
 

SPATIAL DISAGGREGATION OF LANDSAT-DERIVED LAND SURFACE 

TEMPERATURE OVER A HETEROGENEOUS URBAN LANDSCAPE  

USING PLANETSCOPE IMAGE DERIVATIVES 
 

J.A. Cruz 1*, J.A. Santos 1, A. Blanco 1, 2 

 
1 Training Center for Applied Geodesy and Photogrammetry, University of the Philippines, Diliman, Quezon City, 1101, Philippines 

- johndrew.cruz@gmail.com 
2 Department of Geodetic Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines 

 

 

KEY WORDS: Urban Heat Islands, Downscaling, Regression-Kriging, Vegetation Indices, Built-up Indices, Gray-level Co- 

occurrence Matrix 

 

 

ABSTRACT: 

 

Satellite-derived land surface temperature (LST) is frequently utilized to characterize the intensity of urban heat island (UHI) effect in 

highly urbanized and rapidly urbanizing cities. However, current spaceborne thermal sensors cannot capture temperature variations 

within heterogeneous urban landscapes at finer scales due to its coarse spatial resolution. This study aims to apply Regression-

Kriging (RK) method to downscale a 30-meter Landsat-derived LST to 3 meters using different PlanetScope image derivatives. To 

avoid multicollinearity, exploratory regression was performed to reduce the initial set of 16 indices to 7 explanatory variables, 

namely, Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI), Normalized Pigment Chlorophyll 

Ratio Index (NPCRI), Visible Green-based Built-up Index (VgNIR-BI), Mean, Entropy, and Homogeneity. Ordinary Least Squares 

(OLS) regression was applied to fit the models and the residuals of the best performing models were interpolated using Ordinary 

Kriging technique and added back to the downscaled LST. The model with the highest accuracy was obtained using the combination 

of MSAVI, EVI, and Mean, with an R2 of 0.75 and RMSE of 1.12°C, 0.58 °C, 0.80 °C, and 1.45 °C in estimating the LST of built-up, 

bare soil, vegetation, and water classes, respectively. The results indicate that the inclusion of textural features in the regression could 

improve model accuracy without increasing the variance of coefficient estimates. Moreover, RK method (RMSE = 1.10 – 1.16 °C) 

was proven to be a reliable downscaling technique because it redistributes the spatial variability of LST that were not preserved in the 

OLS regression (RMSE = 1.60 – 1.75 °C). 

 

 

1. INTRODUCTION 

The Philippines is considered as one of the fastest urbanizing 

countries in Asia, and it is projected to increase in the 

succeeding years due to rapid population growth and internal 

migration (World Bank, 2017). Although a high degree of 

urbanization could signify improved living standards, it could 

also have negative impacts on the thermal environment, one of 

which is the occurrence of the urban heat island (UHI) 

phenomenon. Intensified demand for urban expansion leads to 

the conversion of green spaces into dense built-up areas made of 

low-albedo materials. This has resulted to significantly higher 

land surface temperatures (LST) in developed regions compared 

to its surrounding rural areas (Yang et al., 2016). UHI has 

adverse impacts on the general situation in highly urbanized and 

rapidly urbanizing cities such as increased energy consumption 

and thermal discomfort (O’Malley et al., 2014). 

 

To assist in mitigating the UHI effect, many studies have 

utilized LST images derived from satellite imageries with 

coarse spatial resolution such as Landsat OLI/TIRS (30 m, 100 

m), Sentinel-3 SLSTR (1 km), and MODIS (1 km) to 

characterize its spatiotemporal variation. Zhou et al. (2018) 

analysed previous researches and observed that more than 70% 

of UHI studies have utilized Landsat and MODIS images, 

primarily because of its temporal resolution and availability. 

However, these satellite images are only capable of capturing 

generalized spatial information, whereas high-resolution data 

are needed to be able to observe detailed land cover changes 

and LST variations in urban landscapes with high heterogeneity. 

In order to obtain more accurate thermal information, spatial 

disaggregation or downscaling of LST layers can be applied to 

improve the spatial resolution of thermal images.  

