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ABSTRACT: 

Point clouds classification is the basis for 3D spatial information extraction and applications. The point-clusters-based methods are 
proved to be more efficient and accurate than the point-based methods, however, the precision of the classification is significantly 
affected by the segmentation errors. The traditional single-scale point clouds segmentation methods cannot segment complex objects 
well in urban scenes which will result in inaccurate classification. In this paper, a new multi-scale point clouds segmentation method 
for urban scene point clouds classification is proposed. The proposed method consists of two stages. In the first stage, to ease the 
segmentation errors caused by density anisotropy and unreasonable neighborhood, a multi-resolution supervoxels segmentation 
algorithm is proposed to segment the objects into small-scale clusters. Firstly, the point cloud is segmented into initial supervoxels 
based on geometric and quantitative constraints. Secondly, robust neighboring relationships between supervoxels are obtained based 
on kd-tree and octree. Furthermore, the resolution of supervoxels in the planar and low-density region is optimized. In the second stage, 
planar supervoxels are clustered into the large-scale planar point clusters based on the region growing algorithm. Finally, a mix of 
small-scale and large-scale point clusters is obtained for classification. The performance of the segmentation method in classification 
is compared with other segmentation methods. Experimental results revealed that the proposed segmentation method can significantly 
improve the efficiency and accuracy of point clouds classification than other segmentation methods. 

1. INTRODUCTION

In recent years, with the development of 3D data acquisition 
technology, large-scale and high-precision 3D point clouds 
can be easily obtained through lidar technology and 
photogrammetry. Point clouds have become an ideal data 
carrier for expressing 3D space, providing spatial information 
for 3D city modeling. Point clouds classification is the basis 
for 3D spatial information extraction and application (Che et 
al., 2019).  

Commonly, point clouds classification methods can be divided 
into point-based methods and point-clusters-based methods 
(Xu et al., 2012). In point-based classification, the individual 
point does not have sufficient characteristics to support the 
classification. There is much research that focuses on the point 
clouds neighborhood selection (Filin and Pfeifer, 2006), 
feature extraction, and feature selection (Weinmann et al., 
2015; Gupta et al., 2020). However, the point-based methods 
still suffer from the point clouds density anisotropy, 
unreasonable neighborhood, and noise. In comparison, point-
clusters-based methods are more efficient and more reliable 
(Vosselman et al., 2017). Point-clusters-based methods first 
apply segmentation to the point cloud for clustering points 
with homogeneity. Whether in machine learning classifiers 
such as support vector machines(SVG) (Zhang et al., 2004), 
random forest(RF) (Breiman, 2001), or deep learning 
classifiers such as PointNet (Charles et al., 2017), PCNN 
(Atzmon et al., 2018), segmentation has many advantages for 
classification. Firstly, it reduces the number of objects to be 
classified to improve classification efficiency (Vosselman et 
al., 2017). Secondly, segmentation avoids expensive point 
neighborhood selection. It can separate individual point 
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clusters from the scene. These clusters have information about 
their properties like size and distinct geometric features. 
However, point-clusters-based methods require accurate 
segmentation of initial point clouds. Point clouds 
segmentation is a hot and difficult area of research in both 
computer vision and photogrammetry. Currently, there are 
four major algorithms: model fitting (Schnabel et al., 2007), 
feature cluster (Filin, 2004), deep learning (Bello et al., 2020), 
and region growing (Vo et al., 2015). In the urban scene, 
building facades, roofs, and ground are all pane structures. 
While region-growing-based methods are widely used in 
segmenting the point clouds into planar, they are not 
particularly robust as has been shown in urban scenes (Vo et 
al., 2015; Li et al., 2019). Mainly because the multiple growth 
criterion in the algorithm is poorly adaptive to different scale 
objects in the urban scene. If we set a conservative criterion, it 
will lead to the problem of under-segmentation in small-scale 
objects. However, if we set an aggressive criterion, it will fail 
to extract the continuous plane in the large-scale objects.  

