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ABSTRACT: 
 
In the recent years, the modelling of infrastructures has been receiving increasingly attention due to the importance of transport 
infrastructures for global economy, traffic safety and for the generation of high definition maps, essential to autonomous vehicles. This 
paper presents a simple method for the segmentation and classification of concrete barriers and guardrails in road surroundings. First 
steps of the method are aimed to delimit the region of the point cloud outside the driving lanes in which barriers and guardrails are 
installed. The purpose is to significantly reduce the size of point clouds in order to improve further processing. Then, barrier 
segmentation and classification are designed as parameter-dependent processes because the geometric features of roads and barriers 
and guardrails are mostly regulated by norms and standards. Results show a good performance in terms of classification in comparison 
of other state of the art methods. Better results were obtained for guardrails than for concrete barriers. The method has been tested in 
a set of point clouds acquired with a Mobile Laser Scanner from conventional roads and highways.  
 

1. INTRODUCTION 

In 2018, more than 25,000 people died in accidents in the 
European Union. As a result of the high level of road accidents, 
the European Union has set the goal of zero road deaths by 2050 
(DGT, 2019). Road exits are particularly dangerous and costly, 
as cars can head on clash with other vehicles and infrastructures 
or fall into areas that are difficult for the emergency services to 
access. Barriers and guardrails on road edges are the main passive 
safety element to prevent road exits. 
 
Both the location and the characteristics of guardrails on road 
edges are established by regulations in each country (Ministerio 
de Fomento, 2014), and depend on the dangerousness and the 
road characteristics. Thus, guardrails should be placed at access 
points to bridges or tunnels, embankments, ravines, rivers, 
reservoirs, walls, areas with posts, crossings over railroads, roads 
with daily traffic of more than 10,000 vehicles, and parallel roads 
with medians of less than 1 m. The guardrail regulations establish 
the orientation (parallel to road axis and perpendicular to the 
asphalt), with a minimum distance to obstacles, a minimum 
length, and a minimum distance from the shoulder. The start/end 
of the barrier can be done by embedding it in a slope, by folding 
it or by having an element that absorbs a frontal impact. 
 
Guardrails must be mapped, and monitored periodically, so 
automating the process is of vital importance. It must be verified 
that the existing rail guards comply with safety regulations and 
that their state of conservation is adequate, as they may have been 
damaged in accidents. In this case, it will be necessary to replace 
the guardrails. The information acquired can be stored on High 
Definition (HD) maps (Zang et al., 2018), which contain accurate 
data of road and surrounding elements, very useful for road 
management, GPS applications, and even autonomous driving.  
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Due to the importance of barriers and guardrails for traffic safety 
and for the generation of HD maps, the objective of this work is 
to develop an automated method for the extraction and 
characterization of barriers and guardrails from point clouds 
acquired from a terrestrial Mobile Laser Scanner (MLS). The 
paper also deals with the importance of assessing if as-built 
barriers accomplish with current regulations.  

The rest of this paper is organized as follows. Section 2 reviews 
the state of the art in terms of guardrail and barrier detection in 
road environments. Section 3 presents an overview of the 
method. Section 4 analyses the results. And finally, Section 5 is 
devoted for concluding the work. 

2. RELATED WORK 

There are several approaches to address the problem of detecting 
guardrails in point clouds, either for the generation of High 
Definition maps or for autonomous driving. One way to address 
the problem is through object classification. In (Yang et al., 2017, 
2016), elements in point clouds are segmented by shape and 
individualized. Then, the objects are classified by geometric 
characteristics. Given guardrail shape and location with respect 
to the road, many authors consider that a knowledge-based 
approach is the best option. In (Jiang et al., 2016; Zhu and Guo, 
2018), point clouds are structured by scanlines. Corrugated beam 
guardrail in scanlines are defined as points forming a 
characteristic curve (in orientation and shape) without continuity 
with the rest of the environment. In a similar way, roads can be 
segmented into cross section, where the shape and position of 
guardrails and barriers are also key elements for their recognition 
(Weiss and Dietmayer, 2007). Ishida et al. (2013) base their 
method on conformal geometric algebra to delineate roadsides 
and classify them into guardrails and curbs. Scharwächter et al. 
(2014), employ stereoscopic images to locate possible guardrails 
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by means of the Hough transform. These candidates are then 
geometrically verified. Although most works studying guardrails 
focus on road environments, these barriers exist in other 
environments as well. In (Wang, 2019), the characteristics of 
guardrails on scaffold work platforms are analyzed to determine 
whether barriers comply with safety regulations. 