 

Several downscaling methods have been developed by previous 

studies, such as the Disaggregation Procedure for Radiometric 

Surface Temperature (DisTrad) method (Kustas et al., 2003) 

and the Temperature Sharpening (TsHARP) model (Agam et 

al., 2007), which both assume that there is an inverse linear 

relationship between LST and vegetation cover. The original 

methods involve the regression between low-resolution LST 

and vegetation metrics, i.e. Normalized Difference Vegetation 

Index (NDVI) for DisTrad and Fractional Vegetation Cover 

(FVC) for TsHARP, and the addition of the residual image to 

the downscaled LST. Although satisfactory results were 

obtained by these techniques in disaggregating LST over 

agricultural regions, it may not be applicable to complex urban 

landscapes which consist of various land cover types (Bala et 

al., 2018). Hence, the relationship of LST with different spectral 

and textural indices which can accurately characterize the 

spatial heterogeneity of urban areas should be considered in the 

downscaling process. Moreover, adding back the residual image 

derived from the difference between the original LST layer and 

the upscaled fine-resolution LST layer often results to an 

artificial box-like effect. To address this, a study by Mukherjee, 

Joshi, and Garg (2015) recommended to apply Regression-

Kriging (RK) technique in spatial downscaling. 

 

The main objective of this study is to spatially disaggregate 30-

meter Landsat-derived land surface temperature to finer spatial 

resolution using different biophysical indices. Specifically, it 

aims to: (1) assess the LST prediction capability of different 

combinations of vegetation indices, built-up indices, and gray-

level co-occurrence matrix (GLCM) textural images derived 

from 3-meter PlanetScope images, and (2) evaluate the 

performance of RK technique in downscaling moderate-
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resolution Landsat LST. The results of this study could aid in 

further improving the spatiotemporal analysis of LST, UHI, and 

various urban land use and land cover change scenarios.  

 

2. DATA AND METHODS 

2.1 Study Site 

Located at the southeastern edge of Panay Island, Iloilo City 

(10°45' N, 122°33' E) is a highly urbanized city which is 

considered as the regional center of the Western Visayas region. 

Based on the Köppen climate classification system, the city has 

a tropical wet and dry season with hot dry months from March 

to May. Its average monthly air temperature ranges from 30 °C 

(January) to 33.1 °C (April and May). The city was selected as 

the area of study because of its heterogenous urban composition 

as shown in Figure 1. Its city proper has a very high built-up 

density, consisting of both Spanish-era type heritage buildings 

and contemporary ones. Moreover, other parts of the city are 

composed of agricultural lands, rivers, fishponds, mangroves, 

and other types of vegetation, which contribute to its complex 

land cover characteristics.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Land cover map of Iloilo City 

 

2.2 Data Used 

2.2.1 Landsat Imagery 

 

Landsat 8 satellite is equipped with Operational Land Imager 

(OLI) sensor that captures visible up to short-wave infrared 

images with a spatial resolution of 30 meters, and Thermal 

Infrared Sensors (TIRS) that can provide two bands of thermal 

images with 100-meter resolution. In this study, a pre-processed 

Landsat OLI/TIRS satellite image acquired on May 14, 2019, 

covering Iloilo City was obtained from USGS Earth Explorer 

and Google Cloud Storage (Figure 2a).  

 

2.2.2 PlanetScope Imagery 

 

PlanetScope is a commercial Earth observation satellite 

constellation that acquires daily satellite images with resolution 

of 3 meters. Although superior in terms of spatial resolution, it 

consists of only four spectral bands, namely, Blue (455 – 515 

nm), Green (500 – 590 nm), Red (590 – 670 nm), and Near-

Infrared (780 – 860 nm) bands. Three pre-processed 

Planetscope Analytic Ortho Tiles acquired on May 18, 2019 

covering Iloilo City were downloaded from PlanetLabs 

(www.planet.com), taking into account the cloud cover and the 

Landsat data acquisition date. These images were mosaicked 

prior to the downscaling procedure and clipped to the study area 

(Figure 2b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Landsat OLI and (b) PlanetScope True Color 

Image of the study site 

 

2.3 Methodology 

The methodology of the study consists of three general steps: 

(1) Landsat LST Retrieval, (2) Generation of PlanetScope 

Derivatives, and (3) Regression-Kriging Method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. General workflow of the study  

 

2.3.1 Landsat LST Retrieval 

 

To derive land surface temperature from the Landsat image, the 

study adopted the LST retrieval method developed by 

Jeevalakshmi et al. (2017) and implemented it using Google 

Earth Engine (GEE), a cloud-computing platform for geospatial 

applications. The method is divided into several steps. Digital 

(a) (b) 
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numbers (DN) from the raw satellite data were first converted to 

at-sensor spectral radiance (Lλ) using the equation: 

