
AUTOMATIC IDENTIFICATION OF MINERALS IN IMAGES OF POLISHED SECTIONS
(Version March 2021)

A. V. Khvostikov1 ∗, D. M. Korshunov2, A. S. Krylov1, M. A. Boguslavskiy2

1 Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
khvostikov@cs.msu.ru, kryl@cs.msu.ru

2 Faculty of Geology, Lomonosov Moscow State University, Moscow, Russia
Dmit0korsh@gmail.com, mikhail@geol.msu.ru

Commission XX, WG XX/YY

KEY WORDS: Image Segmentation, Deep Learning, Geology, Mineral Identification, Polished Sections, Ore.

ABSTRACT:

Automatic identification of minerals in images of polished section is highly demanded in exploratory geology as it can provide a
significant reduction in time spent in the study of ores and eliminate the factor of misdiagnosis of minerals. The development of
algorithms for automatic analysis of images of polished sections makes it possible to create of a universal tool for comparing ores
from different deposits, which is also much in demand. The main contribution of this paper can be summed up in three parts: i)
creation of LumenStone dataset (https://imaging.cs.msu.ru/en/research/geology/lumenstone) which unites high-quality
geological images of different mineral associations and provides pixel-level semantic segmentation masks, ii) development of CNN-
based neural network for automatic identification of minerals in images of polished sections, iii) implementation of software tool
with graphical user interface that can be used by expert geologists to perform an automatic analysis of polished sections images.

1. INTRODUCTION

Practical mineragraphy is a time-consuming discipline that re-
quires, on the one hand, a highly qualified specialist, and on the
other, a large number of analyzes. Creation of a mechanism for
automated identification and counting of minerals in samples of
geological ores has two main goals:

• elimination of the human factor in the analysis of deposits
at the stage of prospecting and operational exploration and
a significant reduction in the time spent on prospecting and
exploration of deposits;

• the formation of an extensive database of ore-
mineralogical features, reduced to a single standard,
which will allow statistically analyzing large volumes of
geological data in order to conduct ore-formation analysis
and metallogenic constructions.

The second aspect of the application of such a mechanism is the
description of the structural and textural relationships between
ore minerals, which play an important role in the formation of
the beneficiation chain, where it is important to clearly under-
stand how the ore and host minerals are related to each other
and how they can be separated.

Attempts to create software for diagnostics of ore minerals
based on the results of analysis of micrographs have been un-
dertaken for a long time. The first pioneering works appeared in
the second half of the 90s of the XX century (Marschallinger,
1997). All major existing software solutions for determining
minerals from photographs of polished sections can be divided
into two types:

1. Using reflection intensity together with color characterist-
ics expressed in RGB or LAB color space (López-Benito
et al., 2020);
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2. using statistical principles for determining minerals in a
specific sample (Berrezueta et al., 2016), (Köse et al.,
2012).

Although both type of methods can deal with some problems of
mineral identification, each of them has a number of signific-
ant disadvantages. The method based on color and reflectivity
cannot detect all minerals, since there are “overlapping” or ex-
tremely similar pairs of minerals, e.g. pyrite-marcasite, pyrite-
arsenopyrite, covelline-chalcopyrite, etc. The methods, that are
based on statistical principles, can only work within a certain
sample of minerals and require a new calibration taking into ac-
count chemical impurities in minerals for each new geological
object.

One of the most effective ways to overcome this shortcom-
ing and to achieve the desired result is applying convolutional
neural networks, as it is still possible to use single algorithm
when working with different mineral associations.

2. USED DATA

In order to create and compare different algorithms for auto-
matic mineral identification in images of polished sections we
created a LumenStone dataset (https://imaging.cs.msu.
ru/en/research/geology/lumenstone), which provides
pixel-level segmentation masks for images containing several
minerals. LumenStone dataset consists of several subsets that
correspond to different mineral associations.

