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ABSTRACT: 

Mineral spectral library (MSL) is the foundation of hyperspectral remote sensing, and a significant tool of storing and managing 

massive mineral spectral data to facilitate the matching or identifying of unknown rocks and minerals conveniently and fast. However, 

mineral spectral data are scattered and stored in different spectral libraries worldwide, which behave different spectral resolutions, 

mineral categories and measurement parameters, and hinder its application in field investigation, mineral identification, landcover 

identification and geological mapping. An integrated MSL using shared data is developed currently in Central South University, China, 

to improve the properties of MSL. We collected the shared spectral data and related information (e.g., mineral attribute data, 

spectrometer information, etc.) worldwide, performed data cleaning measures to retain the qualified spectral data and consolidated all 

the data in a common framework so as to establish a reliable and comprehensive dataset, and developed an integrated MSL for data 

management and diversified applications. The user can analysis the target spectrum with the spectrum absorption characteristic 

parameters, and match the measured spectral curve with the reference spectrum in the integrated MSL to find the most similar spectrum 

curve. It’s crucial to note that a new spectrum classifier was designed to limit the scope of matching for improving the efficiency of 

identification when the experimental sample lacks the specific information.  The integrated MSL is developed in B/S and C/S website 

environments. A demonstration of functions of the integrated MSL and its preliminary applications are introduced in the article.  
 

1. INTRODUCTION 

Hyperspectral remote sensing started in the 1980s and the sensors 

can obtain spectral information of hundreds of bands in a very 

narrow band width within the wavelength range from visible light 

to infrared light (Magendran, Sanjeevi, 2014), which is 

equivalent to a complete and continuous spectral curve. 

Hyperspectral remote sensing was firstly proposed to investigate 

the objects on earth's surface, which has been successfully 

applied in the geological field (Goetz, 1981). Nowadays, 

researchers are more likely to obtain the reference spectra of 

ground objects by means of hyperspectral remote sensing images 

and establish a spectral library for spectral analysis and matching 

of unknown features (Mulder et al, 2013). 

 

Mineral spectral library (MSL) is a collection of mineral spectral 

data obtained by using multispectral and hyperspectral remote 

sensing instruments, which can realize rapid recognition of 

unknown rocks and minerals, and support the management and 

analysis of spectral data. Due to massive spectral data in 

hyperspectral remote sensing and the requirement for refined 

analysis, MSL plays an increasingly important role in identifying 

unknown rocks and minerals in laboratory test or field 

investigation.  However, mineral spectral data are scattered and 

stored in different spectral libraries worldwide (Tong et al,1998; 

Grove,1992; Clark,1990), which behave different spectral 

resolution, mineral categories and measurement parameters, and 

hinder its application in field investigation, mineral identification, 

land cover classification and geological mapping. Meanwhile, 

most of spectral measurements of the features are not 

standardized, and the parameters such as test conditions, particle 

size and geodesic structures are not recorded in detail (Li, 2008). 

Consequently, these irregular or disordered data are formidable 

to be used by researchers as identification standard. 
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There are some representative digital spectral databases in the 

world, such as those developed by the Jet propulsion laboratory 

(JPL), the United States geological survey (USGS), the Johns 

Hopkins University (JHU) and so on (A.M. Baldridge, 2009).  

Since the 1970s, many research teams have developed   more than 

10 featured spectral libraries (Tian, Gong, 2002). The basic 

information of these representative spectral libraries is shown in 

table 1. The spectral libraries are also linked to some software 

(e.g., ENVI, ERDAS, etc.) for remote sensing data processing (Li, 

2006).  