 

 

𝐿𝜆 =
(𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛) ∗ 𝑄𝑐𝑎𝑙

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
+ 𝐿𝑚𝑖𝑛 − 𝑂𝑖 

 

where Lmax is the maximum radiance, Lmin is the minimum 

radiance, Qcal is the DN value of pixel, Qcalmax is the maximum 

DN value, Qcalmin is the minimum DN value, and Oi is the 

correction value for band 10. Next, the thermal band (Band 10) 

is converted to at-sensor brightness temperature (BT) or the 

temperature of an equivalent blackbody of a target object that is 

detected by the thermal sensor, using the formula: 

 

𝐵𝑇 =
K2

ln [(
𝐾1
𝐿𝜆

) + 1]
−  273.15 

 

where K1 and K2 are thermal constants found in the metadata of 

the image. Normalized Difference Vegetation Index (NDVI) 

was then calculated using the red and near-infrared bands of the 

image using the formula in Table 1. From this, Proportional 

Vegetation (Pv) values were calculated to approximate the 

proportion of vegetation and bare soil per image pixel using the 

equation: 

 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
)2 

 

This study used an NDVIs value of 0.2 and an NDVIv of 0.5, 

similar to the values applied by Jeevalakshmi et al. (2017) for 

global conditions using Landsat OLI images. Land Surface 

Emissivity (LSE), which serves as a scaling factor for the 

blackbody radiance, was computed for each pixel. LSE is 

dependent on the surface roughness and vegetation cover, and 

its formula varies depending on its NDVI value. The formulas 

for the NDVI Threshold Method (NTM) are shown below: 

 

𝜀𝜆 = {

𝜀𝑠𝜆                                                                , 𝑁𝐷𝑉𝐼 <  𝑁𝐷𝑉𝐼𝑠 

𝜀𝑠𝜆𝑃𝑣 + 𝜀𝑠𝜆 (1 − 𝑃𝑣
) + 𝐶𝜆      , 𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣

𝜀𝑠𝜆 + 𝐶𝜆                                                      , 𝑁𝐷𝑉𝐼 >  𝑁𝐷𝑉𝐼𝑣 

 

 

where ελ is land surface emissivity, εsλ is soil emissivity, εvλ is 

vegetation emissivity, and Cλ is the surface roughness (0.005). 

Land surface temperature is then estimated using the equation: 

 

𝑇𝑠 =
𝐵𝑇

{1 + [(
𝜆𝐵𝑇

𝜌
) 𝑙𝑛𝜀𝜆]}

 

 

where Ts is the land surface temperature (°C), λ is the average 

wavelength of thermal band, and ρ = 1.438 x 10-2 mK.  

 

2.3.2 PlanetScope Image Derivatives 

 

Since the sensitivity of different indices in predicting LST 

varies depending on the land cover composition and the 

heterogeneity of the urban landscape, the study tested a total of 

16 spectral and textural derivatives extracted from the 

PlanetScope image. Spectral derivatives, which include 

vegetation and built-up indices, are proven to be effective 

relative measures of the amount of green vegetation and 

impervious surfaces, respectively. Meanwhile, textural 

derivatives are capable of distinguishing between urban cover 

types which exhibit similar spectral characteristics such as bare 

soil and built-up areas. The combination of spectral and textural 

information in characterizing complex urban areas could 

possibly improve the spatial disaggregation of the coarse-

resolution LST. 

 

 2.3.2.1   Spectral Indices 

 

Eight spectral indices were calculated from the four spectral 

bands of the pre-processed PlanetScope image using ArcGIS 

10.1 software: Atmospherically Resistant Vegetation Index 

(ARVI), Enhanced Vegetation Index (EVI), Infrared Percentage 

Vegetation Index (IPVI), Modified Soil-Adjusted Vegetation 

Index (MSAVI), Normalized Difference Vegetation Index 

(NDVI), Normalized Pigment Chlorophyll Ratio Index 

(NPCRI), Optimized Soil-Adjusted Vegetation Index (OSAVI), 

and Visible Green-based Built-up Index (VgNIR-BI). Table 1 

summarizes the formulas used to calculate the spectral indices. 

The resulting layers were aggregated to a spatial resolution of 

30 meters using spatial averaging, such that each Landsat LST 

pixel corresponds to one pixel for each explanatory variable.  

