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ABSTRACT:

Forest fire is one of the most serious environmental problems in Kenya that influences human activities, climate change and biodiversity.
The main goal of this study is to apply medium resolution sensors (Landsat 8 OLI and Sentinel 2 MSI) to produce burnt area severity
maps that will include small fires (<100 ha) in order to improve burnt area detection and mapping in Kenya. Normalized burnt area
indices were generated for specified pre- and post-fire periods. The difference between pre- and post-fire Normalized Burnt Ration
(NBR) was used to compute NBR index depicting forest disturbance by fire events. Thresholded classes were derived from the
computed INBR indices to obtain burnt severity maps. The spatial and temporal agreements of the Burnt area detection dates were
validated by comparing against the MODIS MCD641 500 m products and MODIS Fire Information for Resource Management System
(FIRMS) 1 km daily product hot-spot acquisition dates. This approach was implemented on Google Earth Engine (GEE) platform with
a simple user interface that allows users to auto-generate burnt area maps and statistics. The operational GEE application developed
can be used to obtain burnt area severity maps and statistics that allow for initial accurate approximation of fire damage.

1. INTRODUCTION

Fire is a natural disturbance that profoundly influences people,
climate and ecosystems to promote biodiversity (Kelly and Bro-
tons, 2017). However, in the last centuries, human induced fires
and suppression efforts have altered the natural fire regimes caus-
ing a negative effect on forest cover, resilience and biodiversity
(Chuvieco et al., 2019; Lewis et al., 2015). In addition, a sig-
nificant amount of aerosols and carbon emissions are caused by
biomass burning critically affecting the atmospheric chemical com-
position (Knorr et al., 2016). Moreover, fires that occur in densely
populated areas affect air quality and are linked with health im-
pacts to infants, people with respiratory complications and in-
dividuals with heart problems (Reid et al., 2016). For instance
in Kenya, forest fires occurring in Gathiuru forest have caused
air pollution, visual problems and difficulties in breathing for
the communities living around the forest and kilometers away
as the smoke is carried by wind (Nyongesa and Vacik, 2018).
Generally, as Viedma et al. (2017) puts it, Land Use-Land Cover
(LULC) changes by human influence has led to more hazardous
landscapes, with consequent increase in fires.

Most of the reported and documented forest fire occurrences in
Kenya are small fires (<100 ha) that turn into large fires. The
fires are mainly caused by human influence as a source of igni-
tion with most of the reported actions being arson, honey gather-
ing, charcoal burning and agricultural practices. High productive
forests in Kenya, including both indigenous and plantation forests
are located in relatively high fire prone areas. The fires continue
to be one of the biggest hazard threats in these areas (Downing
et al., 2017). On 23 February 2019 a fire believed to have been
started by illegal marijuana farmers (as reported by local media)
consumed up to 16,991 ha of moorland in Mount Kenya as esti-
mated by Copernicus Emergency Management Service.

*Corresponding author.

Efforts have been made by the forest fire protection unit that is
part of the Kenya Forest Service (KFS) to protect the fire prone
forest areas from wild fires (Nyongesa and Vacik, 2018). Fire
detection and monitoring is done by ground patrols and fixed sta-
tions (fire towers). During fire regimes the forest fire protection
unit prepares a comprehensive report detailing the location, the
area affected, cost of suppression and actual damage to the for-
est is compiled. Remotely sensed burnt area products from the
KFS fire detection and monitoring unit are derived from coarse
resolution satellite imagery obtained from MODIS 500 m sen-
sors. However, the use of global burnt area products derived
from coarse spatial resolution sensors such as MERIS (300 m),
MODIS (250 m — 500 m) and AVHRR (1000 m), small fire de-
tection and burnt area estimation becomes a challenge as noted
by Padilla et al. (2015). Although less catastrophic than large fire
regimes, small fires still play a significant role in carbon emis-
sions and land use transformation (Roteta et al., 2019; Hutto et
al., 2016; Lewis et al., 2015). The development of most of the
global burnt area products was initially to fulfill the need for cli-
mate modelling as fire is considered an essential climate variable
(Chuvieco et al., 2019), but their use for local and regional fire
regimes was unprecedented. Fire severity and extent of damage
to vegetation by fires can not also be measured accurately using
coarse resolution sensors (Downing et al., 2017). This has given
rise to an increasing demand for high accuracy and systematic
delivery of burnt area products (Mouillot et al., 2014).