Spectral library Institution 
Release 

year 

USGS spectral library 
United States geological 

survey USGS 
1993 

ASTER spectral library 
The American space agency, 

NASA 
1998 

JHU spectral library 
Johns Hopkins university 

JHU 
1991 

JPL spectral library Jet propulsion laboratory JPL 1981 

IGCP-264 spectral 

library 

United States geological 

survey 
1990 

ASU Thermal infrared 

spectrum library 
Arizona state university ASU 2000 

China typical feature 

spectrum library 
Beijing normal university 2002 

Infrared spectrogram 

database 

Shanghai institute of organic 

chemistry, Chinese academy 

of sciences 

1978 

Ground object 

reflectance spectral 

characteristics database 

Institute of optical 

machinery, Chinese academy 

of sciences 

1990 

Typical rock mineral 

spectrum database 
AGRS 1998 

National typical ground 

object spectrum 

database for e-

government 

Institute of Remote Sensing 

Earth, Chinese Academy of 

Sciences 

2007 

Table 1. Overview of current important spectral libraries 
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The current trends of spectrum library development are not only 

the accumulation of spectral data, but also the use of data mining 

and deep analysis techniques to gradually establish a reliable 

spectrum knowledge base and the discovery of universal laws to 

provide more and better support for remote sensing applications 

(Zhang et al, 2017). Therefore, we collected the shared spectral 

data worldwide and consolidate all the data in a common 

framework so as to establish a reliable and comprehensive dataset, 

and develop an integrated MSL for data management and 

diversified applications. An integrated MSL using shared data is 

developed currently in Central South University, China, to 

improve the properties of MSL. A demonstration of chief 

functions of the integrated MSL and its preliminary applications 

are introduced.   

 

2. MATERIALS AND METHODS 

2.1 Shared Data 

The integrated MSL contains mineral spectral data from several 

shared spectral libraries, including USGS, JHU, JPL, DPS 

Geosciences Spectral Library, Janice Bishop Spectral Library, 

Hyper-spectral Image Processing and Analysis System and so on 

(e.g. Table 2).  

Spectral library Wavelength range Particle size 

USGS spectral library 0.2-3.0μm / 

JHU/JPL spectral 

library 
0.4-2.5μm 

<45μm，45-

25nm, 125-

500nm 

PDS Geosciences 

Spectral Library 
0.3-26.0μm mm 

Janice Bishop’s Spectral 
Library 

0.3-26.0μm / 

Infrared spectrogram 

database 
0.25-5.0μm / 

Ground object reflection 

spectrum database 
0.4-1.0μm/0.4-2.4μm / 

Mineral infrared 

reflectance spectroscopy 
database 

0.3-4.0μm / 

Hyper-spectral Image 

Processing and Analysis 

System，HIPAS 

0.4-2.5μm 

0.4-1.1μm 

0.38-1.05μm 

0.35-2.5μm 

/ 

Ground object 

reflectance spectral 

characteristics database 

0.4-2.4μm 

0.4-1.1μm 
/ 

Table 2. The measurement information of some typical libraries 

 

The specific information of these spectral libraries is introduced 

below. The data wavelength range of the USGS spectral library 

is 0.2 to 3.0 μm, and its spectral data reaches 2468 cases, 

including seven categories: artificial grounds, coatings, liquids, 

minerals, organic compounds, soil and mixtures, and vegetation. 

The JPL database contains 3,104 minerals with spectral 

wavelengths ranging from 0.4 to 2.5 μm, with spectral resolution 

of 0.4 to 0.8 μm at 1 nm and 0.8 to 2.5 μm at 4 nm. The sample 

size is divided into 3 categories: less than 45 μm, 45 to 125 nm 

and 125 to 500 nm. Johns Hopkins University Spectral Library 

(JHU) was divided into 15 sub-databases according to the ground 

object categories, and its spectral wavelength ranges from 0.3 to 

14 μm. The spectral data downloaded from the JHU spectral 

library are basically consistent with the spectral data of the JPL 

spectral library. The wavelength of PDS Geosciences Spectral 

Library ranges from 0.3 to 26.0 μm and the library stored 380 

samples with particle size of mm on earth, including minerals, 

rocks, and unconsolidated materials. Janice Bishop's Spectral 

Library is composed of 82 minerals, 20 rocks, and 248 loose 

materials, with spectral wavelengths ranging from 0.3 to 26 μm. 

The infrared spectrogram database is a professional chemistry 

database, whose spectral data range is 0.25 to 5.0 μm. The ground 

object reflectance spectrum database includes 262 rock mineral 

spectral curves with wavelength range of 0.4 to 1.0 μm. The 

mineral infrared reflectance spectrum database contains 583 

mineral maps, including sulphide, halide, oxide, hydroxide and 

so on. The HIPAS database has 125 rock mineral spectral curves 

with wavelengths ranging from 0.4 to 2.5 μm. Reflectance 

spectrum characteristic database contains 156 kinds of rock 

spectra more than 1600 spectral curves in total. 