 

Spectral 

Index 
Formula Reference 

ARVI 
𝑁𝐼𝑅 − 2𝑅 − 𝐵

𝑁𝐼𝑅 + 2𝑅 − 𝐵
 

Kaufman and 

Tanre (1992) 

EVI 
2.5(𝑁𝐼𝑅 − 𝑅)

𝑁𝐼𝑅 + 6𝑅 − 7.5𝐵 + 1
 

Liu and Huete 

(1995) 

IPVI 
𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅
 

Crippen 

(1990) 

MSAVI 
2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)

2
 

Qi et al. 

(1994) 

NDVI 
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Rouse et al. 

(1973) 

NPCRI 
𝑅 − 𝐵

𝑅 + 𝐵
 

Merzlyak et al. 

(1999) 

OSAVI 1.16(
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.16
) 

Rondeaux et al. 

(1996) 

VgNIR-

BI 

𝐺 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
 

Estoque and 

Murayama 

(2015)  

 

Table 1. Spectral indices used in the study  

2.3.2.2   Textural Indices 

 

Gray-level Co-occurrence Matrix (GLCM) was applied to 

extract textural information from the high-resolution image. 

This method creates a matrix which describe how often the 

individual pairs of values in a specified spatial relationship 

appear within the image (Haralick et al., 1973). From this, 

various statistical calculations are performed to generate 

different textural derivatives. In this study, eight GLCM 

measures were calculated from each spectral band using ENVI 

5.1 image analysis software: Contrast, Correlation, 

Dissimilarity, Entropy, Homogeneity, Mean, Second Moment, 

and Variance using a kernel size of 3 x 3 meters.  The formulas 

used to calculate each feature are shown in Table 2.  

 

To reduce the number of textural layers that were generated, 

Principal Components Analysis (PCA) was performed on the 

four bands of each GLCM index. PCA is a dimensionality 

reduction technique which orthogonally transforms a large 

(1) 

(2) 

(3) 

(5) 

(4) 
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dataset into a smaller set of linearly uncorrelated variables and 

selects the leading principal components which account for 

most of the variations in the original dataset (Liu et al., 2017). 

Based on the plot of its eigenvalues, the first PCA band of each 

set of layers were selected to represent the eight GLCM textural 

features. These layers were also resampled to the spatial 

resolution of the Landsat-derived LST.  

 

 

GLCM Feature Formula 

Contrast ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Correlation 
∑ ∑ (𝑖, 𝑗) ∗ 𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

Dissimilarity ∑ ∑ 𝑃(𝑖, 𝑗) ∗ |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Entropy − ∑ ∑ 𝑃(𝑖, 𝑗) ∗ log (

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑃(𝑖, 𝑗)) 

Homogeneity ∑ ∑
1

1 + (𝑖 − 𝑗)2 ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Mean ∑ ∑ 𝐼 ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Second Moment ∑ ∑[𝑃(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Variance ∑ ∑(𝑖 − 𝜇2) ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

Table 2. GLCM features used in the study 

2.3.3 Exploratory Regression 

 

10% of the aggregated pixels (19,223 points) were randomly 

selected and divided into training (80%) and validation set 

(20%). It was ensured that both sets of points were evenly 

distributed throughout the image and each general land cover 

type (built-up, vegetation, bare soil, water) was well-

represented. Then, stepwise multilinear regression via backward 

elimination was performed on the 16 explanatory variables to 

remove redundant and statistically insignificant predictors. 

Exclusion of candidate predictors was based on its Percentage 

of Variable Significance (%Significance) and Maximum 

Variance Inflation Factor (VIF). The combinations of 

significant predictors with the highest Adjusted Coefficient of 

Determination (R2), Akaike Information Criterion (AIC), and 

lowest VIF were selected for the next step of the spatial 

downscaling process.  

 

2.3.4 Regression-Kriging Method 

 

Regression-Kriging (RK) is a hybrid spatial interpolation 

technique which combines linear regression and kriging 

interpolation. This study adopted the method implemented by 

Mukherjee, Joshi, and Garg (2015) which applied Ordinary 

Least Squares (OLS) Regression to estimate the downscaled 

LST based on the predictive variables, and Ordinary Kriging 

(OK) to interpolate the OLS residuals before resampling and 

adding it back to the generated high-resolution LST layer.  

