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ABSTRACT:

Image restoration with regularization models is very popular in the image processing literature. Total variation (TV) is one of the 
important edge preserving regularization models used, however, to obtain optimal restoration results the regularization parameter 
needs to be set appropriately. We propose here a new parameter estimation approach for total variation based image restoration. 
By utilizing known noise levels we compute the regularization parameter by reducing the similarity between residual and noise 
variances. We use the split Bregman algorithm for the total variation along with this automatic parameter estimation step to obtain 
a very fast restoration scheme. Experimental results indicate the proposed parameter estimation obtained better denoised images 
and videos in terms of PSNR and SSIM measures and the computational overload is less compared with other approaches.

1. INTRODUCTION

Total variation (TV) regularization is introduced by Rudin et
al (Rudin et al., 1992) for obtaining edge preserving restora-
tions of noisy images. Due to its edge preserving property the
TV model is used widely in image processing and other related
areas (Prasath et al., 2015). If we let f : Ω ⊂ `2 → [0, 255] be
the (noisy) input image, |Ω| = m × n is the image domain
and size. Solving the following unconstrained minimization
provides an estimate of the latent image f = u+ε with additive
Gaussian noise ε of standard deviation σ (assumed known),

min
u
Eλ(u) = λTV (u) +

∑
1≤i,j≤M,N

(uij − fij)2, (1)

where TV (u) =
∑

1≤i,j≤m,n |(∇u)ij | is the discrete total vari-
ation with (∇u)ij = (ui+1,j − uij , ui,j+1 − uij)T , with zero
boundary conditions. The regularization parameter λ > 0 is
crucial in obtaining meaningful results and traditionally it is
left as a tunable parameter (Prasath et al., 2017, Prasath et al.,
2018). Larger λ values result in over-smoothing whereas smal-
ler λ parameter value results in noise being kept, see Figure 1.
As can be seen from the residual images (Fig. 1(middle row))
more structures are removed as we increase the λ value. Thus,
a systematic approach in selecting this crucial regularization
parameter is paramount in obtaining accurate denoising results.
There exists various methods for choosing the regularization
parameter such as the Lagrange multiplier (Rudin et al., 1992),
discrepancy principle, L-curve, cross-validation (Hansen, 2010)
∗ Corresponding author

generalized cross validation (Reeves, Mersereau, 1990) etc. Fix-
ing a parameter with these standard parameter estimation meth-
ods can still lead to poor results, since the regularization needs
to be reduced in the iterative implementation. Recently data ad-
aptive methods (Fu, Zhang, 2010, Prasath, Singh, 2010, Wang
et al., 2011, Prasath, 2011, Prasath, Moreno, 2018) are found
to provide better solutions, though with higher computational
overhead.

If we assume that the noise level is known (or an upper bound),
then we can utilize it to tune λ dynamically through the itera-
tions. This means that we solve (1) for both the image and λ,
which is a bi-objective optimization (Weiss et al., 2009, Beck,
Teboulle, 2009). In this work, our main aim is to use a similarity
criteria based parameter estimation for TV minimization model
with a fast implementation. Among a wide variety of iterative
methods available to solve the TV minimization (Vogel, Oman,
1998, Dobson, Vogel, 1997, Blomgren et al., 1997, Chambolle,
2004, Osher et al., 2005), recently the split Bregman (Gold-
stein, Osher, 2009) is proven to be very fast and used widely
in the literature. By using the fact that in TV based denoising
with an iterative algorithm the similarity between the residual
and noise variance (SIMRES) should approach zero, we devise
an algorithm that can help select the regularization parameter
λ effectively. We test the SIMRES-TV on a variety noisy im-
ages and compare with other regularization parameter selection
models (Rudin et al., 1992, Hansen, 2010, Reeves, Mersereau,
1990, Prasath, Singh, 2010). Our experimental results indicate
that SIMRES-TV can obtain better results with comparable or
exceeding image quality in denoising natural images. Further,
the proposed SIMRES approach, apart from with TV, can also
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(a) Noisy (b) 0.1 (c) 0.5 (d) 0.75 (e) 1

Figure 1. Top row: TV regularization (1) based image restoration results for different constant λ values. Middle row: Noise amount
(shown in (a) with gray values reversed for better visualization), and corresponding residual images |u− f |. Bottom row: Structural

similarity (SSIM) maps between original image and resultant images. Larger λ blurs edges and converges to a piecewise constant
image.

be augmented to any convex regularization functions with con-
vergence guarantees.

