. Attrib stores attributes 

attached to a vertex or edge in the JSON format. 

 

Name Type 
Not  

NULL 

Primary  

key 

id bigint x x 

x double x  

y double x  

z double x  

attrib varchar   

Table 1. Vertex table 

 

Name Type 
Not  

NULL 

Primary  

key 

id bigint x x 

v bigint x  

s bigint x  

nv bigint x  

nf bigint x  

d bigint x  

attrib varchar   

Table 2. Half-edge table. 

 

2.3 DHE implementation 

Transparent loading of a model from a database to computer 

memory requires new implementation of DHE navigation 

operators. The original version was designed to deal with a 

complete model present in computer memory. In the new 

concept, a model may be loaded only partially. Thus, in case of 

missing elements (usually on boundaries of the loaded model), 

they will be collected from a database when necessary. For the 

clarity of description it is assumed that all vertices are loaded 
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into the memory in advance, while provided examples will 

focus on operations related to half-edges.  

 

Original navigation operators: Sym, NextV, NextF and Dual, are 

functions, which return one of the pointers of the DHE data 

structure: s, nv, nf and d respectively. In the new version they 

work in the same way, if a certain pointer points at a half-edge, 

which is already loaded. Otherwise, an attribute with the target 

half-edge id is added and a navigation operator is ‘redirected’ to 

a special function, which role is to collect the half-edge from a 

database. This means that collection of a half-edge from a 

database is triggered by a navigation operator. Once the half-

edge is loaded, the navigation operator works in a standard way. 

 

In this implementation, there is a list of loaded half-edges 

included (the list is implemented as a Python dictionary). This 

allows for a quick check up of available half-edges and 

incremental loading of missing ones if required. The following 

pseudo-code shows the idea by providing only one operator – 

Sym. The rest of operators: NextV, NextF and Dual may be 

readily implemented based on the provided example. 

 

Input:  

 eList –  a global key-value list of loaded half-edges  

 (originally empty) 

 vList –  a global key-value list of pre-loaded vertices  

 from the vertex table 

 

class dhe 

 id: integer (identifier) 

 v, s, nv, nf, d: dhe = NULL 

 attrib: {} // a key-value list of attributes 

 Sym = &getSFromStorage //assign the getSFromStorage  

 //method to the Sym operator 

 

 method getSFromStorage() 

  if attrib['s'] != NULL 

             setSym(getEdgeFromDB(attrib['s'])) 

         return s 

 

 method setSym(he) 

        if he == NULL 

            if s != NULL 

                attrib['s'] =s.id 

                s = NULL 

                Sym =&getSFromStorage 

        else 

            s = he 

            Sym =&getSym  //assign the getSym  

 //method to the Sym pointer 

            attrib.remove('s') 

 

 method getEdgeFromDB(edgeId) 

 he = eList[id] //get a half-edge from eList 

 if he == NULL 

 rec = executeSQL("SELECT id, v, s, nv, nf, d, attrib  

 FROM half-edge WHERE id="+edgeId) 

 ID, IDV, IDSym, IDNextV, IDNextF, IDD, attrib=rec 

 he = new dhe 

 he.id = ID 

 eList[ID] = he 

             he.v = vList[IDV] 

             he.attrib['s'] = IDSym 

             he.attrib['nv'] = IDNextV 

             he.attrib['nf'] = IDNextF 

             he.attrib['d'] = IDD 

     return he 

dhe is a class representing an individual half-edge. When a new 

object is created, an identifier is assigned to the id property. The 

rest of properties are set to an empty value, i.e. NULL, and 

navigation operators are set to special methods, which read data 

from a database. In order to initiate the model, the root edge 

should be explicitly read by calling getEdgeFromDB (e.g. 

rootEdge = getEdgeFromDB(1)), which will fill the attrib 

property with identifiers of linked half-edges. Once an operator 

is called for a newly created edge e, e.g. e.Sym(), an identifier 

e.attrib['s'] is used to collect a new half-edge from a database 

using the getEdgeFromDB function, which is then assigned to 

e.s. e.Sym is redirected to the getSym function, which sets the 

standard role of the Sym operator. 