 

2.2 MSL Structure and Functions 

In the phases of requirement analysis and system design stage for 

MSL development, we designed a complete work chain for it. 

The overall work chain or structure of MSL is shown in figure 1, 

which includes: 1) add mineral spectral data and related 

parameters, 2) check data quality, 3) pre-process spectral data 

and import data into the spectral library, and 4) spectral retrieval 

analysis and matching test.  

Mineral Spectral Data Mineral Attribute Data Mineral Categories Spectrometer information

Data Prestorage 

Single data quality check Multiple data quality check Remove duplicate data

Gain band removal Smooth spectral curve

Import data Into database

Spectral data analysis Spectral Match

Import Data 

Data Check 

preprocess

Application
 

Figure 1. The work chain of MSL 

 

Correspondingly, the main functions of MSL consist of 

importing mineral data, data cleaning, mineral spectral data 

management, spectral retrieval, spectral application, database 

maintenance and backup, and system management (as shown in 

figure 2). The combination of the above functions provides 

sufficient support for the updating and application services of the 

spectral library. 

MSL Data management

Data retrieval

Check Data quality 

Spectral Application

Import Data

Database operation

System Management

Database restore

Database backup

Check Data quality 

Remove duplicate 

data 

Update

Delete

Data Analysis

Data Match

Manage users

Operation log
 

Figure 2. Main function of MSL  
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2.3 Data Warehousing 

2.3.1 Unify the semantic meaning of minerals and rocks: 

We unify the semantic meaning of minerals and rocks around the 

world by constructing a table of minerals and rocks both in 

English and Chinese. We could accomplish the import and 

retrieval of mineral data in different language by via of this 

reference table. The shared data collected from most databases 

worldwide were integrated and consolidated in a common 

framework. The integrated MSL systems can also add more 

languages to this table, depending on the different storage format 

of other databases. 

2.3.2 Vectorize the images of spectral curve: For the case 

that some spectral libraries store mineral data in form of images, 

we developed a software module to vectorize the images of 

spectral curve by using of thinning algorithm (Shi, 2008) and 

non-thinning algorithm (Naccache,1984). The vectorization of 

spectral curve in raster format is to transform the set of curve 

pixels into a set of coordinate pairs whose band value is the x-

coordinate and spectral absorption value is the y-coordinate. The 

vectorized line is generally the central skeleton line of the linear 

body of the grid graph, and there is only one absorption value 

corresponding to each band value.  

The thinning algorithm is used to obtain the centre point of each 

pixel column on the curve and extract skeleton lines of the 

imaged curves. The algorithm first takes the pixel on a curve as 

the seed point, then tracks and searches the pixel, and determines 

the intermediate pixel of the adjacent pixel column. Then proceed 

from the middle pixel and trace the centre point of the remaining 

pixel column in a certain direction, thus traversing the entire 

spectral curve and preserving the screen position of all centre 

points of the entire curve (as show in Figure 3).  

The non-thinning algorithm is used to extract the boundary of the 

imaged curves (as show in Figure 4). The overview of the 

algorithm is to first find the contour of the line body, then 

determine the corresponding points of its parallel edges and 

calculate the midpoint of the two points. We use the designed 2*2 

window to match the edge of the curve (Fu, 2004), and then 

choose the direction of movement according to the situation of 

four adjacent pixels in the window, until returning to the starting 

point at the end of the traversal.  