The need for improved estimation of burnt areas and fire severity
has only been partially met (Huang et al., 2016) globally and in
Kenya. To solve the problem of under-estimation of burnt areas
and improve the knowledge of location and occurrence of wild
fires, remote sensing techniques using high and medium resolu-
tion imagery have been applied (Roteta et al., 2019). The dis-
turbances on vegetation due to fire events has been studied us-
ing vegetation indices computed from Visible and Near Infra-Red
(NIR) portions. For example, Normalized Difference Vegetation
Index (NDVI) (Verhegghen et al., 2016; Navarro et al., 2017; En-
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gelbrecht et al., 2017), NDVI red-edge 2 narrow (Navarro et al.,
2017), and burnt area index (Roteta et al., 2019). However, the
red band in the visible portion of the electromagnetic spectrum
is affected by atmospheric haze and is susceptible to scattering
(Langner et al., 2018; Verhegghen et al., 2016).

To overcome the limitations of using optical sensors, other stud-
ies have used microwave images to compliment the use of vege-
tative indices used for burnt area detection from optical sensors
(Verhegghen et al., 2016). Nonetheless, fires result in ambigu-
ous effects in radar images depending on the radar wavelength,
polarization, and meteorological conditions at image acquisition
(Lohberger et al., 2018; Verhegghen et al., 2016; Chuvieco et al.,
2019).

This study looks into the lack of a harmonized burnt area de-
tection and mapping approach using medium spatial resolution
optical imagery. We adopt Landsat 8 and Sentinel 2 medium
resolution sensors to solve the challenge of under-estimation of
burnt areas and to improve the knowledge of spatial and tempo-
ral occurrence of wild fires in Kenya. A Google earth engine
application that uses the medium resolution images to generate
burnt area products, that includes small fires (<100 ha) to show
their potential for improving burnt area detection and mapping in
Kenya, was developed.

2. MATERIALS AND METHODS

2.1 Study area and data

Mount Kenya

A

[ studyArea

Figure 1. Study Area

We chose to conduct the study in Mount Kenya (Figure 1) be-
cause fire has been a major hazard affecting the forest area (Ny-
ongesa and Vacik, 2018). The slopes of the mountain are covered
by different types of vegetation and forest. It is surrounded by
715 km? of national park that is protected by the Kenya wildlife
service (KWS). The forest is located in the counties of Meru,
Embu, Laikipia, Kirinyaga, Nyeri and Tharaka Nithi. The forest
areas of the park are under administration of the KFS.

This study used Moderate Resolution Imaging Spectroradiometer
(MODIS) MCD64A1 product series, Landsat 8 and Sentinel 2
satellite images available on Google Earth Engine (GEE) APIL
The data properties are summarized in Table 1. We also used fire
reference data that was recorded by the KFS and corresponding
forest boundaries.

2.2 Burnt area detection

The overall methodological approach that was used to implement
this study is summarized in Figure 2.

Table 1. Data and data Sources

Data Provider Spatial- Temporal
resolution resolution
Landsat 8 USGS 30 m 16 days
Sentinel 2 ESA 10 m 5 days
MODIS NASA 500 m Monthly
Forest S2 & L8 MODIS burnt
boundary collections areas
Image processing:
Create P P,
—» clipping, mosaicking,
geametry & cloud masking.
A
Pre- and post-fire
spectral analysis
Spectral index
computation & burn
area extraction
No * A 4
. . Hotspot
‘ Statistical analysis }4— confirmation
Validation

Reference
data

Yes

4

Burnt area severity
map

Figure 2. Methodological framework adopted to detect small ex-
tent fires using GEE.

