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ABSTRACT: 

 

The automation of geoinformation (GI) collection and interpretation has been a fundamental goal for many researchers. The 

developments in various sensors, platforms, and algorithms have been contributing to the achievement of this goal. In addition, the 

contributions of citizen science (CitSci) and volunteered geographical information (VGI) concepts have become evident and 

extensive for the geodata collection and interpretation in the era where information has the utmost importance to solve societal and 

environmental problems. The web- and mobile-based Geographical Information Systems (GIS) have facilitated the broad and 

frequent use of GI by people from any background, thanks to the accessibility and the simplicity of the platforms. On the other hand, 

the increased use of GI also yielded a great increment in the demand for GI in different application areas. Thus, new algorithms and 

platforms allowing human intervention are immensely required for semi-automatic GI extraction to increase the accuracy. By 

integrating the novel artificial intelligence (AI) methods including deep learning (DL) algorithms on WebGIS interfaces, this task 

can be achieved. Thus, volunteers with limited knowledge on GIS software can be supported to perform accurate processing and to 

make guided decisions. In this study, a web-based geospatial AI (GeoAI) platform was developed for map updating by using the 

image processing results obtained from a DL algorithm to assist volunteers. The platform includes vector drawing and editing 

capabilities and employs a spatial database management system to store the final maps. The system is flexible and can utilise various 

DL methods in the image segmentation. 

 

 

1. INTRODUCTION 

The spatial and semantic updating of geodatabases containing 

land use land cover (LULC) information is a crucial process to 

ensure their usability. The spatial data updating can be 

considered as a two-step process: (i) accurate detection of the 

area of change, and (ii) precise determination of the modified 

geometry due to the change. These steps have traditionally been 

performed by mapping professionals with the help of 

aerial/satellite/UAV imagery or via fieldwork. Nowadays, many 

volunteers and citizen scientists contribute to the geodata 

collection and interpretation activities, such as OpenStreetMap 

(OSM) Project with over seven million contributors (OSM, 

2021). In this respect, rapid and accurate image data collection 

is crucial for emergency response planning and mitigation in 

numerous circumstances including the emergencies caused by 

disasters occur due to seismic activities, floods, landslides, 

wildfire, etc. However, as the size of the area mapped by images 

increases, the interpretation and analysis of images become 

labour intensive, costly and time consuming. Therefore, 

provision of timely data and their interpretation is still a vivid 

research area; and in many cases, such data can be rapidly 

collected with a certain level of quality with the help of citizen 

scientists and volunteers, who often have little or no knowledge 

on image processing or map-updating. 

 

Deep learning (DL) architectures, especially deep convolutional 

neural networks (CNNs), have increasingly been used for 

semantic segmentation/classification of airborne imagery (e.g. 

Wu et al., 2018; Bittner et al., 2018; Yang et al., 2018; Shi and 

Zhu, 2018). Many state-of-the-art DL architectures (Ronneberg 

et al., 2015; He et al., 2017; Chen et al., 2018) have shown 

outstanding performances in the segmentation/classification 

tasks, if sufficiently enough training datasets are supplied to the 

DL architecture. However, their outputs are still not been 

frequently utilised or preferred for updating a geodatabase in an 

end-to-end framework. Nonetheless, such DL-based methods 

have great potential to assist both experts and citizen scientists 

in a semi-automated manner by recommending tags for 

classification, verifying tags and updates, supporting quality 

control check for output data, detecting and monitoring pixel-

based changes (immediately) after natural hazards etc. 

Facilitating the DL techniques for updating a geodatabase 

would noticeably empower such interpretation tasks mostly 

done by manual processing, particularly for revealing areas with 

change. In this way, the time and personnel costs required can 

be reduced significantly, and such interactive approaches will 

ensure more accurate and semantically correct data in a 

relatively shorter amount of time.  

 

Although DL-based approaches can significantly enrich the 

intelligence while updating a geodatabase, the DL architectures 

can also benefit from the volunteered geographical information 

(VGI) by the training data collected with the help of mobile and 

web-based Geographical Information Systems (WebGIS) 

plaftorms (Chen and Zipf, 2017). Fan et al. (2021) proposed an 

interactive platform for 3D building modelling from VGI data. 