All of these can lead to serious classification errors. In this 
paper, a new supervoxels based on region growing method is 
proposed, which aims to improve point clouds classification 
by segmenting the objects in the urban scene to their 
appropriate scale point clusters. The proposed method is a 
multi-scale point clouds segmentation algorithm consisting of 
two stages(see Figure 1). In the first stage, all objects are 
segmented into small-scale supervoxels. A multi-resolution 
supervoxels with robust neighborhoods segmentation 
algorithm is proposed to ease the segmentation errors caused 
by unreasonable neighborhood and density anisotropy. In the 
second stage, as the objects at different scales in urban scenes 
can be distinguished by the planarity, planar supervoxels are 
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Figure 1. Workflow of our method. 

 
merged into large-scale planar point clusters by using the 
region growing.  
  
To verify the effectiveness of the segmentation method 
proposed in this paper, an RF classifier is used to distinguish 
the classes of the clusters utilizing five kinds of features. 
 
 

2. METHODOLOGY 

 
2.1 Supervoxels-based region growing 

In this paper, for different objects in the urban scene, two 
scales of point clusters are defined, namely, supervoxels and 
planar point clusters. Supervoxel is compact point clusters that 
provide a more natural and approximate representation of 
points. It preserves well the boundaries which mean that the 
supervoxels of the different scale objects are more 
distinguishable. Large-scale planar point clusters are obtained 
by the region growing algorithm when using the supervoxels 
as the basic unit. Planar point clusters distinguish objects with 
a planar structure from other objects in the urban scene. 
 
2.1.1 Initial supervoxels segmentation. In this paper, the 
initial supervoxels are segmented by a heuristic algorithm 
BPSS proposed by (Lin et al.2018). This algorithm constructs 
an energy function (shown in Equation 1) which consists of a 
geometric difference term and a clusters number term to 
abstract the process of supervoxels segmentation. Supervoxels 
are obtained by using Fusion and Exchange algorithm (Lin et 
al.2018) to minimize the energy function. 
 
 

 (1) 

 
Where  represents the energy function. 

 is the geometric difference term, and 
 means if the point  is represented by .  is the 

geometric difference measure between  and . 
 is the cluster number term used to control the supervoxels 

resolution.  is the regular coefficient used to weigh the 
geometric difference term and the cluster number term.  
represents the number of supervoxels currently generated.  
represents the desired number of supervoxels according to the 
present resolution. 

2.1.2 Robust neighborhood of supervoxels. While after 
using the BPSS algorithm supervoxels cluster points that are 
homogeneous within the local neighbors, the limited size of 
individual supervoxel results in its inability to represent the 
large scale objects. Therefore, robust neighborhood is defined 
for each supervoxel to gain contextual information. In former 
research, such as VCCS (Papon et al., 2013) obtain the 
supervoxels neighborhoods based on the Octree, but fixed 
resolution voxelization cannot guarantee the effective 
detection of the density anisotropy scene (Li et al., 2021). In 
this paper, we first use the kd-tree to obtain supervoxels initial 
neighborhood, and then dynamically adjust the voxel 
resolution to optimize the initial neighborhood according to 
the density of the local region. The illustration of how to define 
the robust neighborhood for each supervoxel is shown in 
Figure 2. 
 
First, a sphere  is fitted to the supervoxel . The 
definition of the sphere center  and the radius  are shown 
in Equation 2. 
 

   (2) 

 
Where  represents the centroid point of the supervoxel . 

is the distance from  to the point  in the 
supervoxel .  is the furthest distance. 
 
The spatial indexing of the point cloud is built by the kd-tree. 
Then, we search the neighboring points of each point in the 
supervoxel  with the search radius of  to constitute the 
neighboring points set . If the 
nieghboring point in the  satisfies the assignment rule in 
Equation 3, the  relations between the supervoxel  
in which the neighboring point is located and the supervoxel 

 is established. 
 

  (3) 

 
The initial neighborhood of the supervoxels is obtained by 
iteratively performing the above operations on each 
supervoxel. There are both directly connected neighbors and 
not directly connected neighbors in the initial neighborhoods.  
 
As supervoxels maintain robust adjacency relations in 
voxelized 3D space (Stein et al., 2014), the supervoxel and its 
initial neighboring supervoxels are voxelized based on the 
local density. If neither of the voxels in the neighboring 
supervoxel is adjacent to the voxels in the target supervoxel, 
the two supervoxels are not directly connected and remove the  
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Figure 2. Illustration of how to define the robust nieghborhood. 

 
neighboring supervoxel from the target supervoxel 
neighborhood. 
 