In order to analyze the reliability of vectorized results, this paper 

takes the spectral coordinates in the database as true values, 

compares them with vectorized coordinates, and makes 

quantitative analysis with 𝑅2, 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 indexes to verify 

the reliability of the results. As showed in Figure 5. The formulas 

for calculating these indexes are following: 

 

 
𝑅𝑀𝑆𝐸 = √(∑(𝑛𝑖 − 𝑛𝑖

0)
2

/𝑠𝑢𝑚)

𝑠𝑢𝑚

𝑖=0

 (1) 

 
𝑀𝐴𝐸 = (∑|𝑛𝑖 − 𝑛𝑖

0|/𝑠𝑢𝑚)

𝑠𝑢𝑚

𝑖=0

 (2) 

 
𝑅2 =  

∑ (𝑛𝑖 − 𝑛𝑖
0)

2𝑠𝑢𝑚
𝑖=0

∑ (𝑛𝑖 − 𝑛𝑖̅)
2𝑠𝑢𝑚

𝑖=0

=
∑ (𝑛𝑖 − 𝑛𝑖

0)
2

/𝑠𝑢𝑚𝑠𝑢𝑚
𝑖=0

∑ (𝑛𝑖 − 𝑛𝑖̅)
2𝑠𝑢𝑚

𝑖=0 /𝑠𝑢𝑚

= 1 −
𝑀𝑆𝐸(𝑛0, 𝑛)

𝑉𝑎𝑟(𝑛)
     

(3) 

 

where  𝑠𝑢𝑚 = the total number of elements  

𝑛𝑖 = vectorized coordinate 

𝑛𝑖
0 = true coordinate 

 

The precision indexes of the thinning algorithm are: 

𝑅2 =0.99996，𝑅𝑀𝑆𝐸 =2.8778e-04，𝑀𝐴𝐸 =2.1365e-04. The 

precision indexes of the non-thinning algorithm are: 

𝑅2 =0.99993，𝑅𝑀𝑆𝐸 =3.9611e-04，𝑀𝐴𝐸 =3.1316e-04. The 

𝑅2 of the two algorithms are close to 1. The value represented by 

each pixel in the vertical axis is equal to 3.75e-04, so the error of 

the absorption value is no more than one-pixel value. The 

resolution of the extracted digital curves reaches 2 nm and the 

spectral absorption accuracy reaches pixel level. 

Search to 
the right

TopNum

BottomNum

MidNum=(TopNum+BottomNum+1)/2

Search to the 
right

TopNum

BottomNum

MidNum=(TopNum+BottomNum+1)/2

Search to the 
right

TopNum

BottomNum

MidNum=(TopNum+BottomNum+1)/2

 

Figure 3.  The process of thinning algorithm  
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Figure 4.  The process of non-thinning algorithm 

 

 

Figure 5.  Verification of algorithm results 
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2.3.3 Mineral coding: Minerals and rocks related to the 

shared spectral data are coded according to general classification 

rules and mineral coding rules, which are based on mineral 

chemical compositions and can accelerate the efficiency of 

mineral spectral matching. The MSL first divides minerals into 

categories and classes based on their chemical compositions and 

then subdivides the minerals into groups under the class 

according to the principle that the chemical composition is 

similar but the crystal structure is the same. For this classification 

scheme, we establish a mineral coding principle. Partial coding 

scheme is shown in Table 3. 

Classification 
Code 

Category Class Group 

Natural element 

mineral 

Natural metallic 

mineral 

copper 1101 

platinum 1102 

Natural non-

metallic mineral 

carbon 1201 

sulphur 1202 

Sulphide and 

similar 

compounds 
mineral 

Sulphide 

chalcocite 2101 

galena 2102 

Table 3.  The example mineral classification and coding scheme 

 

2.4 Data Cleaning 

We clean all the downloaded data to be imported into the 

integrated MSL. The mineral spectral coordinates downloaded 

from shared spectral database, the spectral data vectored from 

imaged curves, and the sampling spectra tested in CSU must be 

screened and checked for qualification (Fan, 2011).  

 

2.4.1 Measures for Individual spectrum: Individual 

spectrum was examined through boxplot algorithms and signal-

to-noise ratio (SNR) detection. The boxplot can provide the 

information of the overall variation range and the contained 

extreme values of the data. It is characterized by the robustness 

of median and quartile, and can be used for the detection of 

coarse errors and outliers (as shown in Figure 6). Signal-to-noise 

ratio (SNR) is an important index to judge the quality of data. It 

is difficult to obtain a precise SNR value, but the standard 

deviation and mean value of spectral data can be used to 

approximately calculate this index. 

