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ABSTRACT: 

 

The concept of Autonomous vehicles or self-driving cars has recently been gaining a lot of popularity. Because of this, a lot of research 

is being done to develop the technology. One of which is High Definition (HD) Maps, which are centimeter-level precision 3D maps 

that contain a lot of geometric and semantic information about the road which can assist the AV when driving. An important component 

of HD maps is the road markings which indicates a set of rules on how a vehicle should navigate itself on the road.  For example, lane 

lines indicate which part of the road a vehicle can drive on in a certain direction. This research proposes a methodology that uses deep 

learning techniques to detect road arrows, road markings that show possible driving directions, on LIDAR derived images, and extract 

them as polyline vector shapefiles. The general workflow consists of (1) converting the LIDAR point cloud to images, (2) training and 

applying U-Net – a fully convolutional neural network, (3) creating masks from image segmentation results that have been transformed 

to fit the local coordinates, (4) extracting the polygons and polylines, and finally (5) exporting the vectors in shapefile format. The 

proposed methodology has shown promising results with object segmentation accuracies comparable with previous related works. 

 

 

1. INTRODUCTION 

1.1 Background 

Autonomous vehicles (AVs) or self-driving cars is currently one 

of the most popular topics of research in the field of science and 

engineering (Brummelen, O'Brien, Gruyer, & Najjaran, 2018). 

A lot of advances are being done from how it perceives its 

environment to how it makes its own decisions on the road. One 

of those is the concept of High Definition (HD) maps. HD Maps 

are centimeter-level precision 3-dimensional (3D) maps that 

contain both geometric and semantic information of everything 

on or nearby the road (Vardhan, 2017) which helps AVs better 

navigate on the road.  

 

 
Figure 1. Sample visualization of an HD Map                     

(taken from https://www.geospatialworld.net/) 

An essential component of HD Maps is the vectorized 

representation of road markings. Road markings consist of lane 

lines that indicate the driving area, road arrows that show 

possible driving directions, crosswalks which indicate possible 

human traffic on the road, and much more. As such, a lot of 

researchers tackle on how to extract those road markings from 

raw sensor data like images or LIDAR point cloud. Recent trends 

make use of deep learning techniques for extraction. (Kurz, 

Azimi, Sheu, & d’Angelo, 2019) used a convolutional neural 

network (CNN) on aerial images and (Hu, et al., 2019) and 

(Hoang, Nam, & Park, 2019) used YOLO on mobile mapping 

images to detect road markings. While (Wen, et al., 2018) and 
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(Wolf, Richter, Discher, & Dollner, 2019) used CNN to detect 

road markings on images derived from the LIDAR point cloud. 

 

1.2 Objective 

This research paper proposes a working methodology that can 

utilize deep learning techniques such as semantic segmentation, 

which assigns each pixel to a certain specific classification, using 

U-Net a kind of convolutional neural network to detect road 

arrow markings and successfully digitize them as polyline vector 

shapefiles from LIDAR point cloud derived intensity and color 

(RGB) images. 

  

1.3 Data Source 

The LIDAR point cloud dataset provided by the Department of 

Geomatics at National Cheng Kung University was taken using 

a mobile mapping system and contains both color (RGB) and 

intensity information. It is composed of 28 combined blocks that 

cover the entire autonomous vehicle (AV) test field located near 

the Shalun train station in Tainan, Taiwan (ROC). The test field 

was built to replicate multiple conditions in the real world urban 

road environment for autonomous vehicle use. It is filled with 

various road markings (such as road arrows and pedestrian 

crosswalks) and traffic management objects (such as traffic signs 

and traffic lights).  

 

  
Figure 2. (Left) The entire point cloud dataset and            

(Right) The AV test field as seen on Google Maps. 
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2. METHODOLOGY 

 

Figure 3. General workflow of the entire methodology.  

2.1 LAS to Raster 

The initial step is to convert the point cloud blocks, in LAS 

format, to a raster, PNG format. This is because the 

convolutional neural network model that will be used for this 

research is only applicable to images. Converting point cloud to 

images for neural network classification has been demonstrated 

in the works of (Wen, et al., 2018), where the point cloud was 

converted to an image using intensity values. In this case, the 

point cloud is converted to an image based on intensity and color 

(RGB) information, on 3 different sampling resolutions: 10, 5, 

and 1 cm. This was done using ArcMap’s (v10.7) LAS to Raster 

tool. A total of 6 datasets was generated with each containing 28 

images. 

 

  
Figure 4. Resulting (Left) Intensity Image and                   

(Right) RGB Image 

2.2 Training the Neural Network Model 

U-Net v2, a fully convolutional network, was used as the model. 