 

In any case, when getEdgeFromDB is called, the availability of 

the half-edge is checked in eList, which includes loaded half-

edges. If it is not loaded then the database is queried. A similar 

idea of loading may be applied to vList, which is a list of 

vertices in the memory. In this example, it is assumed that all 

vertices are preloaded and put on the list. 

 

The navigation operators query a database each time there is no 

required half-edge present in eList. Thus, the number of queries 

is the same as the number of half-edges to be collected. In order 

to reduce the number of queries, a modified version of 

getEdgeFromDB was tested. Instead of collecting and 

processing half-edge by half-edge, full edges, i.e. two half-

edges linked by s, are collected in one query. Modifications 

affecting the code are related to the SQL query and assignment 

of s. A half-edge of a given id and the coupling half-edge s are 

loaded from the database and two dhe objects are created at the 

same time. 

 

Another important aspect of the loading mechanism is 

transferring half-edges from the memory back to the database, 

which allows for releasing of memory resources. In this 

implementation, the focus will be put only on attributes. 

Changes of the model, its geometry or topology, and 

propagation of these changes to the database will not be 

considered. The following pseudo-code shows the 

putEdgeToDB method, which removes a half-edge from a list of 

loaded half-edges, updates the attrib field and removes 

references to the removed entity from other loaded half-edges. 

For the sake of clarity, the following code includes only 

operations related to the s pointer, while the rest: nv, nf and d 

can be implemented in a similar way. 

 

method putEdgeToDB(he): 

 eList.remove(he.id)  

 executeSQL("UPDATE half-edge SET attrib='"+ 

 he.attrib+"' WHERE id"+ he.id)  //update edge attributes  

 //in the database 

  

 rec = executeSQL("SELECT id FROM half-edge  

 WHERE s="+he.id+" OR nv="+he.id+" OR 

 nf="+he.id+"  OR d="+he.id //collect all half-edges  

 //linked to he  

 for all in rec 

   ID = rec 

 he = eList[ID] 

 if he != NULL and he.s != NULL and he.s.id == id: 

 he.setSym(NULL) //do the same for nv, nf and d 
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2.4 Graph traversal functions 

Models implemented using the DHE data structure form a 

graph, which can be traversed using graph algorithms. In order 

to test the new implementation, two graph-based functions were 

developed: 

• getCellEdges – takes a root half-edge parameter and returns a 

list of edges forming a cell, i.e. polyhedron; breadth-first 

graph traversal algorithm is applied; 

• getAllEdges – calls getCellEdges for each cell in a complex 

and returns all edges of a model in one space – primal or dual; 

dual graph is used to go from one cell to another. 

 

A function for a bulk load was also provided. It collects all half-

edges from a database in a single query and put them on the list 

– eList. It should be noted that the computation time of 

getCellEdges and getAllEdges will be affected if the bulk load is 

done before the functions are called, as no database query is 

made if a half-edge exists on the list. The computation time of 

graph-based functions will be referenced to the time of a bulk 

load. 

 

3. RESULTS 

The code was run on a computer with following properties: Intel 

Core i9-11900K, 32 GB RAM, Windows 10 (64-bit), Python 

3.10, PostgreSQL 14.1. 

 

3.1 Model loading 

A computation time of a bulk load from a database was 

compared with model loading using graph-based functions 

presented in section 2.4. They were applied for TIN and 

building models (shown in Figure 3 and Figure 4). In case of the 

TIN model, getCellEdges was applied as there is only one cell 

in this 2D model. In case of the building model, getAllEdges is 

applied in order to collect edges from all the cells. 

 

Computation time of the TIN model loading is provided in 

Table 3. It is an average value of five independent computation 

attempts for each function version. The bulk load results in 

collection of 5,690 half-edges from a database, while 

getCellEdges returns a list of 2,845 edges. It should be noted 

that existence of dual edges in the TIN model is not necessary, 

as the model consists of one cell. Therefore the dual structure is 

not included in the database. This also demonstrates that 

incomplete models can be also utilised in this new approach, 

which was not possible with the original DHE version. 

 

Function version 
Computation 

time [s] 

Computation 

time ratio 

bulk load 0.022 1 

getCellEdges (preloaded) 0.026 1.17 

getCellEdges (half-edge) 0.341 15.53 

getCellEdges (edge) 0.304 13.85 

Table 3. Loading time of the TIN model. 

