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ABSTRACT: 

 

National Mapping agencies (NMA) are frequently tasked with providing highly accurate geospatial data for a range of customers. 

Traditionally, this challenge has been met by combining the collection of remote sensing data with extensive field work, and the manual 

interpretation and processing of the combined data. Consequently, this task is a significant logistical undertaking which benefits the 

production of high quality output, but which is extremely expensive to deliver. Therefore, novel approaches that can automate feature 

extraction and classification from remotely sensed data, are of great potential interest to NMAs across the entire sector. Using research 

undertaken at Great Britain’s NMA; Ordnance Survey (OS) as an example, this paper provides an overview of the recent advances at 

an NMA in the use of artificial intelligence (AI), including machine learning (ML) and deep learning (DL) based applications. 

Examples of these approaches are in automating the process of feature extraction and classification from remotely sensed aerial 

imagery. In addition, recent OS research in applying deep (convolutional) neural network architectures to image classification are also 

described. This overview is intended to be useful to other NMAs who may be considering the adoption of similar approaches within 

their workflows.  

 

 

1. INTRODUCTION  

National mapping agencies (NMA) of the world are typically 

tasked with producing geospatial data and topographic maps of 

their respective countries. Due to the enormity of the task, which 

is coupled with the requirement to produce high quality data, 

many NMAs utilise a combination of remote sensing data capture 

with field survey activities to extract an extensive range of real-

world features and characteristics. Remote sensing activities are 

focused predominantly on the acquisition of highly detailed aerial 

imagery. For example, this can be imagery at a pixel spatial 

resolution of 25cm resulting in several thousand rows and 

columns per image (Sargent et al., 2019). Resultingly, these 

images contain greater levels of detail and information than it is 

possible for NMAs to extract and make available to their 

customers using traditional, part-manual processing methods 

(Holland & Marshall, 2004, Cygan, 2019, Sargent et al., 2019).  

 

Like many other NMAs, Great Britain’s Ordnance Survey (OS) 

is embracing research opportunities to move towards full 

automation, while maintaining the focus on enabling the delivery 

of authoritative geospatial data and topographic mapping 

(Cygan, 2019). Typical for NMAs which also provide geospatial 

infrastructure data for their respective countries, OS provides 

mapping services for UK government, businesses and individual 

consumers, and products and services that rely upon a data 

capture and processing workflow that costs tens of millions of 

pounds to operate. Until recently, the capture and maintenance of 

geospatial data at OS was predominantly a manual process. 

However, OS research interests have turned towards optimising 

the information flow from the source data and identifying the 
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potential of artificial intelligence (AI) automation in the 

workflow to enhance the product offerings to customers. Using 

OS as an example NMA, this paper briefly describes the 

development of past, present and future AI projects that will 

achieve positive impacts on a typical workflow within an NMA.  

 

2. ISSUES OF LARGE-SCALE GEOSPATIAL DATA 

COLLECTION FOR AN NMA 

Creating geospatial products for NMA customers is a massive 

undertaking. For example, OS captures aerial imagery covering 

approximately 80-90,000 km2 of the United Kingdom annually. 

This results in a weekly workflow of approximately 100,000 

(change) updates, iterated over 650,000,000 features (Ordnance 

Survey, 2020). This task therefore, presents the significant 

problem of how to manage the assessment and correction of such 

a large number of features. In undertaking attempts to tackle this 

problem, OS undertook a sustained period of research into the 

automation of the change detection process (Holland, Gladstone 

et al., 2012). Subsequently, OS developed a rule-based 

automation process utilising eCognition (eCognition Essentials, 

Trimble, 2015) to increase efficiencies within the change 

detection workflow. These rule-based improvements detected 

change to a 92% correctness value. The change detection system 

can also create false positives but these are quickly discarded in 

a subsequent manual process, leading to significant processing 

time savings: ~50% time reduction, when compared to the 

equivalent manual process (Holland, Gladstone et al., 2012). In 

addition, other robust, automated methods of extracting feature 

attribution, such as building heights, have been added 

successfully to production pipelines and have also expanded 

OS’s product portfolio for customers (Sargent et al., 2015). These 
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improvements highlight the potential benefits of more efficient 

processing strategies for NMAs, where service improvements 

can be made through time-based efficiency savings or by 

facilitating increased amounts of geospatial data that can be 

pushed through the workflow. This has direct benefits for both 

the business and the customer, and has further driven OS towards 

increasing the use of machine learning (ML) and AI within the 

operational workflow.  