2.2.1 Creation of image bounds: Since the full extents and
perimeter of the fire were unknown the boundary of the study
area was digitized interactively on GEE using gazetted legal for-
est boundaries as guide to capture the whole extents of fire inci-
dences. The resulting polygons formed the clipping bounds for
the pre and post-fire images.

2.2.2 Image selection and pre-processing: Sentinel-2 MSI
Level-2A and Landsat 8 surface reflectance Tire 1 were selected
for the study. To obtain a collection of images, both pre- and post-
fire date ranges were used. The periods as opposed to single dates
ensured the availability of images. A cloud filter was applied to
ensure that the best quality images are selected for analysis. All
selected images overlapping the study area were then mosaicked
and clipped to the bounds of the study area. A cloud and snow
mask was applied to the images using the pixel quality bands in
respective Landsat 8 and Sentinel 2 images. This was done in
order to correct for atmospheric effects and to obtain cloud free
images.

2.2.3 Spectral analysis: From the cloud free images, 52 ran-
domly selected points were classified as burnt or unburnt using

the MODIS burnt area monthly global 500 m product from MCD64A1

series. Spectral charts were then generated from the randomly se-
lected points to determine the spectral behavior of the burnt and
unburnt pixels. Spectral bands most sensitive to fire in both Sen-
tinel 2 and Landsat 8 were then used to compute burnt area in-
dices and the results compared. The best performing index was
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then selected for burnt area detection and severity mapping.

2.2.4 Burnt Area Spectral Indices Normalized Burnt Ra-
tio (NBR) index in Equation (1) was computed for both pre- and
post-fire images. This index was computed using the NIR (0.85—
0.88 um), corresponding to band 5 of Landsat 8 and band 8§ of
Sentinel 2, and SWIR window (2.11-2.29 pm) that corresponds
to band 7 of Landsat 8 and band 12 of Sentinel 2. Eq. (1) shows
how the NBR index was computed.

NBR — PNIR — PSIR, 1)
PNIR + PSIR,

To get the disturbances due to fire from the pre- and post-fire
images INBR values were computed from the difference of pre-
and post-fire NBR values as shown in Equation (2). The {NBR
values were scaled by 10°.

ONBR = NBRyefire — NBRposcfire 2

Mid-Infrared Burn Index (MIRBI) was computed from short
and long SWIR bands of Sentinel 2 sensor. The shortwave in-
frared short (pswirs) Which corresponds to band 11 of Sentinel 2
and band 6 of Landsat 8 while the shortwave infrared long (pswirt.)
which corresponds to band 12 of Sentinel 2 and band 7 of Land-
sat 8 were used as in Equation (3) and Equation (4).

MIRBI = 10 X pswirL — 9.8 X pswirs + 2 3

Normalized Burnt Ratio 2 (NBR2)
The NBR2 was computed using Equation (4) from the same spec-
tral bands as those used to compute the MIRBI in Equation (3).

PSWIRS — PSWIRL
_ 4)
PSWIRS + PSWIRL

NBR2 =

2.2.5 Burnt AreaSeverity: To determine the burnt area sever-
ity, INBR values were classified using thresholds as recommended
by Downing et al. (2017). Additional classes to include enhanced

regrowth for post fire analysis were added as recommended by

the United States Geological Survey (USGS). The Table 2 illus-

trates the burnt severity classes and the thresholds chosen.

Table 2. Burn severity categories.