2.1.3 Multi-resolution supervoxels generation. 
Conventional supervoxels segmentation algorithms including 
the BPSS method and VCCS method cannot effectively 
segment low-density point clouds regions and noise 
effectively, which will result in many small fragments. These 
small fragments containing few points seriously affect the 
region growing efficiency. To address the above problems, a 
multi-resolution suprvoxel generation algorithm is proposed. 
This algorithm consists of two parts: planar region detection 
and supervoxel merging. The purpose of using the above 
algorithm is to merge these small fragments into their 
neighboring planar supervoxels in the planar region. 
 
In the stage of planar region detection, the planarity is 
calculated firstly for each supervoxel. The planarity are then 
smoothed based on the supervoxels local context information 
by using a Gaussian filter. Subsequently, planar and scatter 
supervoxels are distinguished according to the rule in Equation 
4. 
 

  (4) 

 
Where  is the supervoxel planarity after smoothing.  
is largest supervoxel planarity after smoothing.  is the 
planarity control thresholds to control the planarity of the 
selected planar supervoxels. 
 
If the proportion of planar supervoxels is greater than 2/3 in 
the supervoxel neighborhood, the local region of the 
supervoxel is considered to be a planar region. The neighbor 
supervoxel that satisfies the assignment rule in Equation 5 will 
be merged into the supervoxel. 
 

  (5) 

 
Where the  is the density of the local region;  is the 
density of the neighbor supervoxel.The lower value of the    , 
the more likely the neighbor supervoxel  is a small fragment. 
Where  is the distance from the neighbor supervoxel to the 
fitting planed based on the supervoxel;  is the distance from 
the neighbor supervoxel to the fitting planed based on the 

region. The lower value of the  , the more likely the neighbor 
supervoxel and the supervoxel belong to the same object. 
 
Note the advantages of our planar region detection method 
over the method proposed in Dong et al., 2018. Our proposed 
method is more robust because our algorithm need only the 
planar feature without calculating other local geometric 
features. Meanwhile, the supervoxel spatial context 
information is used for planar region detection. The method of 
Dong et al., 2018 and the planar region detection method in 
this paper are shown in Figure 3.  

 
A comparison of the results before and after the multi-
resolution supervoxels generation algorithm is shown in 
Figure 4.  

 
Figure 4. Comparison of the results before and after the 

proposed algorithm. 
 

 
Figure 3. Comparison of the planar region detection 

algorithms. 
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2.2 Region growing for planar structures 

The supervoxels-based region growing algorithm groups the 
neighboring supervoxels with similar planar features into 
large-scale planar point clusters. The efficiency of the region 
growing is increased as the not directly connected neighbor 
supervoxels are removed from the supervoxels robust 
neighborhood. Meanwhile, the multi-scale point clusters 
returning from the supervoxels-based region growing also 
obtain the robust neighborhoods which are derived from the 
supervoxels robust neighborhoods. As the small scattery 
supervoxels are merged into the adjacent planarity supervoxels, 
the planar point clusters retuning from the supervoxels-based 
region growing are more complete. 
 
The strategies for choosing the seed, obtaining the robust 
neighborhood, terminating the growing are illustrated in the 
pseudo-code which is described in Algorithm 1. 
 

Algorithm 1: supervoxels-based region growing algorithm 
Data：Multi-Resolution supervoxels with robust 

neighborhood  , residual threshold  , 
angle threshold ; 

Result: a set of Multi-Scale Point Clusters 
  a neighborhoods set of the Multi-Scale 

Point Clusters  
Initialization: Point Clusters   , Pending 

SuperVoxel list  , Seed map  ; 
begin 

While  do 
Set current cluster  , current seed  , current 

nieghbors ; 
if visited  then 

continue; 
insert  into ; remove from ; 
for each supervoxel  do 

if visited  then 
insert  into ; 

else 
set visited; set ; 

if  &&  
insert  into ; 
remove  from ; 

insert  into ; 
Return ; 

