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ABSTRACT:

Part-based object representation and part matching problem often appear in various areas of data analysis. A special case of

particular interest is when parts are not fully separated, but in relations with each other. The natural way to model such objects

are graphs, and part matching problem becomes graph matching problem. Over the years, many methods to solve graph matching

problems have been proposed, but it remains relevant due to its complexity. We propose a novel approach to solving graph matching

problem based on learning distance metric on graph vertices. We empirically demonstrate that our method outperforms traditional

methods based on solving quadratic assignment problem. We also provide an theoretical estimation of computational complexity

of proposed method.

1. INTRODUCTION

Part-based object representation is often used in areas of image

analysis and computer vision, and has applications in image de-

tection and classification, object tracking, shape matching and

more. Under part based approach the object is viewed as a set

of meaningful primitive parts. One naturally arising problem

for such representation is part matching, which is finding a cor-

respondence between parts of two different objects.

Often, a relation between the parts within the object can be es-

tablished. Such objects can be naturally modeled by graphs,

with parts corresponding to vertices and relations correspond-

ing to edges. In this case, part matching problem becomes

graph matching problem, which is establishing correspondences

between vertices with respect to edges. This problem, however,

has been proven to be NP-hard. Over the years, many meth-

ods to solve this problem have beed proposed, but due to its

complexity it remains highly relevant.

In this work, we concern ourselves with graph matching prob-

lem applied to matching objects on photos. We propose a novel

graph matching method based on deep distance metric learn-

ing on graph vertices. We show empirically that our method

achieves higher matching accuracy than graph matching meth-

ods based on traditional techniques. Moreover, it performs sig-

nificantly better than these methods when actual match between

graphs is low relative to their number of vertices.

The rest of this paper is structured as follows. In Section 2 we

provide an overview of modern graph matching methods and

discuss related works in the field. In Section 3 we describe our

method in detail and provide theoretical estimates of computa-

tional complexity. In Section 4 we describe our experimental

setup and provide empirical results.

2. RELATED WORK

In broad terms, graph matching problem for graphs G1 and

G2 is finding some binary relation r between their vertices:

∗ Corresponding author

r ⊆ V1 × V2 (Conte et al., 2004). Often, the relation r is

required to be mapping r : V1 → V2 or even bijection. A

possible additional constraint is for the mapping r to preserve

edges. This special case is referred to as exact graph match-

ing problem. However, edge preservation requirement usually

contradicts high object variability that is common in the field of

data analysis.

An attributed graph (Tsai and Fu, 1979) is an extension of the

traditional notion of the graph. An attributed graph is a tuple

< V,E, µ, ε >, where µ = {µ1, . . . , µ|V |} are vertex attributes

and ε = {ε1, . . . , ε|E|} are edge attributes. This is particularly

useful in data analysis, as vertex and edge attributes represent

features extracted from object parts and relations between them.

In this work, both vertex and edge attributes are numerical vec-

tors.

Typically, inexact graph matching problem is formally defined

as a discrete optimization problem of minimizing cost func-

tion (Yan et al., 2016). Under this approach, a pair of vertices

i ∈ V1 and i′ ∈ V2 are assigned unary matching cost cii′ and

two pairs of vertices (i, i′), (j, j′) ∈ V1 × V2 are assigned pair-

wise matching cost dii′,jj′ based on vertex and edge attributes

and graph edge structure. The matching problem is then re-

duced to the binary quadratic programming problem (BQPP):

∑

i,i′

cii′ri,i′ +
∑

(i,i′),(j,j′)

dii′,jj′ri,i′rj,j′ → min
r

, (1)

where r is a binary matrix of shape |V1| × |V2|
r is constrained by matching requirements

Depending on matching requirements, various constraints can

be used; if match is required to be a mapping, ∀i
∑

i′
ri,i′ = 1

and ∀i′
∑

i
ri,i′ ≤ 1, and if match is required to be a bijection,

r is a permutation matrix. In these cases, the cost function can

be rewritten as
∑

i
cir(i) +

∑

i,j
dir(i),jr(j), and the BQPP be-

comes a quadratic assignment problem (QAP, (Lawler, 1963)).

