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ABSTRACT: 

 

Cropland mapping is an important inventory for food security and decision making operated by governments. Crop mapping is used 

to identify the croplands and their spatial distribution. For a reliable analysis and forecast for projection, multi-temporal data play a 

key role. Even current open and frequent optical satellite data such as Sentinel-2 and Landsat support monitoring, they are not always 

operational due to atmospheric conditions (rain, cloud cover, haze, etc.). On the other hand, Synthetic Aperture Radar (SAR) satellites 

provide alternative data sets compared to optical satellites since they can acquire images under all weather conditions. In this study, an 

annual cropland monitoring study is conducted using Sentinel-1 SAR. For the investigation, Tokat Province an agricultural region of 

Turkey, where the main source of income is agriculture, was selected. There are 4 different vegetation species (wheat, sunflower, sugar 

beet, corn) in the study area. Sentinel-1 data was used to generate time-series of each class and phenological structures of the crops. In 

this context, backscatter images of both vertical-vertical (VV) and vertical-horizontal (VH) polarized data, and coherence of both VV 

and VH were produced from Sentinel-1 data. Time-Weighted Dynamic Time-Warping (TWDTW) classification approach was used 

over cropland. The produced time-series are classified under different scenarios. The results showed that only coherence has provided 

higher accuracies about 81% compared to using only backscatter images as 49%.  

 

 

1. INTRODUCTION 

 

The world’s population is increasing rapidly, and the projection 

for the next 30 years shows an increase of about 2 billion people. 

One of the consequences is that increase of people's desire to 

reach foods with high added value increases the demand for food 

(Fróna et al., 2019). Owing to the fact that monitoring of 

croplands and yield estimation has become very important for 

sustainable agriculture activities. Moreover, according to the 

Sustainable Development Goals (SDGs) of the United Nations, 

achieving sustainable agriculture is one of the targets of SDG 2, 

which is called “End hunger, achieve food security and improved 

nutrition and promote sustainable agriculture.” 

 

Among the crops, wheat is one of the main crop produced for 

food.  Sunflower is the third crop that is produced widely in the 

world among the oil crops. Sugar beet is one of the main crop for 

sugar production. Turkey is the tenth country leading wheat 

production and fifth largest sugar beet producer (FAO 2020). 

Thus, crop monitoring is important for crop trade in the global 

market. To this aim, a location was chosen where these three 

crops are growing for continuous monitoring of crops.  

 

In the literature, many methods have been used for the 

classification and monitoring of croplands. One of the challenges 

of crop mapping is even the crops have different phenology and 

growing periods it might be difficult to distinguish them in case 

of the similarities in different growing stages (Narin et al., 2018). 

Additionally, smallholder farmers can plant another crop after 

early harvest crops especially in the summer season. However, 

this new crop type may also be mixed with other cultivated 

products. Because of these reasons, long-term monitoring of 

agricultural fields is required.  

 

The potential of the optical data for the crop mapping is well 

established (Forkuor et al., 2018; Immitzer et al., 2016; Noi and 

Kappas 2018).  Sentinel-2 also provides a long-term dataset with 

a short revisit time. On the other hand, SAR has the sensitivity to 

the vegetation biophysical properties and it also has the ability to 

acquire data over cloudy days, which is an important role against 

optical monitoring. Various approaches were used with SAR data 

for the crop classification such as decision tree and naïve Bayes 

classifier on backscatter data of Sentinel-1 (Xu et al., 2019), 

extreme gradient boosting with multi-temporal Radarsat-2 

Polarimetric SAR (POLSAR) data (Ustuner et al., 2019). There 

are also studies that combined both optical and SAR images 

together (Ienco et al., 2019; Tricht et al., 2019; Veloso et al., 

2017).) 

 

In most cases, backscatter values are the main inputs for image 

classification. Some of the current studies also used the 

advantage of short-time repeat-pass of Sentinel-1 to determine 

time series of coherence for crop monitoring (Kavats et al. 2019, 

Khabbazan et al 2019). The coherence is derived from two 

complex SAR images and composed of information gathered 

from both phase and amplitude. Low coherence values indicate 

the decorrelation between the images which might be due to the 

changes of the scatterers (Kavats et al., 2019). Tamm et al. (2016) 

showed the feasibility of 12 days Sentinel-1 pairs for grassland 

mowing. Kavats et al. (2019) studied detection of harvesting date 

using backscatter and coherence of 12 days Sentinel-1 dataset. 
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Khabbazan et al. (2019) investigated the relationship between 

ground measurements and time-series of backscatter and 

coherence obtained from Sentinel-1. Even these studies showed 

promising results for crop monitoring investigation on crop 

classification, using long-term phenological stages and 

coherence data is less studied. 

 

Csillik et al. (2019) classified crops area using different scenarios 

in Dynamic Time-Warping (DTW). They made the classification 

in different areas and using the Sentinel-2 image. As a result, they 

reported good results in the classification without time 

constraints. Olfindo et al. (2020) classified sugarcane parcels 

using the DTW technique and backscatter of Sentinel-1 data. As 

a result of the study, they obtained 92.75% overall accuracy. 