 
2.3 Multi-scale point clusters feature extraction 

The individual point contains only 3D spatial coordinate 
information. As the point clusters and their robust 
neighborhood are already obtained, it is necessary to fully use 
them to extract features. It is useful to use the point clusters 
spatial context information for the local geometric and 
structural feature extraction. The local 3D shape features such 
as linearity, planarity, and scattering can describe the 
geometric and structural features in the local area of the point 
cluster well. The point clusters at different scales are used to 
represent different objects in complex urban scenes. The point 
clusters of roofs and facades are a whole plane with regular 
orientation, bigger size, and smooth surface. The point clusters 
of vegetation are discrete with miscellaneous orientation, 
smaller size, and rough surface. Therefore, using the 
orientation features, property features, and surface features of 
the multi-scale point clusters can highly represent the different 

objects in the urban scene. The height features are also 
introduced. 
 
In Table 1, we show the definition of each feature introduced 
in this paper. 
 
2.4 Classification  

To test the effectiveness of the point clouds segmentation 
method proposed in this paper in urban scene point clouds 
classification. A random forest(RF) classifier is trained to 
distinguish point clusters with different labels. The random 
forest classifier is chosen because it consists of multiple layers 
of decision trees that are created from independent random 
vectors and these are obtained by randomly sampling the 
feature input vectors. This has a greater advantage when 
dealing with data with multi-dimensional attributes, not only 
in terms of faster learning but also in terms of producing more 
reliable classification results. 
 
 

3.  EXPERIMENTS 

 
To prove the effectiveness of the point clouds segmentation 
method proposed in this paper, e also segmented the point 
clouds into point clusters using the point-based region growing 
algorithms and the voxel-based region growing algorithms for 
classification. The region growing algorithm parameters of the 
three methods are the same. The classifier and features used 
for classification are also the same. 
 
3.1 Test datasets 

Lidar point clouds acquisition via Unmanned Aerial 
Vehicle(UAV) is becoming a trend. The performance of our 
method is evaluated on the UAV lidar point cloud of 
Hessigheim Germany (Koelle et al., 2021) which was acquired 
by the sensor setup consisting of a RIEGL VUX-1LR scanner 
and two oblique Sony Alpha 6000 cameras integrated on a 
RIEGL Ricopter platform. The dataset features  
a mean point density of about 800 pts/ . Compare to other 
Airborne Laser Scanning(ALS) point clouds, this point cloud 
has a higher resolution. This enables the identification of fine-
grained structures. 
 
Two test sites with different scenes are selected in the 
benchmark. They are shown in Figure 5. Area 1 is situated on 
the main road, with buildings evenly spaced on both sides of 
the main road and has a topographic drop. Area 2 is a 
residential neighborhood with compact, small houses with 
gable floors. 
 
All point clouds in the two areas consist of 21,269,430 points. 
There are eleven object classes were labeled in the benchmark: 
low vegetation, impervious surface, vehicle, urban furniture, 
roof, façade, shrub, tree, soil/gravel, vertical surface, chimney. 
In this paper, only the 3D coordinates of point clouds are 
considered, so we group geometrically similar objects into one 
class. We distinguished the following four object classes: 
ground(impervious surface, soil/gravel), building(roof, façade, 
chimney), vegetation(low vegetation, shrub, tree), and, 
other(vehicle, urban furniture, vertical surface). All 
experiments are performed using C++ and run on an Intel i7-
10700 CPU @ 2.90GHZ and with 64.0GB RAM.  
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Feature Definition Category 

Linearity  

Local 3D shape features 

Planarity  

Scattering  

Anisotropy  

Eigenentropy  

Normal  Oritention features Verticality  
Cluster Size  property feature 

Distance to plane  
Surface features 

Dispersion  

Elevation  

Height features 
Height bleow  

Height above  

Vertical range  

Table 1.  List of features. 

 

 
Figure 5. Test sites of Hessigheim benchmark. 

 
3.2 Accuracy evaluation metrics  

The classification results are quantitatively evaluated. The 
number of True Positives (TP), the number of False Positives 
(FP), and the number of False Negatives (FN) are calculated 
for each class . We use precision (Equation 6), recall 
(Equation 7), -score (Equation 8), Intersection over UNIO 
(IoU) (Equation 9) for each class.  
We also show mean accuracy, mean -score, and mean IoU 
over the whole test areas. 
 