The material used was collected from 30 ore deposits of the
CIS. Prepared samples of polished sections were analyzed us-
ing a Carl Zeiss AxioScope 40 microscope, photographing was
carried out using a Canon Powershot G10. Samples represent
the main ore associations and are categorized by deposit gen-
esis. All images are taken under x100 magnification and have
resolution of 3396× 2547.
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Mineral (class) S1 S2

background (BG) 34.4% 52.0%
sphalerite (Sph) 25.34%
pyrite/marcasite (Py/Mrc) 24.27%
galena (Gl) 5.7%
bornite (Brt) 4.3%
tenantite-tetrahedrite group (Tnt/Ttr) 3.9%
chalcopyrite (Ccp) 2.2% 14.6%
pyrrhotite (Po) 23.6%
pentlandite (Pn) 7.8%
magnetite (Mag) 2.1%

Table 1. Percentage of pixels per class in LumenStone dataset.

S1 subset of LumenStone consists of 59 train and 16 test im-
ages corresponding to the association of hydrothermal ore of
Berezovskoe deposit. Together with background this subset
contains 7 classes of minerals: background (BG), sphalerite
(Sph), pyrite/marcasite (Py/Mrc), galena (Gl), bornite (Brt),
tenantite-tetrahedrite group (Tnt/Ttr) and chalcopyrite (Ccp).

S2 subset of LumenStone consists of 23 train and 6 test images
corresponding to association of Layered Ultramafic Deposits
(Deposits of the Norilsk Group). Together with background
this subset contains 5 classes of minerals: background (BG),
pyrrhotite (Po), chalcopyrite (Ccp), pentlandite (Pn) and mag-
netite (Mag). Although S2 subset was collected, annotated and
published, in this work we do not use it for training the pro-
posed CNN model due to limited resources.

One of the emerging problems in geological image segmenta-
tion is data imbalance. Some minerals are found in nature much
less often than others. The percentage of minerals in S1 and S2
subsets of LumenStone in pixels is shown in Table 1.

It is worth noting that despite the amount of minerals analyzed
by an expert geologist is much bigger, in this work we consider
only 10 classes (ores) of S1 and S2 subsets of LumenStone,
since collecting a large dataset of polished sections with manual
annotation of all used minerals is unavailable and too resource
intensive.

3. PROPOSED CNN

In this work we use a convolutional neural network based on
a popular U-Net architecture (Ronneberger et al., 2015) with
batch normalization layers (Ioffe and Szegedy, 2015) to per-
form semantic segmentation of polished sections images. To
increase the learning speed and overcome the problem of van-
ishing gradients we add residual connections inside convolution
blocks similar to (Zhang et al., 2018). The difference is in the
order of normalization and activation layers.

Figure 1 demonstrates the arhitecture of the used ConvRes
block, which is the fundemantal building block for the proposed
5-layered CNN architecture (Figure 2). In order to match the
number of channel dimensions of inputs for summation layer in
ConvRes block we use 1× 1 convolution with number of filters
n corresponding to the second convolution layer in the block.
The encoder way of the used architecture (Figure 2) doubles
the number of channels for each subsequent ConvRes block and
halves it in the decoder part of the network.

As it was already mentioned, one of the main emerging prob-
lems in geological image segmentation is data imbalance. For

Figure 1. ConvRes block used in the proposed architecture.
Conv(t× t, n) stands for convolution with t× t kernel and n
filters, ReLU - activation with rectifier linear unit, BN - batch

normalization.

example, as it can be seen from Table 1, in LumenStone
S1 the number of pixels, corresponding to chalcopyrite (Ccp)
is 17 times smaller than number of pixels, corresponding to
background (BG). Using conventional patch-based approaches
while training a neural network with unbalanced data will lead
to poor results.

In order do overcome this problem of data imbalance we use
a modified version of the special data balancing method pro-
posed earlier in (Kochkarev et al., 2020) while training CNN.
In particular in the step of creation the patch probability map
the function of distance to the nearest class was replaced by
the area of certain class in patch, so that the probability map is
calculated as:

P (x, y|c) =


y+s−1∑
j=y

x+s−1∑
i=x

1(M(i, j) = c),
0 ≤ x < W − s
0 ≤ y < H − s,

0, otherwise,

(1)

where M is the semantic mask of image, H , W are the height
and the width of the image, s is the size of patch, c is the target
class probability map is build for.