Integrated with the increased processing power of the mobile 

devices, the DL techniques and WebGIS have great potential 

for accurately and timely managing, analysing and presenting 

geospatial data. Thanks to the expansion in computer 

technology and its requirements, the WebGIS platform 

architecture is evolving recurrently. In this context, several 

review studies summarise the work carried out up till now (e.g. 
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Agrawal and Gupta, 2017; Rowland et al., 2020) and interested 

readers may refer to those studies for further details.  Such 

platforms can also effectively provide DL-based decision 

support systems to assist decision makers through interactive 

tools. In a study conducted by Can et al. (2019) showed that the 

data quality issues in citizen science (CitSci) data collection 

projects can be mitigated with the help of CNNs. In a recent 

work, Can et al. (2020) presented a WebGIS framework for the 

integration of the developed CNN-based quality assessment 

method in a GeoAI platform (called GeoCitSci.com).  

 

In this study, a geospatial artificial intelligence (GeoAI) 

supported by a WebGIS platform was designed and 

implemented to demonstrate how DL can aid geodatabase 

updating especially for LULC data. The platform developed in 

this study currently supports for one feature type, i.e. polygons 

utilised for building roofs/footprints. However, thanks to its 

modular design, the system can be easily expanded to other 

types of objects, and the other use-case scenarios by training 

and executing further DL models. Therefore, our main 

contribution in this study is to proposing a flexible general 

purpose WebGIS platform to be utilised for GeoAI purposes.  

 

The structure of this paper is organized as follows. The system 

design and implementation are described in the following 

section. The results and the related discussion are presented in 

Section 3. Finally, in Section 4, we give concluding remarks 

and make suggestions for possible future works. 

 

2. PROPOSED SYSTEM DESIGN 

The developed GeoAI platform principally requires a vector file 

containing building boundaries to be employed as ground-truth 

and a single airborne image to be used in the DL-based image 

segmentation. Thereafter, the platform processes the input data 

using DL architecture. The output of our platform is the 

changes detected as the vector file, which is finally presented to 

the user of the platform through a WebGIS interface. The user 

can easily navigate to the locations with detected changes listed 

through the interface. By clicking on a specific vector element 

labelled as difference (or change), the map is automatically 

zoomed to the location of the selected difference area. The user 

can also observe the old and new data on a specific location. 

The WebGIS platform enables the user to add, modify and 

delete features through a map editor. Any modifications 

submitted by the users are immediately transferred to the 

geodatabase for updating. The users have possibility to 

download, and locally store the vector map data any time until 

the processing session ends.  

 

The operational system workflow and the main component of 

the system and their interactions between the different 

technologies are presented in Figures 1 and 2, respectively. As 

shown in Figure 2, the system includes four major components, 

i.e. web map interface, change detection, geospatial analysis, 

and data management. The component web map interface 

includes functionalities that enable the user to observe and 

update areas with changes detected via the DL assistance. The 

component change detection includes an automated pipeline 

with the help of a DL module requiring an input of a single 

airborne image with related georeferencing information; and 

producing an output georeferenced vector file with the detected 

buildings. The component geospatial analysis enables spatial 

analysis functionalities. The component data management is 

responsible for data input-output processes, the data 

transactions, and the management of the spatial database 

management system (SDBMS) and the file system. The system 

components and technologies presented in Figure 2 are briefly 

described in the following sections. 

 

 
 

Figure 1. The system workflow. 

 

  

 

 
 

Figure 2. The system components and technologies utilised. 
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2.1 Web Map Interface 

Keeping the easiness and simplicity are of our major offer when 

designing the web map interface, so that inexperienced users 

would be able to use the system without the necessity of any 

prior knowledge or expertise. The interface is divided into three 

sections, which are the toolbox, map editor and viewer. The 

map editor shows the functionalities that the user can operate, 

specifically functions to add, edit and delete data. The map 

editor menu can only be accessible if a vector file (i.e. 

shapefile) is uploaded in active session. The viewer section is 

responsible for showing active layers, which are base map 

layers, an airborne image and a vector data file that are provided 

by the user, and the resulting detected changes layer obtained 

from the DL module. At this time, only OSM (OSM, 2021) and 

Bing Maps Aerial (Microsoft, 2021) are provided to serve as 

base maps. Besides, the viewer section enables the user to 

perform selected functionality in the map editor menu. The 

toolbox enables the user to choose the operations to be 

performed, such as loading the shapefile and airborne image or 

processing a change detection procedure, etc. OpenLayers 

(OpenLayers, 2021), jQuery and JavaScript are used for the 

viewer section, and an open-source front-end library, Bootstrap 

(Bootstrap, 2021), is used for the development of the interface.  