 
   (6) 
 
   (7) 
 

   (8) 
 
  (9) 
 
3.3 Experimental result 

Quantitative classification results of three methods in the two 
test datasets are shown in Table 2. Our mean recall is 0.822 for 
Area 1 and 0.833 for Area 2 while the mean precision is 0.933 
and 0.929. Meanwhile, the classification of objects (Ground, 
Building) with planarity has achieved a good result. Most 
evaluation values of different classes are higher than the other 
methods. We attribute the result primarily to the reasons that 
we segmented the different classes of objects in the urban 
scene into appropriate scale point clusters, making the feature 
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more responsive to their characteristics. The overall view of 
the segmentation and classification results is shown in Figure  
6. In Figure 7, we can find the classification errors due to the 
segmentation errors in the other two methods. Due to the 
innovative multi-resolution supervoxels with robust 

neighborhood segmentation algorithm proposed in this paper, 
these segmentation errors are successfully avoided. 
 
 

Area 1 
Method Point-based Voxel-based Our method 
Class Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU 

Ground 0.916 0.909 0.912 0.838 0.967 0.791 0.870 0.771 0.968 0.906 0.936 0.880 

Building 0.919 0.841 0.878 0.783 0.877 0.925 0.901 0.820 0.953 0.924 0.939 0.885 

Vegetation 0.834 0.958 0.892 0.805 0.881 0.970 0.923 0.858 0.865 0.981 0.919 0.851 

Other 0.644 0.171 0.271 0.156 0.222 0.453 0.298 0.175 0.627 0.477 0.542 0.371 

MEAN 0.886 0.719 0.738 0.646 0.872 0.784 0.748 0.656 0.922 0.822 0.834 0.747 

Area 2 
Method Point-based Voxel-based Our method 
Class Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU 

Ground 0.929 0.905 0.917 0.847 0.944 0.793 0.826 0.703 0.943 0.959 0.950 0.906 

Building 0.945 0.929 0.937 0.882 0.956 0.932 0.944 0.894 0.967 0.958 0.962 0.928 

Vegetation 0.571 0.803 0.667 0.501 0.442 0.893 0.592 0.420 0.739 0.870 0.799 0.665 

Other 0.584 0.277 0.376 0.231 0.569 0.483 0.523 0.354 0.768 0.427 0.549 0.378 

MEAN 0.884 0.728 0.724 0.615 0.844 0.775 0.721 0.593 0.929 0.803 0.815 0.719 

Table 2. Quantitative analysis of classification results. 

 

 
Figure 6. Segmentation results (left) and Classification results (right) in Area 1 and Area 2. 

 

 
Figure 7. Comparison of segmentation details and classification results. (a) (d) are the results of point-based methods. (b) (e) are 

the results of voxel-based methods. (c) (f) are the results of voxel-based methods. 
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4. CONCLUSION 

 
We have proposed an efficient segmentation method for point-
clusters-based classification in urban scenes and evaluated the 
performance on several datasets. A multi-resolution 
supervoxels with robust neighborhood based region growing 
algorithm is proposed in this paper. As a contribution, different 
classes of urban objects can be segmented into appropriate 
scales point clusters by our method. This makes it possible to 
extract rich features in point clusters which is meaningful for 
classification. Through experiments on the different datasets, 
we find that the problem of inhomogeneous density and lack 
of topological information of point clouds leading to 
segmentation errors and further classification errors is solved 
by using our method. This is mainly due to our innovative 
acquisition of multi-resolution supervoxels with the robust 
neighborhood to obtain more spatial contextual information. 
However, the method proposed in this paper remains to be 
improved. For segmentation, the initial supervoxel resolution 
needs to be set manually, and there are too many parameters 
required in the region growing process. This can result in some 
complex planar structures such as building façades with 
window frames not being segmented in their entirety. We think 
that A CRF can be applied to segmentation to solve this 
problem. For classification, the feature extraction of point 
clusters still needs to be investigated. 
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