 

Figure 6.  A case of boxplot for MSL 

 

2.4.2 Measures for multiple spectra: For multiple sets of 

spectral data for the same mineral and with the same 

spectrometer, the accuracy of internal conformity and the 

position offset of wavelength of main absorption peak as well as 

the number of error points in the spectral curve are used as 

indicators to check whether they are unqualified or not.  

 

The data obtained from the same spectral instrument under the 

same observation condition should have the same or similar 

characteristics. If the data measured by the instrument fluctuates 

greatly, the calibration of the instrument is needed. Only when 

the instrument is in a relatively stable state can the measured data 

be usable. In order to check the stability of the measuring 

instrument, the accuracy of internal conformity should be made 

under the same observation conditions. First, an average 

reflectivity curve is calculated from a series of repeated 

observations, and then the internal coincidence accuracy of each 

repeated observation reflectivity curve is calculated from each 

spectral curve and the average curve.   

 

We calculate the difference between the corresponding 

wavelength of each curve and the mean of all absorption peaks 

by obtaining the corresponding wavelength of the absorption 

peaks in several spectral curves.  This index called as the position 

offset of the wavelength of main absorption peak can detect the 

spectral curve which is extraordinarily discrepant with other 

curves from the same dataset.  

 

The random error of a single measurement has no rule, but the 

whole of multiple measurements is subject to statistical rule, such 

as normal distribution, T-distribution, triangular distribution and 

uniform distribution. For the repeated measurements of the same 

object by the same instrument in the same period of time, the 

repeated reflectance at each sampling wavelength can be 

regarded as a group of values conforming to the normal 

distribution. According to the distribution, the data points at the 

sampling wavelength of each reflectance are determined one by 

one to fall within the error range. If the error limit is not exceeded, 

the reflectivity value is considered qualified; otherwise, it is 

considered unqualified. Finally, all the qualified points involved 

in the calculation of each curve are counted.  

 

2.4.3 Remove duplicate data: the curve correlation 

coefficients (e.g., Pearson correlation coefficients, angle cosine, 

etc.) of the spectral data were calculated to pick out highly 

similar spectral data, and the most representative spectrum was 

selected out and imported into the integrated MSL.  In this paper, 

several correlation coefficients are proposed to determine which 

curves are highly similar to each other so as to remove redundant 

spectral curves.  

 

2.5 Spectrum Classifier  

We developed a new spectrum classifier based on data 

characteristics to limit the matching scope when unknown 

mineral spectrum is matched with the target spectrum in the 

integrated MSL. In general, the absorption position of mineral 

spectrum reflects the component of mineral, while the other 

absorption characteristic parameters such as absorption depth, 

absorption area reflect the mineral content (Pu, 2000). Hence the 

multiple absorption position can be used to distinguish mineral 

classes and establish decision tree, which can classify the mineral 

spectra in the integrated MSL.   

 

The spectrum classifier firstly calculates the absorption positions 

of each mineral spectrum, and subsequently the characteristic 

values of multiple curves of the same mineral are intersected to 

determine the most representative combination of absorption 

positions (Su, 2008).  The combinations of absorption positions 

for different mineral from the same mineral category or class are 

intersected to determine the new group of absorption positions 

and obtain larger tree node. The establishment of decision tree 

also needs the mineral classification table in MSL. 
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The decision tree of MSL was established by the classifier which 

are to be used to determine the class of unknown minerals and 

rocks. The spectrum classifier is applied to simulate several 

known classes of minerals and rocks, and the tests show that the 

classification results are identical with the real ones. The decision 

tree of the experimental samples is shown in Figure 7. The 

presented spectrum classifier can limit the spectral match scope 

to improve greatly the efficiency of spectral matching instead of 

searching the entire database. 

MSL

hydroxyl mineral

[4,7,10,11,14,15,19,22,23,29,40,50]
silicate mineral Oxysalt mineral

smectite  

[4,7,12,25,59]

diaspore 

mineral

goethite - fibronite 

mineral

goethite

[1*24] 

lepidocrocite

[1*55]

alum - jarosite mineral

[1,7,12,13,14,15,16,17,20,22,24,27,37,46,47,63]

k-jarosite

[1*24]

jarosite

[1*42]  

Figure 7.  The decision tree of the experimental samples 

 

2.6 MSL Application Modules 

This article developed function modules for applications in 

domains of remote sensing and geological mapping. There are 

two main application function modules developed including 

spectral matching and spectral analysis. 