Recently, Artificial Intelligence (AI) has been tested for guardrail 
detection. PointNet and PointNet++ can semantically segment 
guardrails in road environments, both in low density point clouds, 
typical of autonomous driving (Feng et al., 2019), and in higher 
density clouds used for road object inventory (Balado et al., 
2019). But these approaches based on Neural Networks applied 
directly to point clouds do not always get the best result for all 
elements. Guardrails, given their limited number of points within 
the road environment, are not segmented correctly. Methods with 
simpler Artificial Neural Networks have shown to obtain better 
results (Balado et al., 2019). One solution may be to integrate AI-
based methods into knowledge-based approaches. In (Matsumoto 
et al., 2019), points belonging to the ground and points far from 
the road are eliminated, the remaining points are classified by 
means of a Convolutional Neural Network. 

Regarding to previous approaches, this work presents a method 
for the detection of barriers and guardrails based on previous 
knowledge extracted from regulation, used for the definition of 
parameters involved in the process. In addition, the method does 
not need the input of the trajectory followed by the vehicle during 
the acquisition.  

3. METHOD 

Since the objective of this paper is limited to extract and classify 
barriers and guardrails, the method starts by a sequence of steps 
(Section 3.1.) aiming to determine the Region of Interest (ROI) 
(Section 3.2.), defined as the region of the road environment most 
likely to contain road concrete barriers and guardrails. Points 
belonging to barriers and guardrails are next segmented and 
classified according to their geometric features which are 
previously known and defined by regulations (Section 3.3.). 
 
3.1 Data pre-processing 

The ultimate purpose of data pre-processing is to define the road 
centreline, which will be further used to determine the region of 
interest (ROI). 
 
For this purpose, point clouds are firstly submitted to a filtering 
based on the number of returns by which just last-return points 
are further processed. With this process, the size of point cloud is 
reduced without affecting to points belonging to road 
infrastructure. Those points eliminated are mostly belonging to 
vegetation of road surroundings. 
 
Next, points representing road markings are roughly isolated by 
selecting points with an intensity higher than 80% and by 
clustering those points using a density-based spatial clustering 
(Ester et al, 1996), followed by checking cluster size and scan 
angle. Figure 1 shows a point cloud submitted to selection by 
intensity before (a) and after clusterization and selection by 
continuity and scan angle (b).  

The angle formed by road markings with scanner along the 
trajectory of the vehicle tends to be constant. Therefore, the angle 
of each cluster is determined, and clusters will be grouped by 
angle. Longitudinal road markings (markings delimiting driving 
lanes) will correspond with the most populated groups of clusters.  

For conventional roads, three groups of clusters will be obtained: 
one group placed at a positive angle –road marking at the right 
side of the vehicle–, another group placed at a negative angle 
close to zero –centreline– and another group placed at a higher 
negative angle – road making at the left side of the vehicle–. With 
this verification, clusters belonging to other elements such as 
vertical traffic signs are pruned, and main road markings are 
extracted in a way that they can be used for defining the region 
of interest for further processing.   
 

 
Figure 1. a) points with an intensity higher than 80%, b) points 

after selection by continuity and scan angle. 
 
 
3.2 Definition of the Region of Interest 

In this method, the region of interest is defined as the region of 
the point cloud outside the driving lanes in which barriers and 
guardrails are installed (Figure 3).  

 
Figure 2. Segmentation from road centreline, top view: a) points 
belonging to road centreline, b) radius search along trajectory, 

c) vectorization, d) point cloud in stretches (adapted from 
Balado et al, 2017). 

 
For isolating the ROI, points belonging to the road centreline are 
subsampled by distance l, and the centreline is vectorised. The 
set of points T is transformed into vectors VT = (Vx, Vy, Vz), with 
‖VT‖  ≈ 𝑙𝑙 and let VTi = Ti(i𝑙𝑙 + 1) − Ti(i𝑙𝑙) (Figure 2). The point 
cloud P = (XP, YP, ZP) is segmented in stretches S =
{S1, S2 … Sn} perpendicular of each vector at the final point Si =
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{P: <⊥ Ti(i𝑙𝑙 + 1)}. In this way, the ROI is the zone belonging to 
each stretch CROIi ⊂  Si (Figure 2.d) taking into account a 
minimum and maximum distance d from the road centreline. 
Figure 3 shows the points belonging to the region of interest in 
grey. 
 