Our paper is organized as follows. Section 2 introduces the
SIMRES-TV algorithm. Section 3 provides the experimental
details and comparison of denoising various natural images. Fi-
nally, Section 4 concludes the paper.

2. PARAMETER ESTIMATION WITH SIMRES
CRITERIA

We first note that the similarity between residual and noise vari-
ances (SIMRES) can be quantified with the following equation:

R(u) =
|(u− f)2/MN − σ2|

σ2
(2)

Ideally, in image denoising, we require that R(u) → 0, how-
ever in typical iterative optimization schemes, it can take a large
number of iterations to achieve such requirement, and usually
constraining the residue closer to zero, R(u) < Th with Th
small, would suffice to obtain meaningful restorations. Impos-
ing such a constraint on R(u) along with minimizing a regular-
ization such as the TV (1) can be undertaken and that leads to
selecting appropriate regularization parameter λ. We thus use
a decision based on the smaller SIMRES criterion for determ-
ining the λ parameter and use it to minimize the TV objective
functional (1). To motivate this, we present an example of de-
noising a natural image corrupted with Gaussian noise in Fig-
ure 1 with different λ values based TV regularization. As can

be seen, setting λ high removes finer details and obtains piece-
wise constant results. In contrast, using smaller λ values fails
to obtain cleaner results. Instead of hand-tuning the parameter,
in this work, we embed decreasing λ values which were tuned
by the relative residual term into the minimization of (1). The
overall algorithm is as follows:

1. Initialise λ1, Th, and u0 = f .

(a) We use mean filtered (3× 3 averaging kernel) image

f of input f to compute the initial λ1 = ξ0 (fij−fij)2

TV (f)

with initial value ξ0 = 0.5.

(b) Compute a minimiser of Eqn. (1),

u1 = argmin
v
Eλ1(v). (3)

2. For k = 2, . . . do:

(a) Reduce the parameter value using the following se-
quence,

λk = ξk−1

∑
ij(u

k−1
ij − fij)2

TV (uk−1
ij )

(4)

where ξk−1 > 0 is a parameter.

(b) Compute a minimiser of Eqn. (1),
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(a) Noise-free (b) LM (c) GCV (d) IG (e) SIMRES

Figure 2. Comparison of different λ selection methods in image restoration with TV minimization. Top row: Restoration results.
Bottom row: Residue. (a) Noise-free, and restoration by (b) LM, (c) GCV, (d) IG, (e) our SIMRES-TV. In the (a) bottom figure we

show the amount of noise that need to be removed. Better viewed online and zoomed in.

uk = argmin
v
Eλk (v). (5)

3. Stop if either R(uk) < Th or |uk−1 − uk| < Tol.

We use the split Bregman algorithm (Goldstein, Osher, 2009)
to solve the discrete energy minimizations at Steps 1, and 2(b).
That is, we used the following steps:

(uk+1, ~dk+1) = arg min
0≤φ≤1, ~d

|~dg|+
λ

2
||~d−∇u−~bk

2

L2(Ω)||

~bk+1 = ~bk +∇uk − ~dk

where ~d is computed with a shrinkage operator

~dk+1 = shrink(∇uk +~bk, 1/λ),

where shrink(x, γ) = x/|x| ∗ max (|x| − γ, 0). We refer to
work of (Goldstein, Osher, 2009) for more details of the original
split Bregman formulation and variants.

The scaling parameter is chosen to be decreasing, i.e., ξk =
ξk−1/γ and this guarantees the convergence of our algorithm
to a minimal solution of (1). Note that we only compute an ap-
proximate solution (local-minima) of the energy functional (1)
at these steps. Since the TV regularization based minimization
is convex, we are guaranteed to find a minima and the solu-
tion corresponds to an optimal denoising result in our case. The
Perona-Malik type models (Perona, Malik, 1990) correspond to
non-convex regularization functions and thus convergence can
not guaranteed under the SIMRES algorithm.

3. EXPERIMENTAL RESULTS AND COMPARISONS

All the images and variables are normalized to [0, 1] range, and
noise level σ2 = 0.01. The threshold Th = 0.1, scaling para-
meter γ = 10 and tolerance Tol = 10−12 are fixed. Toler-
ance based stopping criteria is used for other schemes reported

Table 1. PSNR(dB)/MSSIM values for different automatic
parameter based TV regularization restoration results for noisy
Elaine image. Last row shows the computation time in seconds.