U-Net has been proven to be an effective model for road or road 

segmentation purposes. (Li, Guo, Rao, Xu, & Jin, 2019) and 

(Yang, et al., 2019) used it on satellite images to extract roads, 

while (Hu, et al., 2019) and (Wen, et al., 2018) used it on mobile 

mapping images to extract road markings. The model has been 

trained using Supervisely, a web-based platform for deep 

learning. All of the parameters for training the model have been 

set to default, except the number of epochs which was set to 10, 

which was the processing limit of the computer used. The 

parameters are listed below in Table 1:  

 

Table 1. Neural network training parameters 
Learning rate: 0.001 Batch size: Input size: 

Epochs: 10    Validation: 1    Width: 256 

Iteration: 1 epoch    Training: 4    Height: 256 

 

The computer that was used for this research runs on an Intel i7 

@2.80GHz with 4 cores, a 16 GB RAM, and an NVIDIA GTX 

1060. In total, 6 models were generated, each from one training 

dataset. These training datasets have undergone both image 

annotation and augmentation.  

 

2.2.1 Image annotation: is the process of manually labeling 

target objects (Ambalina, 2019).  In this case, the target object 

was the road arrows. 5 images (less than 20%) from each dataset 

were annotated. This means that 5 images were used for each 

model (ex. 5 images taken from a 1 cm intensity image dataset 

for the 1 cm intensity image-based model). Only arrows that 

were fully represented in an image was labeled. This resulted in 

the initial training dataset. 
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Figure 5. Sample annotated images from the initial training 

datasets. 

2.2.2 Image augmentation: diversifies the training dataset 

without using any other additional datasets, through a series of 

image manipulation such as flip, crop, and rotate (Ho, Liang, & 

Liaw, 2019).  The initial training dataset of 5 images went 

through the first augmentation by flipping copies of the original 

images horizontally and vertically. After this, the training dataset 

now had 15 images: 5 of the original, 5 flipped horizontally and 

5 flipped vertically.  The second augmentation was done by 

multiplying copies of the images by 10 and applying random 

crops, random rotations, and both. After this, the training dataset 

now had a total of 465 images: 15 of the initial augmented, 150 

randomly cropped, 150 randomly rotated, and 150 randomly 

cropped and rotated. Then, the images were tagged at a 95% 

confidence, as suggested at (Supervisely, 2019), meaning 95% 

of the images will be used for training and 5% will be used for 

validation. The images that has undergone this step will be fed 

to the neural network model for training. 

 

   
Figure 6. Sample images from the training datasets. 

2.3 Creating Masks 

Even though segmented image masks were already included in 

the downloaded datasets from Supervisely it still needed to be 

changed for it to be able to follow the next procedures. Using 

Python’s (3.X) OpenCV library, the masks were converted to 

grayscale from color (RGB), then the values were reclassified to 

only 0 and 1, and the images were exported as TIFF files.  

 

 
Figure 7. Sample resulting segmented image mask. 

 

 
Figure 8. Workflow for creating the training dataset. 

2.4 Transforming the Image 

Using Python’s GDAL library, the segmented image masks were 

transformed to the same local coordinates as the original TIFF 

image (from when LAS was converted to raster). This was 

necessary since downloaded images from Supervisely did not 

retain their coordinate information. 

 

2.5 Raster to Polygon 

Using Python’s GDAL library the segmented image masks 

(raster) were converted to polygon shapefiles (vector). This was 

done by grouping connecting pixels of the same value, making 

individual polygon objects for each arrow and the background. 

The result was individual shapefiles containing multiple objects 

with different attributes for each one. 
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Figure 9. Sample resulting polygon shapefile. 

 

2.6 Polygon to Polyline 

The conversion of the polygon to polyline was done using 

Python’s Fiona and Shapely libraries. Having the background 

polygon removed, the boundary of the polygons were used to 

represent the polylines. The result was individual shapefiles for 

each road arrow. 

 

 
Figure 10. Sample resulting polyline shapefiles. 

2.7 Simplification 

Finally, the polyline was further improved by simplification. 

Using Python’s Shapely library the line was simplified to 

remove the jagged effect caused by following the edges of the 

pixel boundary. In a simple test to figure out which 

simplification parameter worked visually well, 10 cm and 20 cm 

values were tested. It turns out that 20 cm had better results and 

this was used for the entire dataset. 

 

 
Figure 11. Polyline simplification parameter used:              

(Left) None, (Middle) 10cm and (Right) 20cm.  

3. RESULTS AND DISCUSSION 

To asses the results, I have separated the generated road arrow 

polyline vectors into 4 classifications namely: Fully Detected, 

Partially Detected, Wrongly Detected, and Not Detected. Fully 

detected means that the arrow has been well represented and the 

head and tail can be clearly seen. Partially detected means that 

not all of the arrow has been represented but it was detected. 

Wrongly detected means that a feature that is not an arrow was 

detected. Not Detected means that an arrow that is present in the 

image was not detected. Only arrows that were fully visible in 

the image was taken into account, those that were just partially 

visible were excluded in the assessment. 

 

Table 2. The number of detections per classification. 
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10 40 15 26 6 

5 38 9 20  14 

1 24 20 17 17 

 

Considering both the fully detected and the partially detected as 

correct identifications, one of the models achieved an accuracy 

of 92% (computed by dividing the correct identifications by the 

number of manually digitized arrows). This result did not deviate 

from the results of previous similar works, of (Wolf, Richter, 

Discher, & Dollner, 2019) which achieved a 91% accuracy and 

of (Wen, et al., 2018) which achieved a 96% accuracy. 