 

2.3.4.1   Ordinary Least Squares (OLS) Regression 

 

OLS Regression is a least squares regression method which 

estimates the linear relationship between the independent and 

dependent variables by minimizing the sum of the squares of the 

residuals (Butler, 1999). The method was implemented in the 

study using ArcGIS 10.0; each of the selected combinations of 

spectral and textural indices were set as the explanatory 

variables while the 30-meter LST was set as the dependent 

variable.  

 

2.3.4.2   Ordinary Kriging (OK) Interpolation 

 

OK is a geostatistical technique which predicts the semivariance 

of the dependent variable based on the assumption that the 

distance between sampling points are spatially correlated and 

the unknown mean is constant over the search neighborhood of 

each estimation point (Farmer, 2016).  The LST residuals 

resulting from OLS Regression were used as input in the 

Ordinary Kriging tool in ArcGIS 10.0. The semivariograms of 

each set of residuals were first inspected before selecting the 

appropriate model parameters for the interpolation. The output 

residual surfaces were then added to the OLS-predicted LST 

rasters to obtain the final downscaled LST layers.   

 

2.3.5 Accuracy Assessment  

 

Since there is no high-resolution reference LST layer to be 

compared with, the PlanetScope-derived LST images were 

upscaled to 30 meters and the root-mean-square error (RMSE) 

and mean error (ME) of each model per land cover type were 

calculated relative to the Landsat LST values at each validation 

point. The best Regression-Kriging model was selected based 

on its Adjusted R2, AIC, RMSE, and ME. 

 

3. RESULTS AND DISCUSSION 

3.1 Selection of Significant Predictive Variables 

9 spectral and textural indices (ARVI, IPVI, NDVI, OSAVI, 

BAI, Contrast, Correlation, Dissimilarity, Second Moment, and 

Variance) were removed based on the results of the stepwise 

linear regression due to inconsistent significance and high 

multicollinearity with other variables. 

The table below shows the summary of the %Significance and 

VIF of the remaining explanatory variables.   A high positive 

%Significance indicates a consistently strong positive 

relationship while a high negative %Significance means that a 

stable negative relationship exists among variables. Meanwhile, 

a higher VIF value implies that there are two or more redundant 

predictors. All of the remaining variables have %Significance of 

above 90% and relatively lower VIF compared to the excluded 

indices and were included in the regression. 

 

 

Table 3. Selected of explanatory variables based on significance 

and multicollinearity 

 

Variable % 

Significance 

% 

Negative 

% 

Positive 
VIF 

NPCRI 100 4.76 95.24 7.78 

MSAVI 100 0 100 59.57 

EVI 100 52.38 47.62 38.73 

VgNIR-BI 90.48 95.24 4.76 66.59 

Mean 100 0 100 1.57 

Homogeneity 100 90.48 9.52 4.76 

Entropy 100 0 100 4.86 
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3.2 Selection of OLS Models 

The following tables display the five best OLS models which 

used only spectral indices (Table 4), and combination of 

spectral and textural indices (Table 5), as exploratory variables. 

Only two-variable and three-variable models were considered in 

the analysis since the addition of another predictor did not 

significantly improve the R2 and considerably increased the VIF 

of the resulting models.  

Model Adj. 

R2 

AIC VIF 

NPCRI/EVI/VgNIR 0.75 58114.54 62.07 

MSAVI/EVI/VgNIR 0.74 58423.02 66.31 

EVI/VgNIR 0.74 58715.57 11.89 

MSAVI/EVI 0.69 61927.96 9.74 

NPCRI/MSAVI/VgNIR 0.65 63101.90 66.59 

 

Table 4. Top five OLS models based on Adjusted R2 and AIC 

which used combinations of only spectral indices as explanatory 

variable (selected models for Regression-Kriging are 

highlighted in bold text) 

 

Model Adj. 

R2 

AIC VIF 

EVI/VgNIR/Mean 0.77 56293.54 15.60 

EVI/VgNIR/Entropy 0.76 57068.55 13.40 

EVI/VgNIR/Homogeneity 0.76 57171.03 12.97 

MSAVI/EVI/Mean 0.75 57860.24 12.06 

NPCRI/MSAVI/Mean 0.73 59052.40 2.41 

 

Table 5. Top five OLS models based on Adjusted R2 and AIC 

which used combinations of spectral and textural indices as 

explanatory variable (selected models for Regression-Kriging 

are highlighted in bold text) 

 

 

Adjusted R2 represents the amount of variability in the 

dependent variable that can be explained by the regression 

model while AIC is a relative measure of the balance between 

fitting the dataset and model complexity. Based on the tables 

above, all of the models obtained satisfactory results despite 

using only 10% of the pixels as training and validation samples. 