Besides, they stated that it is promising in the classification of 

seasonal crops. Lie and Bijker et al. (2019) used backscatter (VV 

and VH) and decomposition features (entropy, angle, and 

anisotropy) of Sentinel-1 with Time-Weighted Dynamic Time-

Warping (TWDTW) for the classification of vegetables.  

 

In this study, the objective is to create crop mapping using only 

time-series of Sentinel-1 data.  

The contributions of the study are given as below; 

• to our knowledge this study is the first that examines 

the contribution of coherence obtained from multi-

temporal Sentinel-1 satellite on the classification of 

crops for smallholder farming using TWDTW. For the 

analysis, 25 images were acquired from Sentinel-1A 

and -1B satellites in 6 days repeat-pass.  

• we explore the feasibility of using time series of 

coherence for crop mapping. 

• we extract the second crop type (corn) after harvesting 

the first crop (wheat) using time series and TWDTW. 

 

 

2. STUDY AREA AND DATA SET 

 

2.1 Study Area 

The study area is a cropland region in Tokat province (Figure 1). 

It has the characteristics of a transition climate between the Black 

Sea climate and the climate in Central Anatolia (semi-arid 

continental climate). The average altitude is 710 m., and the 

average temperature is 11.7 ℃ (Url-1).  The main livelihood of 

the region is agriculture, and the main crops grown are wheat, 

sunflower, sugar beet, and corn. The life cycle of the plant species 

cultivated is between April and September in the region. The 

general annual cultivated products in the study area are shown in 

Figure 1.  

 

 

  

 
Figure 1. Illustration of the study area and annual cultivated 

products. 

2.2 Sentinel-1 Data 

Sentinel-1A and -1B provide C-band SAR images and offer 

short-term data acquisition with 6 days revisit time. For this 

study, ascending orbit direction data were collected between 18 

April 2018 and 15 September 2018. A total of 25 Interferometric 

Wide (IW) mode and Single Look Complex (SLC) images are 

processed. Each image has VV and VH polarization. For the 

analysis, both VV and VH polarized data are used. The incidence 

angle of the data is 30.57° and 46.09° for near and far incidence 

respectively. 

 

3. METHODOLOGY 

The methodology of the study is composed of four main steps; 

(1) pre-processing of SAR images to produce backscatter and 

coherence images, (2) time series extraction, (3) classification 

with TWDTW, and (4) accuracy analysis. 

 

3.1 Pre-processing of SAR images 

The six-day sequential SAR data are acquired through the ESA’s 

open access hub service 

(https://scihub.copernicus.eu/dhus/#/home). For all images, the 

Terrain Observation with Progressive Scans SAR (TOPSAR) 

split, co-registration, orbit correction, backgeocoding, 

interferogram and coherence production, TOPSAR deburst, and 

terrain correction steps were applied to create coherence map and 

backscatter values. Concerning the extraction of the 

backscattering coefficient (σ°), radiometric calibration was 

applied before TOPSAR deburst step. Range Doppler Terrain 

Correction approach was implemented for geometric correction 

with SRTM 1 Arc-Second HGT data. Finally, linear backscatter 

values were converted to decibel (dB) unit using the equation (1) 

below; 

  

σdB = 10·log10 (σ°)     (1) 

 

The coherence feature indicates the cross-correlation coefficient 

between two complex SAR images and expressed as γ, and can 

be calculated from the equation (2). Coherence values range 

between zero (minimum correlation) and one (maximum 

correlation).   

 

𝛾 =
|(𝑆1𝑆2

∗)|

√((𝑆1𝑆1
∗)(𝑆2𝑆2

∗))

       (2) 

 

where  S1 and S2= complex SAR image pair 

 * = denotes complex conjugation 

 ‹›= indicates a spatial averaging operation 
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All the pre-processing steps are applied using Sentinel 

Application Platform (SNAP) software. 

 

3.2 Dynamic Time Warping 

DTW is based on the similarity of the time-dependent series. 

Time-Weighted DTW (TWDTW), which is a variance version of 

DTW, is used in cropland classification in this study (Maus et al. 

2016b). It is written in R language, which is named dtwsat (Maus 

et al. 2016a). The Dtwsat package provides pixel level 

classification using satellite image datasets. In the DTW 

classification method, it does not calculate the stage differences 

in time series. However, phase offset can occur in plant 

phenological stages. These weights were taken into account when 

creating the TWDTW algorithm (Maus et al. 2016b). Time series 

were created with the coherence and backscatter values obtained 

from Sentinel-1 data. The results were obtained by classifying 

with different input data to test their contribution (Table-1). The 

sizes of the selected classes for the classification are wheat-corn 

(3.4 ha.), wheat (18.86 ha.), sugar beet (4.06 ha.) meadow (53.86 

ha.) quarry (3.48 ha.) sunflower (24.98 ha.). A total of 310 pixels 

are used for the image classification. 80% of it used for training 

and 20% of the dataset is used for validation. For the accuracy 

analysis error matrix that shows the misclassification and 

agreement between the reference and the classified image based 

overall accuracy was used (Csillik et al 2019). In classification, 

frequency = 1 was used for temporal patterns, and β = 50 α = 0.1 

for logistic TWDTW. 