The normalized probability map, which is used to generate
patches is defined as:

P̃ (x, y|c) = P (x, y|c)/
H−1∑
j=0

W−1∑
i=0

P (x, y|c). (2)

The step of choosing class for patch generation was also up-
dated by using the weighted choice function of all present
classes instead of choosing the minority class at each step.
Wherein the weights are calculated as the total number of pixels
for each class accumulated in patch generator at the current mo-
ment.
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Figure 2. Architecture of the proposed neural network.
ConvRes(m) stands for ConvRes block with m filters, MaxPool
(2× 2) for max pooling layer with strides (2, 2), concat stands
for depth-wise concatenation layer, upsample stands for 2 times
upsample of tensor using transposed convolution, Conv(1× 1,

k) for 1× 1 convolution with k filters, where k is the number of
output channels (classes).

The first modification improves the performance of calculat-
ing probability maps for each image, while the second one im-
proves the variance of classes attending on sequentially gener-
ated patches, which leads to better training with mini-batches.

The described algorithm allows us to create patch generator,
which generates patches of needed size from the train set of
images with balanced class distribution on the fly while training
segmentation CNN.

The unpleasant feature of this data balancing algorithm is the
necessity of keeping all dataset, including images and masks,
as well as calculated patch probability maps in memory, which
can be rather costly in the case of large datasets. Although, this
problem can be slightly eliminated using caching techniques
and loading the dataset by parts, we do not use it in the current
work.

4. IMPLEMENTATION DETAILS AND RESULTS

Applying the described above data balancing method while
training the model allowed to smooth data balance across
classes and increase the recognition accuracy of rarely present
minerals. We also used simple data augmentation of flipping
and rotation of patches while training CNN.

The used CNN model was implemented using Python 3 pro-
gramming language and open-source software library for ma-
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Figure 3. Per-class IoU metric for test subset of LumenStone S1
for all minerals (classes) over epoch.

0 5 10 15 20
epoch

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900
va

lu
e

total accuracy over epoch

Figure 4. Total value of pixel identification accuracy for test
subset of LumenStone S1 over epoch.

chine learning Tensorflow 2 (Abadi et al., 2016). The training
of the model was performed on a personal computer with Intel
Core i7-6700HQ, 16GB RAM and Nvidia GTX 960m with 2
GB of video memory.

The model was trained on 59 images of S1 subset of Lumen-
Stone dataset for 26 epochs with Adam optimizer, initial learn-
ing rate value of 10−3 and automatic 10 times decrease of learn-
ing rate on plateau. We chose the starting number of filters
n = 8 for the proposed CNN model due to the limited hard-
ware resources. The input data for each iteration of training
was a batch of 12 patches of 256 × 256 resolution, generated
from the training dataset using described above data balancing
algorithm. One epoch of training included 375 iterations. For
validation at the end of each epoch we used 30 batches of 12
patches extracted randomly from the training dataset. We used
intersection over union (IoU) as a loss function.

To evaluate the model we calculated the IoU value for each of
the classes, as well as the IoU value for all classes at once. The
achieved level of IoU on test subset of LumenStone S1 after
described above training of the proposed CNN model was 0.774
for background (BG), 0.593 for chalcopyrite (Ccp), 0.363 for
galena (Gl), 0.169 for bornite (Brt), 0.864 for pyrite/marcasite
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(Py/Mrc), 0.663 for sphalerite (Sph) and 0.200 for tenantite-
tetrahedrite group (Tnt/Ttr). The achieved IoU for all classes
was 0.813. The plot of IoU values on test subset of LumenStone
S1 for each class over epoch is shown in Figure 3.

After each epoch of training we also calculated the overall ac-
curacy on the test subset of LumenStone S1, which is defined
as the ratio of correctly identified pixel to the total number of
pixels in test set. We achieved the level of 0.892 for overall
accuracy of recognition. The plot of overall accuracy on test
subset over epoch is shown in Figure 4.