Higher Adjusted R2 and lower AIC were calculated for the 

models which combined both spectral and textural derivatives 

compared to the models which only used spectral indices, 

indicating better prediction performance. In addition, inclusion 

of GLCM textural features addressed multicollinearity issues 

that can be observed in the models having three spectral indices 

as independent variables (VIF > 60). Based on the three criteria, 

6 out of 10 regression models were selected for the next phase 

of the Regression-Kriging method. 

 

3.3 Comparison Between OLS and RK Models 

Comparing the calculated RMSE for each model using two 

different methods as shown in Figure 4, it can be observed that 

all of the RK models (RMSE = 1.10 – 1.16 °C) performed 

considerably better than the OLS models (RMSE = 1.60 – 1.75 

°C). This implies that redistributing the LST residuals using 

Ordinary Kriging and combining it with the OLS surface 

significantly improves the accuracy of the models, since the 

interpolated residuals preserve the spatial variability of LST that 

were not captured by the spectral and textural indices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of RMSE between OLS and RK 

downscaled LST models 

3.4 Accuracy Assessment per Land Cover Type 

Figures 5 and 6 summarizes the RMSE and ME, respectively, of 

the downscaled LST layers for the general land cover types 

within the study site. Bare soil obtained the lowest magnitude of 

error among the four land cover classes (RMSE= 0.58 – 0.75 

°C), followed by vegetation (RMSE = 0.79 – 0.92°C), built-up 

(RMSE = 1.12 – 1.24 °C), and water (RMSE = 1.32 – 1.45 °C). 

This may be because the vegetation indices used in the 

regression models (EVI and MSAVI) exhibit a stronger linear 

relationship with LST compared to the built-up index (VgNIR-

BI) and GLCM features (Mean, Entropy, Homogeneity).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. RMSE of each downscaled LST model  

per land cover type 

Generally, a positive bias (ME = 0.02 – 0.24) in predicting the 

LST of soil pixels can be observed based on the mean error, 

which means that the models tend to overestimate the 

downscaled LST values of areas with bare soil. On the contrary, 

negative values (ME = -0.05 – -0.11) were calculated for the 

water pixels, indicating underestimation. In predicting the 

surface temperature of built-up areas, the four regression-

kriging models with EVI and VgNIR-BI as its explanatory 

variables generally overestimated the actual values (ME = 0.01 

– 0.09), while the other two models have underestimated it (ME 

= -0.01 – -0.06). Meanwhile, all of the models (ME = -0.06 – -
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0.24) except for NPCRI/MSAVI/Mean (ME = 0.35) have a 

negative bias in estimating the LST values of vegetation areas. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. ME of each downscaled LST model 

 per land cover type 

 

3.5  Selection of Best RK Model 

Considering all of the land cover classes, the downscaled LST 

models obtained satisfactory results in terms of RMSE. Four 

models, namely, EVI/VgNIR-BI/Entropy, EVI/VgNIR-

BI/Homogeneity, MSAVI/EVI/Mean, and EVI/VgNIR-BI, have 

an RMSE of 1.10 °C while the other two models, 

EVI/VgNIR/Mean and NPCRI/MSAVI/Mean, have an RMSE 

of 1.11 °C and 1.16 °C, respectively. Furthermore, all of the 

models have an ME of -0.01 °C, indicating low negative bias. 

Meanwhile, in downscaling LST values of built-up areas and 

bare soil, MSAVI/EVI/Mean outperformed other models, with 

an RMSE of 1.12 °C and 0.58 °C, respectively. Other models 

have a built-up area RMSE of greater than 1.18 °C and bare soil 

RMSE of greater than 0.64 °C. Also, MSAVI/EVI/Mean ranked 

2nd in terms of accuracy in predicting vegetation LST, with an 

RMSE of 0.80 °C versus EVI/VgNIR/Mean (RMSE = 0.79 °C) 

and the other four models (RMSE > 0.82). However, this model 

performed poorly in estimating the surface temperature of water 

bodies (RMSE = 1.45 °C) relative to the other models (RMSE < 

1.36 °C).  