It can be shown that many popular methods of graph match-

ing based on cost optimization may be reduced to the BQPP;
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for instance, the reduction for graph edit distance is provided in

(Neuhaus and Bunke, 2007).

As QAP itself is NP-hard, multiple techniques for finding an ap-

proximate solution have been proposed over the years, includ-

ing the ones based on finding primary eigenvector of cost mat-

rix (Leordeanu and Hebert, 2005, Cour et al., 2006), projection

onto convex sets-based method (van Wyk and van Wyk, 2004),

modified gradient descent methods that use problem specifics to

obtain better approximation of solution (Gold and Rangarajan,

1996, Leordeanu et al., 2009), and an interior point-like optim-

ization procedure (Zhou and de la Torre, 2012). Typically, these

techniques follow the same pattern:

1. approximating the original discrete problem with continu-

ous one;

2. solving the continuous problem approximately;

3. performing some discretization procedure over the con-

tinuous solution.

To the best of our knowledge, machine learning methods in re-

lation to graph matching have only been employed to calculate

matching costs cii′ and dii′,jj′ as a function of graphs (Caetano

et al., 2009, Leordeanu et al., 2012, Zanfir and Sminchisescu,

2018, Nowak et al., 2018). In most cases, matching costs are

treated as expert knowledge.

To sum up, the graph matching pipeline in most cases is the

following:

1. for both objects a domain-specific feature extraction method

is employed to provide attributed graphs;

2. from the graphs, a QAP is constructed;

3. the QAP is solved approximately, and the matching is pro-

duced.

In this pipeline, machine learning methods are typically used

to train feature extraction step and potentially QAP construc-

tion step. The paper (Zanfir and Sminchisescu, 2018) in par-

ticular is very representative. The authors use deep learning-

based feature extraction method to convert images to attributed

graphs. Then two attributed graphs are converted to QAP. The

key feature of this approach is that feature extraction, conver-

sion and solution of QAP allow for joint back-propagation, so

feature extraction and conversion steps may be trained. We

use an extended version of the method provided in (Zanfir and

Sminchisescu, 2018) as our baseline competitor.

3. PROPOSED GRAPH MATCHING MODEL

The obvious drawback of QAP-based approach to graph match-

ing is high computational intensiveness inherent to it, as pair-

wise costs dii′,jj′ form a 4-dimensional tensor with the size

|V1|
2 · |V2|

2. As such, we suggest a different approach that does

not rely on solving QAP.

We propose a pipeline for graph matching based on siamese

networks (Bromley et al., 1993) and distance metric learning

between graph vertices. Under this approach, two graphs are

processed in parallel and independently, their intermediate rep-

resentations are produced, and matching is synthesized from

these representations. The model can be divided in 3 consec-

utive parts: graph construction, graph processing and matching

synthesis.

3.1 Graph Construction

Graph construction methods are domain-specific. In this work,

we use a set of images with already specified keypoints with

known coordinates, with every image transformed into a graph.

Graph vertices correspond to keypoints of the image. We em-

ploy a pre-trained convolutional neural network to produce a

feature map for the image, and use the values from that feature

map taken at keypoints as vertex features. Graph edges cor-

respond to the edges of Delaunay triangulation of keypoint set,

with edge length used as edge attribute. The pipeline for attrib-

uted graph construction from images is presented on Fig. 1.

Image
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Map

Coordinates
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Graph
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Figure 1. Flowchart of graph construction process used in the

experiments.

3.2 Graph Processing

Now we observe two attributed graphs constructed from ob-

jects. We propose a machine learning model that learns to pro-

duce a matching between object graphs by learning distance

metric on graph vertices. The model can be divided into the

following main stages:

1. embedding stage that, given attributed graphs, constructs a

new representation for each vertex and edge using provided

graph;

2. similarity computation stage that produces pairwise sim-

ilarity matrix between components from these representa-

tions.

For embedding stage, we propose graph convolutional networks,

and for similarity computation stage, we propose metric learn-

ing on vertices. The pipeline is presented on Fig. 2.
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Figure 2. Flowchart of processing a pair of graphs to produce

similarity scores (distance metrics) between vertices.