 

3. EARLY EXPLORATION OF AI CAPABILITIES AT 

OS  

OS research into the AI field began in 2015, where research 

focussed on understanding the capabilities of such techniques and 

investigating how AI could be used to extract additional 

information from previously acquired aerial image data, such as 

manually captured topographic data during photogrammetric 

surveys. It was understood that AI would enable greater 

understanding of our world, through the identification, 

disentangling and explanation of the many influencing factors 

found in environmental remotely sensed data (Bengio et al., 

2013). Advances in machine learning had predominantly been 

achieved using limited, specialised datasets (e.g. ImageNet, Deng 

et al., 2009). Therefore, OS explored how representation learning 

could be applied to NMA datasets (Sargent, 2019). Early research 

applying machine learning techniques focused on unsupervised 

approaches to categorising roof shapes from digital surface 

models (Sargent et al., 2015). Some simple roof shapes and 

building shapes were identified, as well as artefacts such as 

overhanging vegetation which are useful to identify to reduce the 

instances of label misclassification. This initial research provided 

a series of opportunities that informed the AI research direction 

of the OS from this point forward. 

 

4. ENHANCING FEATURE RECOGNITION WITH AI 

To further the potential of AI use for feature recognition, a 

protype two-phase deep learning (DL) algorithm, trained using 

aerial imagery and OS topographical data, was developed at OS 

in collaboration with University of Southampton and Lancaster 

University. The focus was to enable OS to extract key attribute 

information from aerial imagery. The first phase creates a 

general-purpose model for pre-processing imagery such that the 

outputs can be subsequently used as inputs to model the required 

product, for example, building attributes (Sargent et al., 2019). 

This method, TopoNet (Figure 1), is a deep neural network which 

identifies characteristic, repeated patterns from large scale aerial 

imagery (Sargent et al., 2019). Similar to other classification 

methods that utilise computer vision and DL (Branson et al., 

2018, Griffiths & Boehm 2019), TopoNet utilises a deep 

convolutional neural network (DCNN) to act as a feature 

extractor, where multiple layers of convolutional filters are 

learned using back-propagation within a Keras framework 

(Chollet, 2018). Using this approach in the processing of aerial 

imagery permits the fluid manipulation of pre-constructed 

network architecture. During initial experimentation, the 8-layer 

AlexNet (Krizhevsky 2012) was tested, and subsequently when 

this architecture was exploited to its maximum potential, ResNet-

50 was utilised as the feature extractor. As the name suggests, 

ResNet-50 provides a 50-layer network which also has the 

capacity to utilise the ‘skip connection’ method. This resolves 

potential gradient vanishing problems by reducing data 

extinction, instead of simply stacking convolution layers one 

after another (He et al., 2015).   

Figure 1. A model of the core components of the TopoNet deep 

learning method used at Ordnance Survey, UK.  
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The secondary phases of TopoNet use the techniques of 

‘inference’ and ‘discovery’ (Figure 1), where inference utilises 

shallow machine learning approaches to respond to bespoke 

requests from customers and discovery involves investigation of 

ways to better understand the landscape (Sargent et al., 2017). It 

should be noted that inference is based on a technique commonly 

referred to in the literature as transfer learning (Weiss et al., 

2016). OS efforts focused mainly on reducing the computational 

time needed to train weights for complex architectures for 

bespoke customer requests. This was achieved by taking 

advantage of weights trained for one task and utilising them to 

either a) initialize the weights for another network trained on a 

similar task, or b) create a simpler, and faster to compute, 

surrogate model that encapsulates important information learnt 

on the first task. In the latter case, the encapsulated information 

can subsequently be fed into a shallower network specific to the 

customer’s needs. 

 

Transfer learning has a regularising effect on the model weights. 