Burn Severity ONBR ONBR range
range(unscaled) (scaled by103)

Enhanced regrowth, -0.500 to -0.250 -500 to -250

high (postfire)

Enhanced regrowth, -0.251 to -0.100 -250 to -100

low (postfire)

Unburnt -0.101 to 0.100 -100 to 100

Low Severity 0.101 to 0.269 101 to 269

Moderate-Low Sever-  0.270 to 0.439 270 to 439

ity

Moderate-High 0.440 to 659 440 to 659

Severity

High Severity Burn 0.660 to 1.300 660 to 1300

2.2.6 Burnt area statistics: Burnt area statistics were then
computed to determine burnt area in each of the severity classes.
This was done by counting the number of pixels per class and sub-
sequently computing the percentage area and the area in hectares.

A mask of the entire burnt area was first extracted from the clas-
sified and the total number of pixels in the image counted to com-
pute the total burnt areas in hectares. Similarly, pixel counts from
single masks of each of the severity classes were used to compute
the burnt area for each class and subsequently compute the burnt
area for each of the classes as a percentage of the total burnt area.
The computed areas were then compared to the reported areas by
the KFS forest fire protection unit.

3. RESULTS

Results from pre- and post-fire spectral analysis are presented in
Figure 3. The y-axis represent reflectance values from sentinel 2
MSI level-2 images multiplied by 10000. Before the fire event,
there was high spectral reflectance in the NIR band (0.85-0.88
pm) corresponding to band 5 of Landsat 8 and band 8 of Sen-
tinel 2. After the fire, the chart illustrates a drop in NIR spectral
reflectance. This is because NIR is sensitive to chlorophyll con-
tent in vegetation hence it drops if vegetation is destroyed (Down-
ing et al., 2017). The low spectral reflectance values of unburnt
areas in the SWIR window (2.11-2.29 pum) that corresponds to
band 7 of Landsat 8 and band 12 of Sentinel 2, increased after the
fire. This was used as a selection criteria for the spectral indices
to be used for detection of burnt areas.

Figure 4 illustrates detected areas based on indices computed us-
ing selected bands from Sentinel 2 and Landsat 8. The NBR
(Figure 4b) extracted severely burnt areas including its surround-
ings well when visually compared to the reference image in (Fig-
ure 4a). The modified NBR (Figure 4c) captured the severely
burnt areas and the actively burning areas leaving out the mod-
erate and low severity areas where the vegetation was disturbed
as depicted by the reference data in (Figure 4a). This yeilded a
consevertive estimate of the burnt area. MIRBI (Figure 4a) de-
tected a larger burnt area than the modified NBR but could not
capture moderate and low severity areas as shown in (Figure 4a).
The also yielded a conservative estimate of the burnt area.

Figure 5a and Figure 5b show burnt area severity classes for Land-
sat 8 and Sentinel 2 respectively obtained from classifying 6 N BR
values. Both figures show a large proportion of the burnt area is
of moderate to high severity with a few pixels of low severity.
Pre- and post-fire Sentinel 2 (Figure 5a) images captured the full
extent of the fire while the Landsat 8 (Figure 5b) images did not
capture the full extend of the fire due to the cloud mask applied to
the images hence the no data values present in (Figure 5b). Statis-
tics obtained for each of the burnt area severity classes indicates
that 16,080 ha are moderate to highly severe areas as can be noted
from (Table 3).

Table 3. Burn severity statistics.

Burn Severity Area in ha.

Enhanced regrowth, N/a
high (postfire)

Enhanced regrowth, N/a

low (postfire)

Unburnt 11648.34
Low Severity 431.06
Moderate-Low Sever-  4378.24
ity

Moderate-High 7691.76
Severity

High Severity Burn 4010.67
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Figure 3. Spectral reflectance of pre- and post-fire images.

Validation was carried out with the current MODIS burnt area
product in MCD64A1 series (Giglio et al., 2016) a product used
by most atmospheric carbon modelers (Roteta et al., 2019). The
spatial and temporal agreements of the Burnt area detection dates
were validated by comparing against the MCD641 (500m) and
the MODIS Fire Information for Resource Management System
1km daily product (FIRMS) hotspot acquisition date (Figures 6
and 7).