On the embedding stage, both graphs are processed independ-

ently and in parallel using the same model. To obtain second-

ary representations of the vertices, we employ a graph convo-

lutional network (GCN) (Kipf and Welling, 2019), also known
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as message passing neural network. Under this approach, each

layer of the network calculates new features for graph vertex us-

ing both features of the vertex itself and its neighbors. Conven-

tional GCN does not make use of edge attributes; we, however,

propose an extended version that also incorporates that inform-

ation. In this model, each layer accepts an attributed directed

graph G =< V,E, µ, ε > and recalculates vertex and edge at-

tributes by formulas:

1. vertex attribute transformation:

µ′
k = σv

(

Wvselfµk + µin
k + µout

k + bv
)

(2)

µin
k = 1

|Nin(k)|

∑

i∈Nin(k)
(Wvinµi +Weinεik)

µout
k = 1

|Nout(k)|

∑

i∈Nout(k)
(Wvoutµi +Weoutεki)

2. edge attribute transformation:

ε′ij = σe (Weselfεij +Wvfromµi +Wvtoµj + be) (3)

where µk and µ′
k are input and output vectors of features for

vertex k ∈ V respectively, εij and ε′ij are input and output

vectors of features for edge (i, j) ∈ E respectively, Nin(k),
Nout(k) are neighbors of vertex k that have an edge going from

them to k and to them from k respectively, W and b denote

trained model parameters, σ denotes some activation function.

If Nin(k) or Nout(k) are empty, the corresponding member

simply is not computed; that means that for an isolated vertex,

the layer is identical to the dense layer, and if the graph has no

edges at all (is simply a set of vertices), GCN is equivalent to

applying MLP to each component. The purpose of this part is

to produce representations for vertices to match; therefore, we

discard the edge features in the end.

As distance metric between vertices of graphs G1 and G2, we

suggest using conventional distance between vertex embeddings.

We use Mahalanobis metric, as is typically learned in contem-

porary metric learning problems (Bellet et al., 2013). To that

end, we simply apply a linear transformation to vertex repres-

entations for both graphs and calculate pairwise Euclidean dis-

tance. The result is numeric matrix D of shape |V1| × |V2| of

pairwise distances between graph vertices.

3.3 Matching Synthesis

Matching synthesis stage takes pairwise distance matrix and

produces the binary matrix R, obtained as binarization of mat-

rix D. We use a simple threshold rule: if the distance is less

than a threshold, the vertices match, if the distance is greater,

they do not. Matching stage is only used to produce matching

itself, and is not used during learning process.

3.4 Model Learning

The nature of our method allows us to combine embedding

stage and similarity computation stage into single pipeline that

allows for backpropagation. It should be noted that in our par-

ticular case graph feature extractor based on convolutional neural

network can be included into the pipeline as well, allowing for

fine-tuning feature selection.

Training set consists of pairs of objects. Each pair has an as-

sociated binary matrix R that represents actual target relation

between the parts. For each object we construct a directed at-

tributed graph of parts as explained in 3.1.

For a pair of graphs from the training set, we perform for-

ward pass up to the distance matrix D. As the surrogate loss

function, we suggest a MSE-inspired loss L(R,D) = ||R −
exp(−D2)||2F /(|V1| · |V2|). This finishes the model definition.

3.5 Computational Efficiency

We stress here that our model differs dramatically from a tradi-

tional QAP-based method. During matching itself, we do not

deal with pairs of pairs of vertices and their associated 4-D cost

tensor dii′,jj′ . In fact, we discard edge attributes and all edge

information after producing vertex representations. We expect

this fact to positively affect the computational efficiency of our

method. Here, we discuss the matter of computational com-

plexity of our model.

Suppose we have two graphs Gt =< Vt, Et, µ
t, εt >, t = 1, 2.