 

2.6.1 spectral analysis: The spectral analysis module is 

adaptive to those curves that were stored in MSL or the unknown 

spectral data.  The spectral analysis module can calculate several 

absorption waveform parameters (e.g., absorption position, 

absorption width, absorption height, absorption area, number of 

absorption peak, absorption symmetry, spectral slope, spectral 

absorption index, etc.) of spectral curve (Wang, 1996), and 

highlight the characteristics of the spectral curve by making pre-

processing operations (i.e., spectral derivative and continuum 

removal). The waveform parameters help users to further analyse 

the composition and content of the sample minerals. 

 

The spectral search module can find out the goal spectrum and 

display the spectral curve from the integrated MSL when the 

constraints such as mineral name in English or/and Chinese or 

database name are input.  

 

2.6.2 spectral matching: The spectral match module uses a 

variety of frequently used algorithms (e.g., BCM, SAM, SCF, 

SAI, etc.).  

 

The binary code mapper method (BCM) compares the coding 

vector of the spectrum to be measured with the coding vector of 

the reference spectrum, and shows the difference between them 

by the matching coefficient. After binary code processing, the 

spectrum can be simplified to 0-1, which greatly improves the 

efficiency of matching recognition (Jia, 1993). The spectral angle 

mapper method (SAM) regards the spectral curve as a 

multidimensional space vector and uses the cosine of the Angle 

between the spectrum to be measured and the reference spectrum 

to express their similarity (Bough, 1998). The larger cosine 

means the higher similarity between the two spectra. When the 

cosine is equal to 1, we can judge that they are the same mineral. 

The correlation coefficient is calculated by SCF (Zhang, 2003) 

and used to measure the linear correlation of two spectral curves. 

The formula for calculating the correlation coefficient is as 

follows. 

 
𝑅𝐴𝐵 =

𝜎𝐴𝐵
2

𝜎𝐴𝐴𝜎𝐵𝐵
 (4) 

 

where  𝜎𝐴𝐴 =the standard deviation of the spectrum to be 

measured 

𝜎𝐵𝐵= the standard deviation of the reference spectrum 

𝜎𝐴𝐵= covariance between the spectrum to be measured 

and the reference spectrum 

 

The spectral absorption index technology (SAI) calculates 

spectral absorption index by using parameters such as the 

wavelength position (P), depth (H), width (W), slope (K), degree 

of symmetry (S), area (A) of the absorption band, and compares 

the similarity between reference spectrum and pixel spectrum 

according to the degree of similarity of the absorption index 

(Wang, 1996). The calculation formula of spectral absorption 

index (SAI) is as follows. 

 

 
𝑆𝐴𝐼 =

𝑑𝑑𝑠 + (1 − 𝑑)𝑑𝑒

𝑑𝑝
 (5) 

 
𝑑 =

𝜆𝑒 − 𝜆𝑝

𝑊
 (6) 

 W=𝜆𝑒 − 𝜆𝑠 (7) 

 

where    𝑑𝑝=absorption valley reflectivity 

𝑑𝑠=left endpoint reflectivity 

                𝑑𝑒= right endpoint reflectivity 

𝜆𝑝= left endpoint wavelength 

                𝜆𝑒 = right endpoint wavelength 

                𝜆𝑠= absorption valley wavelength 

 

The spectral matching range between the reference spectrum and 

the unknown spectrum as well as its matching similarity level are 

used to construct the reliability index, which could be used to 

determine the most reliable matching results of each algorithm. 

Users of the integrated MSL can not only select one of those 

algorithms but also choose all the algorithms to determine the 

most credible result through comparing the matching results of 

each algorithm, so as to obtain the most matched reference 

spectrum. 

 

3. RESULTS 

3.1 System Development 

The C# programming language and SQL Server software are 

used to develop the C/S terminal and manage mineral spectral 

data of MSL. Visual Studio platform combined with SQL Server 

database can realize the effective management, retrieval and 

application of mass rock and mineral spectrum data. 