 
Figure 3. Points belonging to the ROI (in grey) and to the road 

centreline (in black). 
 

3.3 Barrier and guardrail extraction and classification 

The barrier and guardrail extraction starts by classifying the 
points of the ROI in ground and off-ground points. This can be 
made by calculating the plane defining each stretch Si and 
containing the corresponding vector centreline VTi. Off-ground 
points will be those points with vertical distance to the plane, 
higher than a certain threshold (Figure 4, in blue).  

 
Figure 4. Ground points in grey, off-ground points in blue. 

 
Next, off-ground points are clustered with DBSCAN, and 
clusters are further studied in order to extract barriers and/or 
guardrails. If the cluster has a longitudinal length higher than l, 
clusters are subdivided in stretches of 1 m in order to study them 
individually. Then, clusters are classified as barriers and 
guardrails according to their point density, and their maximum 
and minimum height.  Figure 5 shows how points belonging to 
barriers and guardrails are segmented (visualized in blue).   
 
Final step aims to classify points belonging to barriers and 
guardrails in two classes according to their geometry. Both 
elements are often installed together. Since barriers and 
guardrails dimensions are defined by conventions and norms, 
these parameters are previously known. In this method, barriers 
and guardrails are again longitudinally segmented, and stretches 

classified into barriers or guardrails based on number of points, 
maximum and minimum height and connectivity with ground. 
Figure 6 shows two examples in which concrete barrier (in violet) 
and guardrail (in green) classification is performed correctly.   
 

 
Figure 5. Points classified as barriers or guardrails (in blue), and 

discarded points (in grey). 
 
 

 
Figure 6. Concrete barriers highlighted in violet, and double 

guardrails visualized in green. 
 
 

4. RESULTS 

4.1 Data 

In addition to the point cloud used to describe the method, a set 
of six case studies were also used to test the performance (Figure 
7). Point clouds have been acquired with the MLS LYNX Mobile 
Mapper of Optech (Puente et al, 2013) and they are 
georeferenced. Point clouds contain a total of 82.7 million points 
and a 9.4 km of longitudinal section (Table 1). All processes have 
been programmed in Python and the code was run on an Intel 
Core i5 CPU 1.8 GHz with 6 GB RAM.  
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Figure 7. Top view of point clouds acquired in: a)-d) conventional roads, e)-f) highways. 
 
 

 Typology Points (M) Longitude 
(km) 

0 Conventional 12.5 2.2 

a Conventional 14.6 1.3 

b Conventional 15.6 1.5 

c Conventional 12.5 1.2 

d Conventional 13.2 1.1 

e Highway 7.8 1.1 

f Highway 6.5 1.0 

TOTAL  82.7 9.4 

Table 1. Characteristics of point clouds used as case study. 
 
4.2 Results 

As previously mentioned, data pre-processing starts by selecting 
last-return points and filtering those points by intensity using a 
threshold of 80%. This value was empirically determined since it 

was demonstrated to be enough for segmenting most of points 
belonging to road markings. After that, those points were 
clustered and those clusters with a size lower than 3 were 
discarded. Then, the angle for each cluster was calculated and 
clusters defining the centreline were automatically determined.  
  
The ROI was isolated by analysing stretches of l = 5 m, and dmin 
= 2 m, dmax = 7 m (for conventional roads) and dmax = 9 m (for 
highways), and a maximum height = 2 m. With this process, the 
total number of points was reduced from 82.7 million of points 
to 3.4 million of points.  
 
Barrier and guardrail segmentation was performed by 
subdividing the ROI into 1 m long stretches. Point clouds were 
clustered, and clusters wer classified of interest if they were 
composed of a minimum of 200 points, and if their minimum and 
maximum height were 0.15 m and 1 m, respectively. Points of 
interest were finally classified into barriers and guardrails 
depending on the neighbouring size, maximum height and floor 
connection. Concrete barriers have a higher neighbouring size, a 
higher maximum height and connection with floor. Results are 
summarized in Table 2 and Table 3.   