 

2.2 Change Detection 

The change detection component of the system includes an 

automated pipeline. First, this component pre-processes the 

airborne image uploaded by the user. The aim of the pre-

processing is preparing and forming the input airborne image 

for the DL module. Once the pre-processing is completed, the 

component creates a configuration file to be used by the DL 

module, and calls it. Our DL module currently includes a 

modified version of RA-Unet (Jin et al., 2020), which was pre-

trained using a subset of Inria Image Labeling Dataset 

(Maggiori et al., 2017) within this study. The DL module 

locates the configuration file with the pre-processed airborne 

image, and finally produces a georeferenced raster comprising 

the segmentation result produced by the modified RA-UNet. 

Within the component, raster to vector conversion approach 

proposed by Sahu and Ohri (2019) was employed to produce a 

vector file from the segmentation results. The modified version 

of RA-UNet was implemented by using TensorFlow (Abadi et 

al., 2015). In our framework design, GDAL (GDAL/OGR 

contributors, 2021), Fiona (Gillies et al., 2011), Shapely (Gillies 

et al., 2007), PyProj, scikit-image (Walt et al., 2014), OpenCV 

(Bradski, 2000) and SciPy (Virtanen et al., 2020) libraries were 

used for raster and vector data manipulations. 

 

2.3 Geospatial Analysis Component 

The geospatial analysis component is responsible for 

discovering the differences between the ground truth vector data 

provided by the user and the segmentation results, which were 

produced by the change detection component. The geospatial 

analysis component initially searches any overlap between the 

geometric entities in two datasets. Next, it extracts the 

differences (which are in principle polygons) that exist in the 

segmentation results but not in the ground truth vector data. 

After this step, a size threshold calculated using the ground 

truth geometries is applied to the detected differences. If the 

size of the difference area is smaller than the threshold, the area 

is removed from the list of detected changes. The final product 

of the geospatial analysis component is the output 

georeferenced vector data showing the final differences between 

the ground truth vector data and the segmentation results. 

Geopandas, GDAL and PyProj libraries were used for the 

implementation of geospatial analysis component and vector 

data processing functionality.  

 

2.4 Data Management Component 

The data management component is responsible for data input-

output processes, data transactions, and the management of the 

SDBMS and the file system. When the user uploads a zip file 

through “Load Shapefile” form in the web map interface, the 

related function of the component is triggered. This function 

applies several operational evaluations before writing the 

shapefile to the database. If the shapefile is successfully 

qualified from all available predefined tests such as geometry 

validation, coordinate reference system control, etc., the 

shapefile is written to the database and immediately published 

on Geoserver map engine from the Open Source Geospatial 

Foundation (Geoserver, 2021). Also, the user can upload an 

airborne image through “Load Aerial Image” form under the 

toolbox on the web map interface. Similar to the shapefile 

function of the component, the aerial image function checks the 

uploaded aerial image and publishes the image on Geoserver. 

The change detection and the geospatial analysis components 

also exploit the data management component for writing the 

data to the database or the file system. The component utilises 

PostgreSQL with PostGIS extension as SDBMS for storing 

vector data, and Geoserver for sharing both the vector and raster 

data types.   

 

3. RESULTS AND DISCUSSION 

The main idea behind this study is to demonstrate how DL can 

assist the tasks for change detection based map updating. 

Therefore, we designed and implemented the system as simple 

as possible to focus on the overall framework. Our system can 

be modified for different tasks and can be adapted to different 

conditions. The DL model remains in the core of the system, 

and various DL models can also be utilised depending on the 

problem defined and the datasets available. The DL models, 

especially for airborne image segmentation tasks, require well 

prepared datasets and demands for high computational 

resources in order to train and fine tune the models to increasing 

the prediction performances. If the computational resources are 

limited, the model training from the scratch may last several 

days to months without anticipating the success of the final 

model or the configuration. The model training is an iterative 

process; one needs to fine tune hyper-parameters, and to modify 

the model until the desired performance is achieved. In this 

study, we carried out a segmentation model developed in the 

medical image processing domain, and adjusted the model in 

order to utilise with airborne images. Since our computational 

resources are not quite high, only a base model was trained for 

this study by using a subset of the Inria Image labelling dataset 

(ca. 20% with 36 images for training and 10 images for testing).   

 

Examples from the DL output and the interface elements of the 

implemented GeoAI platform are presented in Figures 3-13. In 

Figure 3, the menu for loading vector and image data is shown. 