 

   

   

   

   
Figure 12. Road arrow polyline classifications:                     

(Top to Bottom) Fully Detected, Partially Detected,          

Wrongly Detected, and Not Detected.                                    

(Left) Segmented Image and (Right) arrow polyline, in which 

Red is manually digitized and Blue is detected from the neural 

network model. 

For images derived from intensity values, there is not much 

change from the number of fully detected arrows from 10 cm and 

5 cm. But, the number of partially detected arrows did increase 

at 5 cm. This means that there is an increase in the detection 

accuracy from 10 cm to 5 cm. However, the number of wrongly 

detected features has gradually increased from 10 cm to 1 cm. 

This indicates that higher resolutions or more detailed images 

can provide more noise that confuses the network. For images 

derived from color (RGB) values, the number of fully detected 
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arrows decrease and the number of arrows not detected increase 

from 10 cm to 1 cm. This means that the detection process is 

getting worse as the sampling resolution gets higher. This can be 

caused by pixels having an insufficient number of points with 

wrong color information (due to wrong projections of color in 

the LIDAR point cloud). However, the number of wrongly 

detected features also decreases. This means that, in contrast 

with the images derived from the intensity, color images 

provided less noise, which can be due to a pixel having a more 

distinct representation of itself as compared to a grayscale 

representation of the intensity-based image. In general, images 

derived from intensity values provided more fully detected road 

arrows than the images derived from color (RGB) values. 

Having around 20%, 25%, and 40% differences in their number 

of detections for sampling resolutions of 10cm, 5cm, and 1 cm, 

respectively.  

 

In terms of arrows not detected, there were also some cases that 

arrows were visible on both the intensity-based and color-based 

images but not detected. These are arrows that were located 

inside of tunnels, as shown in Figure 13. These images were not 

included in the training dataset and can be a source of confusion 

for the model since it has a very different condition. In total there 

were 2 blocks of this condition and it contained 7 fully 

represented arrows. So, if this were to be excluded in the 

assessment the 5 cm intensity-based image and the 10 cm color-

based image would no longer have arrows in the not detected 

classification. In terms of wrongly detected features, since a 

closed polyline was counted as 1 feature no matter the size and 

its proximity to another polyline, cases like the one in Figure 15 

greatly increases the number of features classified as wrongly 

detected. There was also a case like Figure 16, in which that type 

of marking was not found in the training data which confused 

the model, which also greatly contributed to the increase of 

wrongly detected features. 

 

 
Figure 13. Sample zoomed-in for both intensity-based and 

color-based images that contain arrows inside tunnels. 

  
Figure 14. Sample of 3 wrongly detected features. 

 
Figure 15. Road markings of the number 25                            

(in this case it indicates speed limit). 

Figures 17, 19 and 21 show sample results of road arrow 

detection and vectorization for intensity-based images and 

Figures 20, 22 and 24 show the results for color-based images.  

Each of those figures was arranged in the manner of: 

• from top to bottom: image, segmented image, and polyline 

representation; 

• from left to right: 10cm, 5cm, and 1cm sampling 

resolutions; 

• and for polyline representations, the red polyline is the 

manually digitized and the blue polyline is the neural 

network model detection results. 

 

 

 

 
Figure 16. Sample arrow #1 – head straight or turn right 

(intensity-based).  

 

 

 

 
Figure 17. Sample arrow #1 – head straight or turn right 

(color-based). 
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Figure 18. Sample arrow #2 – head straight                   

(intensity-based). 

 

 

 

  
Figure 19. Sample arrow #2 – head straight                        

(color-based). 

 

 

 

 
Figure 20. Sample arrow #3 – turn left or right                        

(intensity-based). 

 

 

 

 
Figure 21. Sample arrow #3 – turn left or right                        

(color-based).  

 

4. CONCLUSIONS 

The proposed methodology has successfully been able to digitize 

road arrow markings as polyline shapefiles using deep learning 

techniques from LIDAR point cloud derived images, with 

comparable accuracy from previous works in terms of correctly 

detected features. Intensity-based images have proven to be 

better than color-based images in terms of acting as training data 

for road marking extraction. A higher sampling resolution does 

not automatically provide better results, it can lead to the 

production of more noise which can greatly confuse the network 

model. One simplification value does not fit well with all of the 

features, as can be visually compared from the segmentation 

results and the output polylines. It is recommended that (1) the 

point cloud be converted to an image using a different method, 

(2) test out different sets of training images and augmentation 

technique combinations, and (3) assess multiple simplification 

parameter values to determine what would work better for all of 

the detections. In future works (1) the types of road markings 

would be expanded (eg. crosswalks, lane lines, etc.), and (2) 

more detailed ways of assessing the accuracy of all the results 

will be implemented. 
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