The result of prediction on one of the images of polished sec-
tions from test subset of LumenStone S1 is shown in Figure.5.
In error map green color corresponds to the correctly identified
pixels and red color corresponds to the misidentified pixels.

As it can be seen from the plots and the final achieved values
of IoU and overall accuracy, the minority classes such as galena
(Gl), bornite (Brt) and tenantite-tetrahedrite group (Tnt/Ttr) are
identified much worse than the other classes. This is quite ex-
pected since even though the proposed data balancing algorithm
enhances the segmentation results (Kochkarev et al., 2020), yet
it is just another oversampling technique that is not able to gen-
erate fundamentally new image patches.

The only exception to the described tendency is chalcopyrite
mineral (Ccp), which is the most minority class in LumenStone
S1 (2.2% of all pixels), but the corresponding IoU value of
0.663 is rather big. This can be explained with the fact that
this mineral substantially differs from all other minerals in Lu-
menStone S1 in color aspect and it is harder to confuse it with
other minerals from dataset.

It also can be noticed (Figure 5), that a lot of errors in prediction
happen near the border between neighboring minerals. This can
be explained as color distortions at the boundaries of minerals
are of a systemic nature. The top border is skewed in green, the
bottom in orange. This is caused by the peculiarity of the cam-
era installation. Due to the complex design of the microscope,
it is impossible to direct the camera perfectly perpendicular to
the sample surface and the camera has a tilt of 89.99 degrees.
The manual annotation in these boundary areas is not stable,
thus the prediction can differ from the ground-truth annotation.

5. DEVELOPED SOFTWARE TOOL

For the convenience of using the developed techniques by ex-
pert geologists, we implemented a software tool for testing and
results’ visualization of the proposed CNN-based method of
mineral identification. This tool is cross-platform and has a
graphical user interface and can be run on a PC or laptop. It
consists of two parts: the front-end part, which is implemented
with JS and Electron framework, and the back-end part, which
is implemented in Python 3. While loading the front-end part
the back-end server is run as a child process and the communic-
ation between front-end and back-end parts is organized using
IO streams.

The back-end part is responsible for server tasks, such as load-
ing CNN model, performing predictions, splitting images into
patches and uniting them back. Another task that is also del-
egated to back-end part is splitting the semantic masks into in-
stance masks. This is done for both ground-truth masks and
predictions and allows to get information about each instance

Figure 5. The result on one of the images from test subset of
LumenStone S1. Up to down: source image, ground-truth mask,

predicted mask, error visualization.
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Figure 6. Graphical user interface of the developed tool for automatic identification of minerals in images of polished sections.

of mineral on the image, which is very useful for practical tasks
of geology.

The front-end part is responsible for loading and rendering
the source images of polished sections, visualizing colorized
human-friendly ground-truth masks, visualize the predictions
of CNN model as well as visualize error maps, if the ground-
truth image for the prediction exist.

Besides that the developed tool allows user to see the mineral
distribution statistics both for the whole dataset and a single
image as well as display statistics of a single mineral instance
on a mouse hover.

The screenshot of the developed software tool is shown in Fig-
ure 6.

6. CONCLUSION

In this paper we for the first time present the LumenStone data-
set - a dataset of minerals in images of polished section with
pixel-level semantic annotation.

We also propose a CNN model for automatic identification of
minerals in images of polished sections, which is trained with
the help of special oversampling data balancing patch gener-
ator. The developed software tool with graphical user interface
that can be used by expert geologists to perform an automatic
analysis of polished sections images.

The achieved level of overall accuracy of mineral identification
is 0.892 for the test subset of LumenStone S1. It should be
noted that the results of mineral identification obtained in this
paper are preliminary and are planned to be improved in the
future.

Further improvements of current work will be focused on the
improving the accuracy of recognition of minority minerals by
applying class-weighted loss function as well as enlarging the
dataset of polished sections of ores and increasing the number
of supported minerals for automatic identification.
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