In Figure 4, the layer selection menu and the vector data fetched 

from the OSM are depicted. Some of the buildings existed in 

the OSM data were purposefully removed for testing reasons. 

Figure 5 shows the map editor menu. In Figures 6 and 7, the 

web map editing and application of the changes in the database 

are demonstrated, respectively. Figure 8 shows an aerial image 

from Inria Image Labelling dataset, which was not used in 
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training or validation during the training of the demo model. In 

Figures 9 and 10, the menu for starting the DL model for 

change detection and the outputs as a list of areas (polygons) 

with detected changes is demonstrated, respectively. The results 

can also be displayed with a layer on/off functionality (Figures 

10 and 11). Figure 11 also shows one example of successfully 

detected missing building in the vector data provided by the 

user. The building can then either be drawn from scratch, or the 

polygon, which is the output of the DL segmentation, can be 

modified by the user. In Figure 13, the overall DL segmentation 

results, and the download functionality for the updated vector 

data are depicted. 

 

 
Figure 3. WebGIS interface elements of the developed GeoAI 

platform. 

 

 
 

Figure 4. Layer switcher to control the layer visibility by the 

user. 

 

 
 

Figure 5. The map editor menu, which can be opened by 

clicking the tools symbol below the zoom icon. 

 

 
 

Figure 6. Vector editing functionality on the WebGIS interface. 

 

 
 

Figure 7. All modifications applied on the uploaded vector data 

are committed in the spatial database immediately after clicking 

the finalize symbol. 

 
 

Figure 8. The layer switcher menu updated after loading the 

test aerial image from the Inria Image labelling dataset. 

 

 
 

Figure 9. Detect changes menu, which triggers the change 

detection component by applying the DL method. 
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Figure 10.  The list of detected change polygons returned by 

the DL method which also allows navigating to the locations. 

 

 
 

 
 

Figure 11. The layer switcher menu updated after the change 

detection is completed, and the location of one missing building 

in the ground truth (above), and the DL segmentation result 

below. 

 

 
 

Figure 12. Map drawing tool on the WebGIS interface for the 

missing building. 

 

 
 

Figure 13. An overview of DL segmentation result on the test 

image and vector download menu for the updated vector data. 

 

Since we only trained a base DL model for a few epochs and a 

small subset of the Inria Image Labelling dataset, the model 

performance is not quite high, and the changes detected 

currently suffer from erroneous segmentation output. Thus, the 

improvement of the DL model for increasing the prediction 

performance remains an open task. Besides, as stated before, 

other DL models can be integrated into the developed system 

for problem specific tasks. The input raster image resolution 

must also be taken into account when feeding into the change 

detection component. Other parameters like the image 

acquisition angles (i.e. nadir and off-nadir), atmospheric 

conditions, the date and hour of image acquisition, the 

geographic location of images would also play a role on the 

success of building change detection. Furthermore, large 

georeferencing errors in aerial images would also distort the 

results and must be taken into consideration as an additional 

processing step. 

 

Considering the completeness and the scalability of the 

developed system; it can be deployed by mapping agencies or 

geospatial companies with further system optimizations and 

after handling the security related issues. However, if the system 

is deployed at global scale, data input-output standards must 

also be considered since they may cause considerable amount of 

difficulties. Furthermore, the performance related issues such as 

the number of concurrent users to run the change detection 

component or to modify their vector data, and the number of 

requests that the servers can handle must also be considered by 

the related agencies/companies.   

 

4. CONCLUSIONS AND FUTURE WORK 

In this study, we designed and implemented a geospatial 

artificial intelligence (GeoAI) supported WebGIS platform to 

demonstrate how DL can aid geodatabase updating. The 

proposed DL-assisted WebGIS framework has numerous 

application areas, especially when the data is urgently needed or 

the data quality, in particular the completeness, is of high 

importance. Platforms such as OSM or mapping agencies, 

geospatial companies can also adapt the proposed methodology 

in their image processing frameworks to improve the 

operations. Extra features, such as periodical scans and warning 

on the images for detecting the areas that require updating can 

also be included as add-ons in the developed application.  

 

The developed GeoAI system is considered to be integrated to 

the GeoCitSci.com, a CitSci platform for geoscience researches 

developed at Hacettepe University as joint efforts of Geomatics 

and Geological Engineering Departments (Kocaman and 

Gokceoglu, 2019; Can et al., 2019; Can et al., 2020). Thus, 
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further DL algorithms for the characterization of various 

geomorphological characteristics and geohazards can be also 

utilised in the system. 
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