Point cloud Concrete Barriers Guardrails Concrete Barriers & 
Guardrails 

Precision Recall F1 Precision Recall F1 Precision Recall F1 
0 0.99 0.77 0.86 0.78 0.88 0.83 0.91 0.80 0.85 
a 0.89 0.61 0.73 0.89 0.95 0.92 0.89 0.87 0.88 
b _ _ _ 0.97 0.96 0.97 0.97 0.96 0.97 
c _ _ _ 1.00 0.67 0.80 1.00 0.67 0.80 
d 0.59 0.72 0.65 1.00 0.85 0.92 0.93 0.84 0.88 
e 0.72 0.38 0.50 0.84 0.81 0.82 0.81 0.65 0.72 
f 0.69 0.77 0.72 0.99 0.56 0.71 0.78 0.67 0.72 

TOTAL 0.76 0.67 0.71 0.91 0.75 0.83 0.85 0.72 0.78 

Table 2 shows the classification results through a Precision and Recall analysis. 
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Point cloud Pre-processing (s) ROI extraction (s) Barriers 
segmentation (s) 

Barriers 
classification (s) Total time (min) 

0 110.4 443.7 64.5 20.3 10.6 

a 128.7 663.3 74.1 16.7 14.7 

b 171.3 1041.5 255.3 14.9 24.7 

c 120.5 656.4 178.6 12.0 16.1 

d 133.4 641.7 136.1 14.9 15.4 

e 32.1 366.8 125.6 22.7 9.1 

f 26.7 285.9 185.2 29.9 8.8 

Table 3 shows the processing time for each step of the method. 
 
For the evaluation of the method, a quantitative analysis based on 
precision and recall indices was carried out. The comparison was 
performed using the point clouds manually segmented and 
classified as ground truth.  
 
Results show a better performance for guardrails than for 
concrete barriers, both in terms of precision and recall. This 
means that for guardrails a low proportion of False Positives and 
False Negatives was obtained. The low recall in case study e) for 
concrete barriers was due to the non-classified barriers belonging 
to the opposite-sense lanes of the highway. It should be noticed 
that the point clouds used as case studies were point clouds 
acquired in a one-sense driving. This means that, especially for 
highways, there was a higher number of false negatives 
belonging to those barriers on the opposite-sense lanes that were 
not complete acquired, and consequently, that were not correctly 
classified. In this case, results are expected to improve if case 
studies are captured from the two-sense driving lanes. Figure 8 
shows an example of a wrong classified area in case study e). On 
the right side (Figure 8.b), there is a concrete barrier wrongly 
classified as guardrail (in green), because it corresponds to the 
other sense driving of the highway and it is partially occluded in 
the point cloud.  
 

 
Figure 8. A partial view of results obtained for case study e 

(concrete barriers in violet, and guardrails in green). 

 
Although this method is parameter-dependent, results are slightly 
better than those obtained by other methods based on Deep 
Learning techniques such as Point Net (Balado et al, 2019). Since 
road and, barrier and guardrail dimensions are mostly 
standardized and regulated by norms, parameters can be 
predefined according to the type of road. This previous 
knowledge would also enable to check if as-built barriers and 
guardrails accomplish with current regulations.   
 
With regard to the processing time (Table 3), it should be noticed 
that case studies were processed with an Intel Core i5 CPU 1.8 
GHz with 6 GB RAM.  
 

5. CONCLUSIONS 

This work specifically addresses the segmentation and 
classification of concrete barriers and guardrails installed in 
different typologies of roads. For this purpose, a simple data-
driven approach is presented. The method starts by a set of steps 
aimed to delimit the region of the point cloud outside the driving 
lanes in which barriers and guardrails are installed. This reduces 
the size of point cloud in a 96%, making the segmentation and 
classification of barriers and guardrails more effective. Then, 
points are segmented and classified following a sequence of steps 
based on geometrical and dimensional parameters. This can be 
done in this way because the location and the dimensions of these 
road protection elements are mostly regulated and standardized. 
Although the method is simple and parameter-dependent, results 
show a good performance in terms of classification, and in 
comparison of other state of the art methods.  
 
Future work will extend the method to other road typologies and 
barriers, and results will be used to analyse if these protection 
elements are correctly installed and maintained. Combination of 
knowledge-based methods with AI will be also explored. 
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