 

The bulk option is the fastest one comparing to any version of 

getCellEdges, because there is only one database query 

performed. However, getCellEdges is only 1.17 times slower 

when the model is preloaded. This shows that graph traversal is 

relatively fast comparing to data collection from a database. 

 

The bigger difference is observed when the model is collected 

half-edge by half-edge (15.53 times slower) and edge by edge 

(13.85 times slower). There are respectively 5,690 and 2,845 

separate database queries necessary to read the model. 

 

The building model consists of 642 cells built of 38,448 primal 

and dual half-edges. There are about 6.75 times more-half edges 

than in the TIN model, while the bulk load time is 7.34 times 

higher. The execution time of getAllEdges for the preloaded 

model, half-edge by half-edge and edge by edge versions is 

1.24, 12.86 and 11.80 times higher respectively. 

 

Function version 
Computation 

time [s] 

Computation 

time ratio 

bulk load 0.161 1 

getAllEdges (preloaded) 0.203 1.24 

getAllEdges (half-edge) 2.080 12.86 

getAllEdges (edge) 1.895 11.80 

Table 4. Loading time of the building model. 

 

A time of model visualisation is not taken into consideration in 

above analysis. 

 

3.2 Database updating 

In the following experiment, edges from the original TIN model 

(see Figure 6a) were removed from the memory. 250 and 750 

edges (see Figure 6b and c) that were loaded first by 

getCellEdges were put back to the database including their 

attributes using putEdgeToDB (see section 2.3). Next, some 

edges were reloaded (see Figure 6d). This shows that the model 

can be partially present in the memory, while the rest can be 

loaded when necessary. Also some edges may be unloaded in 

case the model takes too much space in the memory. 

 

 

Figure 6. TIN model: a) original; b) 250 edges removed; c) 750 

edges removed; d) new edges reloaded. 

 

3.3 Model tiling 

In order to present a big data application, a part of the city 

model (5x5 km area covering the city of Katowice shown in 

Figure 7) was used to prepare a set of regular tiles (1x1 km) in 

the geoJSON format. 10,301 buildings where divided into 25 

tiles, with the number of buildings varying from 15 to 1,438. An 

average time of a database query and geoJSON file preparation 
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for a single tile is 170 s. A fragment of the 3D city model is 

shown in Figure 8. 

 

 

Figure 7. A fragment of the city model, 5x5 km including 

10,301 buildings. 

 

 

Figure 8. 3D city model in the geoJSON format. 

 

4. CONCLUSIONS 

In the paper, a database storage of big spatial models in 

boundary representation implemented with the DHE data 

structure as well as a transparent mechanism of loading the 

model to computer memory was shown. Parts of a model may 

be also put back in the database while preserving semantic 

information attached to atomic entities as attributes. The 

functionality of the proposed solution was tested in a prototype 

developed in Python in connection with PostgreSQL. 

 

Loading of partial models is an important issue when dealing 

with big spatial datasets. They may represent an area of a city or 

country and include terrain model, buildings, transportation 

network and other infrastructures. They are too big to be put as 

a whole in computer memory. Excessive data is transferred to a 

virtual memory on a hard drive, which significantly extends the 

access time and influences efficiency of analysis. Also, the time 

necessary to load the model on edge-by-edge basis is high and 

needs an optimised solution. A mechanism based on regular 

tiling, where a tile covering a relatively small part of the model 

is loaded in bulk, was presented using a city model consisted of 

several thousands of buildings. 

 

The city model retrieved from open datasets stored in the 

CityGML format was implemented with the DHE. This required 

3D topology reconstruction in order to introduce a valid model 

with required topological connections among model entities, i.e. 

half-edges, which allowed testing topological validity of 

original data. 

 

One of developments envisaged in a future is an automated 

mechanism for loading of optimal number of edges from a 

database. In this solution, tiles will be loaded and unloaded 

depending on utilisation of the memory. Edges, which were not 

accessed for a long period of time will be stored back in the 

database. 

 

Future works also include propagation of geometry and 

topology changes done in a computer memory back to a 

database. This is an essential functionality in case of dynamic 

models. 

 

The last but not least planned improvement is implementation 

of the proposed solutions using compiled programming 

languages, e.g. C++ or Delphi. This should significantly 

improve computation time efficiency.  
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