 

3.2 System interface and function demonstration 

The management function of the integrated MSL for mineral 

spectral data includes adding, deleting, modifying and querying. 

Besides, the data analysis of reference spectrum and unknown 

spectrum as well as the search and matching of unknown 

spectrum are also realized. The main interface and functions of 

the system are as follows.  

 

The login interface is shown in figure 8. The user logs into the 

system by relying on the account and password. The system 

determines the user rights according to the user information table 

in the database. When login as a user, the spectrum database can 

be viewed and the spectrum absorption characteristic parameters 
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can be analysed to identify the unknown spectrum. When login 

in as the administrator, the spectral database can be managed. 

 

The data import interface is shown in figure 9. Only the 

administrator can import mineral related data in the form of file 

or folder, such as mineral spectral data, vectorized coordinates, 

mineral attribute data, mineral category information and 

spectrometer information. The users of MSL can view the key 

parameters of the imported data. 

 

Figure 8.  Interface of login to the integrated MSL 

 

 

Figure 9.  Interface of data import 

 

The data cleaning interface is shown in Figure 10. The interface 

consists of four part including the pre-process module, the data 

quality check module, the duplicate data removal module and the 

data classification module. The function of this interface is to 

process the data and import the qualified data into the library. 

 

Figure 10.  Interface of data cleaning 
 

The data search interface shown in Figure 11 includes the spectral 

data search module and attribute data search module.  According 

to the relevant information entered by the user, the target data is 

found by fuzzy query and the corresponding mineral spectrum is 

displayed. The user can check the corresponding detailed 

coordinates of the curve and jump to the interface of spectral 

analysis by clicking the curve node. 

 

Figure 11.  The data search interface 
 

The spectral data analysis interface that is shown in Figure 12 can 

calculate the absorption waveform parameters and show the 

spectral curve with the envelope. The user can mark the 

corresponding absorption peak position in the form of point or 

line on the interface or add the spectral curve after removing the 

envelope to the interface. 

 

Figure 12.  The data analysis interface 

 

The spectral data match interface is shown in Figure 13. The user 

can import the measured mineral spectral curve (choose whether 

to remove the envelope or not), and then click the match button 

to compare it with the corresponding spectral curve in the 

integrated MSL, and subsequently get the matching correlation 

coefficient from largest to smallest. Before spectral matching, the 

user needs to first determine the category of the unknown 

spectrum. If the data parameters are unknown, the decision tree 

classification method is used to determine the category.  The 

purpose of this step is to limit the spectral matching scope and 

improve the matching efficiency.  

 

Figure 13.  The data analysis interface 
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4. DISCUSSION AND CONCLUSIONS

The author designs and develops an integrated mineral spectral 

library and a software with functions of data import, data 

cleaning, data query and data application. The library was 

developed with C# language, and SQL Server database was used 

to manage the mass mineral spectral curve and the corresponding 

description information and observation information. This 

integrated MSL aims to improve the sharing of mineral spectral 

information and promotes the application of remote sensing 

spectral data. We collected the shared spectral data worldwide 

and retained the qualified data so as to establish a reliable and 

comprehensive dataset, and developed an integrated MSL for 

data management and diversified applications.  The user of this 

integrated MSL can conduct a custom analysis of the spectral 

absorption characteristic parameters, and the measured spectrum 

can be compared with the reference spectrum accordingly to 

obtain the matching correlation coefficient and find the most 

similar spectrum curve. The establishment of the integrated MSL 

also plays a certain reference significance for the establishment 

of other thematic spectrum libraries of typical features. 

Due to the wide scope of the research and the complexity of the 

problems, many deep-seated problems need to be further studied. 

Firstly, the integrated MSL should be developed in B/S website 

environment, which can promote the spectral application.  

Secondly, the mapping processing function of remote sensing 

image should be considered in the development of MSL. Thirdly, 

spectral analysis can not only calculate spectral absorption 

characteristic parameters, but should also be combined with the 

knowledge base to provide certain basis for the comprehensive 

analysis of unknown mineral composition and content. 
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