 

 

Classifi-

cations  

No. of input 

data 

No. of input 

variables 

Description of 

variables 

1 24 1 ϒVV 

2 24 1 ϒVH 

3 48 2 ϒVV + ϒVH 

4 25 1 σVH 

5 25 1 σVV 

6 50 2 σVH + σVV 

7 98 4 σVH + σVV  +ϒVV +ϒVH  

Table 1. Input data of experiments for croplands classification 

 

4. RESULTS AND DISCUSSIONS 

Time series was created by smoothing the samples selected 

among the classes for the cropland classification (Figure 2). For 

each class, time series of backscatter and coherence values were 

extracted. In the results of backscatter, it is clear that σVH has 

higher values than σVV. In general, their behaviors are similar; 

however, in the wheat area, the σVH shows a rapid decline after 

June compared to the σVV. 

 

 
Figure 2. Time series of backscatter and coherenceConsidering 

the coherence time series results, the meadow and quarry indicate 

an identical response to ϒVH and ϒVV. In other crops, it is also clear 

that ϒVV has higher sensitivity than ϒVH. In the time series 

depending on the phenological developments, ϒVV shows 

change, whereas ϒVH is almost stable. 

 

The classification approach is applied to seven scenarios which 

have different variables of coherence and backscatter images 

(Table 1). The results of coherence solely showed better results 

than backscatter values (Table 2). Comparing the individual 

performances of the polarizations, ϒVV achieved 18% higher 

accuracy than ϒVH. The combination of both coherence values 

also increased the accuracy to about 82%.  

 

On the other hand, the results show that backscatter values 

provided lower accuracies than the coherence values. This is 

most probably because of that the distribution of backscatter 

values has a limited range the crops cannot be easily separated 

(Figure 2, Table 2). Both σVV and σVH presented accuracies lower 

than 45%, but using both images increased the accuracy by about 

4.4%. Including all features also increased the backscatter 

accuracy but it still revealed lower than the accuracy of the 

coherence. The classification map that gives the best results 

according to the overall accuracy is given in Figure 3. As a 

footnote, the similarity between sugar beet and sunflower classes, 

especially in VV, caused the classes to be mixed. 
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Variables of classifications Overall accuracy 

ϒVH 0.61 

ϒVV  0.79 

ϒVV + ϒVH 0.82 

σVH  0.44 

σVV  0.40 

σVV + σVH 0.49 

σVV + σVH + ϒVV + ϒVH 0.52 

Table 2. Overall accuracies of the classifications under the 

various conditions of the variables. 

Figure 3. Cropland map classified by ϒVV + ϒVH, according to 

TWDTW 

 

It is observed that the corn plant is planted after the harvest in 

some wheat cultivated fields. Even these fields show similar 

values till July, an increase in backscatter values and a sharp 

decrease in coherence values are visible afterward for the wheat-

corn fields (Figure 2).  

 

Compared to the previous studies, backscatter values gave lower 

results which might be due to the amount of crop parcel and crop 

number. Olfindo et al. (2020) achieved 92% accuracy for 

sugarcane and non-sugarcane plantation mapping using a stack 

of dual-polarized backscatter of Sentinel-1. The study of Li and 

Bijker (2019) resulted in 80% overall accuracy using a 

combination of backscatter and decomposition. As the study of 

TWDTW on SAR data is not applied widely, this paper shows 

the contribution of coherence for crop mapping of smallholder 

farms. The results also presented that after early harvesting of 

some fields a second crop as corn is planted and these fields are 

also extracted through the TWDTW approach.  

 

 

 

5. CONCLUSIONS 

 

The aim of this study is to determine crop mapping using time-

series of remote sensing data. The context relies on utilizing only 

Sentinel-1 data without optical data or additional data. 

Considering the results, just coherence provided the highest 

accuracy that reached up to about 82%. However, the 

classifications with the backscatter gave worse results. Because, 

most probably, the backscatter values were in a narrower range. 

This has increased the similarity of classes in crops. In addition, 

the similarity between sugar beet and sunflower classes, 

especially in VV, caused the classes to be mixed. The time series 

formed according to coherence better represented the differences 

in the classes in the classification.  

 

Time series can be differentiated with different smoothing 

techniques to eliminate the mixed classes in future studies. It is 

planned to work with other features of SAR data and the 

Synergistic use of SAR and optical satellite data to improve the 

accuracies in the crop mapping on a large scale. The effect of 

sample size for the classification will be also tested for the 

following studies.  
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