Detected burnt areas were also validated by comparing it against
the reported KFS data and the extents reported by the Copernicus
Emergency Management Service for the Mt. Kenya forest fire
case study. The burnt area mapping tool was also tested for the
Aberdare January 2017 fire incident and the Mt. Kenya (Meru)
fire incident that occurred on 2-5 January 2018. The results are
as summarized in Table 4.

Table 4. Comparison of detected burnt areas versus the ones re-
ported in hectares (ha).

Forest Date Detected Reported Omission

Block error
Aberdare 13-18Jan 2017 627527 659437 4.84 %
Meru 2-5 Feb 2018 279 300 7%
Mt. 23 Feb-02 Mar  16080. 16991 536 %
Kenya 2019
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(a) Fire perimeter shown by sentinel 2 false-color com- (b) Burnt area detected by N BR.

posite.

(c) Burnt areas in modified NBR. (d) MIRBI fire areas.

Figure 4. Burnt area (red colour) detected using different spectral indices.
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(a) Sentinel 2. (b) Landsat 8.

Figure 5. Mt. Kenya burnt area severity
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(a) Burnt area overlaid with FIRMS data. (b) Burnt area overlaid with MCD64A 1

(c) Aberdare Forest fire 13-18 Feb 2017 data (d) Burnt area overlaid with FIRMS

Figure 6. Detected burnt areas in Aberdare overlaid with different datasets.
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(a) Mt.Kenya Forest fire 03-05 Feb 2018 overlaid with FIRMS data.

v L add .

(b) Burnt area overlaid with MCD64A1

Figure 7. Detected burnt areas in Mt. Kenya overlaid with different datasets.
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4. DISCUSSION

The aim of our study was to detect small fires, that have oth-
erwise been underestimated, using medium resolution Sentinel 2
and Landsat 8 images. Findings from our study indicate that these
fires can be detected to an accuracy of an average omission error
of 5.73%. The NIR and SWIR were the most useful in detect-
ing changes associated with fire incidences. NIR is sensitive to
chlorophyll content of plants hence it subsequently declined af-
ter a fire event. In contrast, healthy vegetation depicts low re-
flectance in SWIR band (Downing et al., 2017). Recently burnt
areas demonstrate low reflectance in the NIR and high reflectance
in the SWIR, i.e. the difference between the spectral responses of
healthy vegetation and burnt areas reach their peak in the NIR
and the SWIR regions of the spectrum as can be seen in Figure 3.

The MIRBI and the NBR2 indices used the shortwave infrared
short (pswrs) which corresponds to band 11 of Sentinel 2 and
band 6 of Landsat 8 while the shortwave infrared long (pswrrL)
which corresponds to band 12 of Sentinel 2 and band 7 of Landsat
8 (Roteta et al., 2019). While these can be used for burnt area
detection, damage to vegetation could not be obtained hence the
consideration of {NBR for both burnt area detection and burn
severity mapping (Downing et al. (2017)) as shown in Table 2. In
principle, the SNBR computed from the temporal analysis of pre-
and post-fire images illustrates disturbances of vegetation by fire
(Figure 5a). This makes tracking the recuperation of vegetation
from fire possible; later dates for post-fire can be selected and the
severity analyzed.

5. CONCLUSION AND OUTLOOK

This study developed a GEE application to detect burnt areas and
determine burn severity from Landsat 8 OLI and Sentinel 2 MSI
data. The tool was used for the approximation of burnt areas in
other fire regimes in Aberdere Forest and Mount Kenya (Meru).
The burn severity maps allows for accurate initial approximation
of fire damage. Accurate burn severity maps not only quantify the
damage to vegetation and hence loss in biodiversity, but can also
aid in developing emergency rehabilitation and forest recovery
plans.
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