Each graph Gt is defined by its adjacency matrix At, a binary

matrix of shape |Vt| × |Vt|, its vertex features matrix µt, a con-

tinuous matrix of shape m× |Vt|, and its edge features matrix

εt, a continuous matrix of shape n× |Et|. From these, we can

calculate the following auxiliary matrices:

1. Gt,Ht — incidence matrices, binary matrices of shape

|Vt| × |Et|: if edge e ∈ Et begins in vertex i ∈ Vt and

ends in j ∈ Vt, then (Gt)ie = 1, (Ht)je = 1, otherwise

it’s 0. These matrices are hugely sparse, with only one 1
in each column. They can be obtined from At in O(|Vt|

2),
and GtH

T
t = At. We note that our baseline compet-

itor (Zanfir and Sminchisescu, 2018) makes use of these

matrices as well, as inspired by (Zhou and de la Torre,

2012).

2. ct = ( 1
∑

i
(At)ij

, j = 1, . . . , |Vt|), rt = ( 1
∑

j
(At)ij

, j =

1, . . . , |Vt|) — inverse column and row rates of adjacency

matrix. If one of the sums in denominator is 0, the respect-

ive value is considered 0.

We will also denote [x] a diagonal matrix with vector x on its

main diagonal.

Let us investigate the computational complexity of the forward

pass of GCC vertex layer 2:

1. Wvselfµk in matrix form can be computed as Wvselfµ
t,

and its complexity is O(|Vt|) (we consider all feature di-

mensionalities constant);

2. 1
|Nin(k)|

∑

i∈Nin(k)
Wvinµi in matrix form can be com-

puted as Wvinµ
tAt[ct], and its complexity is O(|Vt|

2);

3. 1
|Nin(k)|

∑

i∈Nin(k)
Weinεik in matrix form can be com-

puted as Weinε
tHT

t [ct], with complexity O(|Et| · |Vt| +
|Vt|

2);

4. similarly to previous parts, µout
k in matrix form can be cal-

culated as Wvoutµ
tAT

t [rt] +Weoutε
tGT

t [rt], and its com-

plexity is O(|Et| · |Vt|+ |Vt|
2) as well;

5. complexity of other parts of 2 is negligible compared to

the ones above.
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Now, we investigate the computational complexity of the for-

ward pass of GCC edge layer 3:

1. Weselfεij in matrix form can be computed as Weselfε
t,

and its complexity is O(|Et|)

2. Wvfromµi + Wvtoµj in matrix form can be computed as

WvfromµtGt +Wvtoµ
tHt, and its complexity is O(|Et| ·

|Vt|).

3. complexity of other parts of 3 is negligible compared to

the ones above.

As each layer has same asymptotic complexity, the combined

complexity of embedding phase is O(|Et|·|Vt|+|Vt|
2). Finally,

the complexity of computing pairwise distances between vertex

representations is O(|V1| · |V2|).

Therefore, the total computational complexity of forward pass

of our model is O(|E1| · |V1| + |E2| · |V2| + |V1|
2 + |V2|

2 +
|V1| · |V2|). At worst, in case of fully connected graphs, |Et| =
O(|Vt|

2), and this becomes O(|V1|
3 + |V2|

3 + |V1| · |V2|). In

case of Delaunay triangulation, however, |Et| = O(|Vt|) (spe-

cifically, |Et| ≤ 3|Vt| − 6, and the same applies to any other

planar graph), and total complexity of forward pass is O(|V1|
2+

|V2|
2 + |V1| · |V2|), which is significantly better than O(|V1|

2 ·
|V2|

2) that is inherent to solving QAP. Additionally, less com-

plex forward pass is likely to result in less complex backwards

pass during model training, significantly reducing training time.

4. EXPERIMENTS

4.1 Dataset

To test our method, we apply it to matching points in images.

We use dataset CUB 200 2011 (Wah et al., 2011). The dataset

contains almost 12000 photographs of birds of different species

and in different poses. On each photo, no more than 15 key-

points are marked, each annotated with its type. There are 15

types of points in total, denoting different parts of the bird’s

body. In a photo, no two points have the same type.

For each image, the bounding box of a bird is provided in the

dataset. We use this information to normalize the images. We

cut out the bird from the image using bounding box information

and reshape it to the size of 224 × 224. The annotated point

coordinates are transformed accordingly.

The original dataset provides no graphs. We construct the graph

edges using Delaunay triangulation of keypoint set. For ver-

tex feature extraction, we use MobileNetV2 convolutional net-

work (Sandler et al., 2018). As our feature map, we use the

output of block 5 expand relu. Then, we use the elements

of the feature map in positions that correspond to the coordin-

ates of the keypoints as vertex features. This means the size of

vertex feature vectors in object graph is 192. We use Euclidean

distance between points as the only edge feature. We do not

fine-tune our feature extraction model.