 

Despite this, the MSAVI/EVI/Mean RK model was selected as 

the best model to improve the resolution of the Landsat-derived 

LST to 3 meters since the need for downscaling the surface 

temperature of water is not as critical as in the case of built 

environments and its RMSE in water is acceptable considering 

the limitation on the available spectral bands of the PlanetScope 

image and the unique thermal properties of water bodies 

compared to the other three land cover classes. Moreover, it is 

the most visually accurate model relative to the reference 

Landsat LST layer. For example, in other models, blue-painted 

building roofs appear to be a cold spot (Figures 7c, 7d, 7e, 7g, 

and 7h), possibly because its RGB properties are quite similar 

with water bodies. This is not the case with the 

MSAVI/EVI/Mean model (Figure 7f), which estimated that the 

LST of roofing materials are higher than vegetation and water 

during daytime, regardless of its color. The sensitivity of 

MSAVI and EVI in detecting variations in vegetation and soil 

abundance, was complemented by the textural information 

provided by GLCM mean, resulting to better accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Zoomed-in (a) PlanetScope true color image, (b) 

Landsat LST, and downscaled LST using (c) EVI/VgNIR-

BI/Mean, (d) EVI/VgNIR-BI/Entropy, (e) EVI/VgNIR-BI/ 

Homogeneity, (f) MSAVI/EVI/Mean, (g) EVI/VgNIR-BI,  

and (h) NPCRI/MSAVI/Mean 

19 

47 
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Figure 8. Landsat-derived LST map of Iloilo City 

on May 14, 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Downscaled LST map of Iloilo City on May 14, 2019 

using Regression-Kriging technique 

 

 

Comparing Figures 8 and 9, it can be observed that the spatial 

distribution and patterns of LST within the study site are 

visually similar. Different features such as the boundaries 

between land covers, building edges, major and minor roads, 

river channels, fishponds, and croplands are better discriminated 

in the downscaled LST map. Based on visual and statistical 

analysis, it can be concluded that the methodology can be 

applied in complex urban landscapes and could yield accurate 

results. One issue regarding the result of the study is the large 

deviation in its maximum and minimum values, relative to the 

original layer. Most of the building roofs were overestimated by 

the MSAVI/EVI/Mean model, its maximum value being 46.82 

°C, while the highest Landsat LST value is only 37.79 °C. 

Meanwhile, some water pixels were underestimated probably 

because the indices used in the model are less sensitive to the 

water surface temperature variations. However, it cannot be 

concluded that these differences indicate that the predicted LST 

is erroneous because the study was not able to perform model 

validation using in-situ surface temperature data or a 3-meter 

reference LST. This limitation can be addressed in future 

researches through ground validation or by obtaining a high-

resolution reference thermal image.  

 

4. CONCLUSION AND RECOMMENDATIONS 

This study aimed to downscale a 30-meter Landsat-derived land 

surface temperature to higher spatial resolution using different 

indices derived from a 3-meter PlanetScope image. 

Multicollinearity of variables was addressed by the study by 

including textural indices derived using gray-level-cooccurrence 

matrix (GLCM), which improved the model fit without 

increasing the variance of the coefficient estimates. Regression-

Kriging (RK) method was applied to the significant variables to 

determine the best set of predictors that will result to the most 

accurate fine-resolution LST.  

 

Based on the results of the study, the MSAVI/EVI/Mean model 

with an R2 of 0.75 was selected as the final model to be used in 

downscaling the Landsat LST image. It performs best in 

predicting the surface temperature of bare soil and vegetation 

pixels, with RMSE of 0.58 °C and 0.80 °C, respectively, while 

its accuracy in estimating LST of impervious surfaces and water 

bodies are 1.12 °C and 1.45 °C, respectively.  This suggests that 

the application of RK method based on the relationship between 

LST and the image derivatives used in the study may be applied 

in order to spatially disaggregate the LST of heterogeneous 

urban regions. However, it cannot be guaranteed that the 

MSAVI/EVI/Mean model will produce accurate results when 

applied to a different area. It is recommended to redo the 

methodology to come up with a specific model for a different 

study site since the results are highly dependent on land cover 

composition and the satellite image used.  

 

For future work, it is recommended to collect in-situ LST data 

at different locations within the study site or acquire a high-

resolution thermal image of a sub-site on the day and time of 

Landsat satellite passage using an unmanned aerial vehicle 

(UAV), to serve as a reference LST layer. This could improve 

the assessment of model accuracy which was not conducted by 

the study because of logistical and time constraints.  
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