This implies that a model obtained with weights that were 

initialized with weights that were pre-trained on a similar task, 

will overfit less to the data and therefore achieve a better 

performance on unseen data. Finally, transfer learning can be 

particularly beneficial in cases where labelled data are scarce, for 

example, when there is a customer need but the customer does 

not have a lot of labelled data or when data labelling has a 

prohibitive timeframe or cost associated to it. Transfer learning 

can yield extraordinary results when the content of the datasets, 

on which the new model is trained, is similar. The more 

dissimilar the content is, the more reference to earlier layers of 

the original network must be made in order to obtain a descriptive 

shallow model. Therefore, it is important to investigate and 

discover what the network has learnt in each one of the layers and 

how relevant the representations are to the task at hand. By 

performing both discovery as well as inference, it is hoped that 

deeper and more meaningful landscape understanding can be 

obtained to address longer-term customer requirements (Sargent 

et al., 2017).  

 

Because TopoNet is a deep network, trained using a very large 

dataset (~1.2M examples), training is computationally intensive 

and can take many hours, or potentially weeks, depending on the 

complexity of the task and the computer infrastructure available. 

The initial network weights were based on ImageNet, but later 

versions of TopoNet used increasingly refined aerial image 

datasets. Features extracted from each version of TopoNet could 

subsequently be compared for use as input for the inference 

phase, such as classification accuracies when inferring building 

features (Figure 2). Changes to how the example image patches 

were labelled for TopoNet V2 and V3 produced improvements to 

the network that resulted in notably increased inference accuracy 

(Figure 2 a.) and it was also found that using features extracted 

from non-final layers produced the best results (Figure 2 b. and 

c.). 

 

Preliminary experimentation applied a range of techniques to 

discover what was learnt by the network and produced intriguing 

results. For example, through examining the image clips within 

the input data set that were most responsible for the firing of a 

particular node in the network, provides insight into which 

network representations are learnt. Figure 3 highlights a selection 

of image clips and visualises how the nodes can respond to 

characteristics in the image set. Additional research is underway 

to establish how meaningful these different representations are. 

 

 

Figure 2. Comparison of classification accuracy from features 

extracted by the deep neural network, TopoNet. a. overall 

classification accuracy of recent versions of TopoNet (orange 

and blue) when compared against other deep learning networks 

(ImageNet, and two early experiments at training deep networks 

with aerial imagery). b. accuracy for inference of roof types, 

and c. accuracy for inference of roof material, comparing both 

ImageNet and TopoNet methods. Legend (b & c): Pink line: 

ImageNet features, Green line: TopoNet features 

 

 

 
 

Figure 3. Examples of node responses within a CNN trained 

with aerial imagery. Each of the 19 squares contains the top 16 

image clips that caused the highest activation of a given node 

within the network. Top Row: The 11 smallest squares are from 

one of the earliest activation layers in the network and 

demonstrate how early layers respond to edge features within 

the imagery. Middle Row: These 5 squares from a middle layer 

within the network, and apparently respond to specific colours. 

Bottom Row: This row shows how nodes may demonstrate more 

‘semantic’ responses such as roofs and fields.  
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5. THE FUTURE OF AI IN NMAS  

OS has undertaken several exploratory experiments assessing 

whether deep networks can learn meaningful representations of 

the landscape. In these experiments, broad land use and land 

cover categories (e.g. industrial, residential, water, grassland) 

separate well, and OS is currently interrogating this result by 

defining the result’s semantic underpinning (i.e. is this due to 

object colour, texture?, etc.). AI can identify repeated patterns in 

the landscape and this is seen as a key research area for the future 

recognition of land use categories. OS has initiated a 

collaboration with the National Physical Laboratories and 

Science and Technology Facilities Council, aiming to gain 

greater understanding of landscape representations learned by 

deep networks using remotely sensed imagery. It is envisaged 

that by using the TopoNet approach, OS and other NMAs will 

learn new ways to discover landscape features (Sargent et al., 

2019). For example OS is contributing to novel projects for 

exploiting the maximum potential from geospatial data, by 

aiming to understand how to uncover extremely obscured 

landscape features, OS has sponsored research into applying deep 

learning within archaeology (Kramer, Hare, et al., 2017).  