The original dataset comes already split in non-overlapping train

and test subsets, almost 6000 images each. We make use of this

and select training and test pairs from respective sets. This en-

sures that images used for training are never used for testing,

and vice versa. Unlike paper (Zanfir and Sminchisescu, 2018),

we use arbitrary test pairs, so we can not expect that birds are

in similar poses in each pair to be tested.

The original dataset has no target relations. We assume in our

matching problem that same body parts on images match. If a

body part is visible on one image in a pair but not on other, it

does not have any match.

4.2 Models and Metrics

We consider 2 models: baseline model, based on (Zanfir and

Sminchisescu, 2018), and our model. Both models begin with

the same feature extraction step and embedding step. After that,

baseline model pipeline performs learning and approximately

solving QAP, and our model performing distance metric learn-

ing and fast matching.

Our baseline competitor is not identical to the one described

in (Zanfir and Sminchisescu, 2018). First, we use our own ver-

tex and edge features. Second, we extend the model by adding

the embedding like in our approach. This change, however,

is expected to actually make our baseline stronger because we

allow vertex and edge features to incorporate information from

the neighborhood, unlike in the original. Only when we get rep-

resentations for both vertices and features from GCN, we pro-

ceed with the pipeline from (Zanfir and Sminchisescu, 2018) to

construct and solve QAP. In this case, we do not discard edge

information. The baseline competitor still contains a large 4D

tensor in its pipeline.

For embedding step in both baseline and our model, we use a

GCN with of 4 layers with output dimensions of 128, 64, 32 and

16 for vertex features and 1 for edge features. As activation, we

use hyperbolic tangent for vertex features and ReLU for edge

features. We also apply a dense layer with linear activation,

square weight matrix and no bias to final vertex features. This

layer performs linear transform of vertex representations, which

is equivalent to learning Mahalanobis distance.

To compare our models, we use two performance measures:

• accuracy: Acc(R,M) =

∑

i∈V1 ,i′∈V2

[Rii′=Mii′ ]

|V1||V2|
;

• Jaccard measure: Jacc(R,M) = |R∩M|
|R∪M|

.

Here R (actual matching) and M (predicted matching) are inter-

preted as both binary matrices of size |V1|× |V2| and as subsets

of V1 × V2. Accuracy is a standard quality metric for graph

matching. We also decided to use Jaccard measure because

number of pairs in R is small compared to size of V1 × V2.

During the experiments, the model is trained on random pairs

of images drawn from training subset, and performance met-

rics are averaged over random pairs of images drawn from test

subset.

4.3 Results

We have trained both our model and our baseline competitor

on the same dataset and compared their average matching ac-

curacies and Jaccard measures. The results are provided in

Table 1. This shows that our model clearly outperforms the

competitor in general.

In addition, we have conducted the study of method robustness.

Namely, we wanted to know how the methods would behave

if actual matching is small, that is, when the objects have not

many parts in common. For that, we have recorded average

matching accuracies and Jaccard measures for various sizes of
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Model Acuracy Jaccard
Matching model 0.91 0.84
Baseline 0.87 o.64

Table 1. Testing results for matching methods under

consideration.

actual match from 6 to 13 (as the others sizes were too rare to

draw conclusions). The results are presented on Fig. 3 and 4.

It can clearly be seen that our matching model outperforms the

baseline for every size.
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Figure 3. Average matching accuracies for various sizes of

actual match
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Figure 4. Average Jaccard mesures for various sizes of actual

match

5. CONCLUSION

We have presented and examined a novel machine learning-

based approach to graph matching that abandons typical method

of solving a quadratic assignment problem and instead uses

a siamese graph convolutional network that perform distance

metric learning on graph vertices. We have demonstrated em-

pyrically that our approach outperforms traditional QAP-based

graph matching approache. We have also provided a theoret-

ical estimation of computational complexity of the approach,

showing that it under many circumstances less computationally

intensive than QAP-based ones.
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