 

Furthermore, a new concept of utilising object-based 

convolutional neural networks (OCNN) has been developed in 

partnership with Lancaster University. OCNN, combines CNN 

and object-based image analysis (OBIA), and demonstrates the 

potential to classify complex land uses through deep feature 

representations, while maintaining fine spatial detail through 

regional partition and boundary delineation. This provides new 

perspectives on object description and feature characterisation, 

where both within-object information and between-object 

information are jointly learned (Zhang et al., 2018). OCNN 

approach has achieved classification accuracies at ~90%, which 

is a significant increase over other established classification 

methods such as Markov Random Field (MRF), OBIA-SVM and 

pixel-based CNN methods (Zhang et al., 2018) (Table 1). OCNN 

is also used as a preparatory step within Joint Deep Learning 

(JDL). The JDL approach utilises Markov iteration to update 

between land cover (LC) and land use (LU) classifications (figure 

4).  

 
Class MRF OBIA 

-SVM 

Pixel-

wise  

CNN 

OCNN 

48*  

OCNN 

128 

OCNN 

128+48

* 

Commercial 70.09 72.87 73.26 76.4 81.13 82.46 

Highway 77.23 78.04 76.12 78.17 74.35 79.69 

Industrial 67.28 69.01 71.23 78.24 83.87 84.75 

High-

density  

Residential 

81.52 80.59 80.05 81.75 85.35 86.43 

Medium 

density  

Residential 

82.54 84.42 85.27 87.28 90.34 90.59 

Parks and  

Recreation 

91.05 93.14 92.34 92.59 96.41 97.09 

Parking  80.09 83.17 84.76 86.02 85.59 88.83 

Railway 88.07 90.65 86.57 89.51 87.28 91.92 

Redevelope

d  

Area 

89.13 90.02 89.26 89.71 94.57 94.69 

Harbour  

and Sea 

97.39 98.43 98.54 98.62 98.75 98.95 

Overall 

Accuracy  

(OA) 

78.67

% 

79.54

% 

81.62

% 

84.23

% 

87.31

% 

89.52% 

Kappa 

Coefficient  

(k) 

0.76 0.78 0.8 0.82 0.86 0.88 

 

Table 1. Classification accuracy comparison between MRF, 

OBIA-SVM, Pixel-wise CNN, OCNN48*, OCNN128, and 

OCNN128+48*. Overall accuracy (OA) and Kappa coefficient 

(k). ‘Bold’ highlights the highest accuracy per method 

 

 

 
 

Figure 4. The joint deep learning (JDL) to classify land cover 

and land use in a single unified framework. 

 

The JDL framework represents a new paradigm in remote 

sensing classification, where the previously separate goals of LC 

(state i.e. what is there?) and LU (function i.e. what is happening 

there?) are brought together in a single unifying framework. This 

allows both the pixel-based low-order and higher-order 

representations to interact and update iteratively, which 

compliments the mutual refinement of both the LC and LU 

classifications. Initial research shows that this method results in 

further increases in classification accuracy and has the potential 

to enhance the generalised processing workflows of NMAs at a 

range of data levels or topographic scales (Zhang et al., 2019). It 

is further suggested that a key advantage of the JDL method is 

the move away from a 2-part classification process, specifically 

the utilisation of both LC and LU data (Zhang et al., 2019), which 
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could achieve higher classification accuracies and improved 

workflows for NMAs.  

 

6. CONCLUDING REMARKS 

It is understood that to maximise the potential for AI use in 

NMAs, robust systems of network training and interrogation 

need to be developed to understand where AI supported 

discoveries are meaningful and to what end these could be 

applied in an operational sense (Sargent et al., 2019). It is 

understood that there is value in utilising AI and ML in the 

operational workflows of NMAs, and this can lead to significant 

business efficiencies, greater product consistency and an 

enhanced series of products available for the customer.  

 

Throughout their exploration of developing AI use within the 

workflow, OS has taken the opportunity to learn the unique 

requirements of a suitable computational infrastructure which 

will enable the handling of the AI data flow and permits the 

robust development of workflow automation. These initial forays 

into AI automation have provided great insights into the potential 

application of AI for NMAs and, therefore, OS plans to further 

maximise the benefits of developing AI capabilities in the near 

future, which it is envisaged will lead to greater uptake and 

application of AI use within the NMA sector. 
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