Model PSNR/MSSIM Time
Noisy 19.39/0.3936 -
LM (Rudin et al., 1992) 23.03/0.6313 10
GCV (Reeves, Mersereau, 1990) 23.38/0.7333 12
IG (Prasath, Singh, 2010) 21.32/0.7648 18
SIMRES-TV (Ours) 27.25/0.8245 13

here. We compare with the Lagrange multiplier (LM) (Rudin et
al., 1992), inverse gradient (IG) (Prasath, Singh, 2010, Prasath,
Moreno, 2018, Thanh et al., 2020), generalized cross validation
(GCV) (Reeves, Mersereau, 1990) along with TV minimiza-
tion.

Figure 2 shows restoration of Elaine grayscale image for dif-
ferent parameter estimation methods. We show in 2(a) top row
the original noise-free image, and bottom row the amount of
noise that need to be removed. Residual images clearly show
that SIMRES based restoration is better in terms of edge pre-
servation and does not remove edge pixels as observed in the
other results. In LM (Rudin et al., 1992) based result we see
uniform blurring, whereas in GCV (Reeves, Mersereau, 1990)
piecewise constant regions can be observed. IG (Prasath, Singh,
2010) provided better results than LM, and GCV but removed
some edges as can be seen on the corresponding residue image.
In contrast, the proposed SIMRES-TV model obtained better
result without removing edges, compare the random noise in
(a) with the residue image in (e).

For quantitative measurements we utilize the peak signal to
noise ratio - PSNR (in decibels, dB) and the structural similarity
- SSIM (range [0, 1]) image quality metrics. Table 1 shows the
PSNR, mean SSIM values and computation time (in seconds)
corresponding to restorations shown in Figure 2. Apart from
achieving better quality values, the SIMRES-TV based imple-
mentation is faster as well as computationally efficient. In terms
of edge preservation, SSIM value indicate that the structural de-
tails are kept well by the SIMRES-TV with more than 6 dB in-
crease in PSNR values over the nearest model (Prasath, Singh,
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Figure 3. Energy Vs iteration for different parameter selection
methods with Elaine image.

Table 2. Comparison of different methods on a standard test
images from the USC-SIPI dataset with Gaussian noise

σn = 20. We show the mean SSIM values with best results are
in boldface.

LM GCV IG Our
Images SIMRES
Couple 0.7503 0.7353 0.7298 0.8224
F-16 0.8128 0.8432 0.71099 0.8681
Girl1 0.7930 0.8027 0.8291 0.8822
Girl2 0.8934 0.8729 0.823 0.9011
Girl3 0.7825 0.8006 0.8178 0.8441
House 0.7299 0.7545 0.8128 0.8513
IPI 0.8841 0.839 0.8745 0.9204
IPIC 0.8924 0.8764 0.8925 0.9238
Tree 0.7335 0.7395 0.704 0.8129
Baboon 0.5687 0.4597 0.4701 0.6032
Barbara 0.6892 0.7624 0.7131 0.8617
Boat 0.6973 0.6419 0.6078 0.7839
Car 0.7891 0.7543 0.677 0.8431
Lena 0.753 0.8563 0.8443 0.8997
Peppers 0.8942 0.8567 0.8513 0.9105
Splash 0.8967 0.9136 0.8876 0.9271
Tiffany 0.7596 0.7509 0.7248 0.8478

2010).

Figure 3 shows the energy value (Eλ(·), see Eqn. (1)) versus it-
erations for different choices of λ parameter estimation and as
can be seen SIMRES converges faster than the other schemes
with fewer iterations of the split Bregman based implementa-
tion.

Next, we show in Table 2 SSIM values for various methods
compared with our proposed SIMRES-TV in different standard
test images taken from the USC-SIPI Miscellaneous dataset.
The input images are corrupted with Gaussian noise of vari-
ance σn = 20. We can see that our SIMRES approach consist-
ently obtains the highest SSIM values among different methods
indicating that edges are preserved well across various natural
images.

Finally, we provide an example restoration of our SIMRES-TV
using a color RGB image Tulip of size 200 × 200 × 3. Fig-
ure 4 shows a comparison of restoration results of the meth-
ods based on the color-TV (Blomgren, Chan, 1998, Bresson,
Chan, 2008) for Gaussian noise of variances of σn = 30, 50
added in each channel. Compared to the traditional color-TV
model with either lower λ = 0.1 (noise retainment) or higher

Table 3. Comparison of different quality and error metrics for
the Tulip color image with TV regularization for two different

noise levels. Best results are in boldface.

Noisy TV TV Our
σn = 30 λ = 0.1 λ = 1 SIMRES

ISNR 0 3.2618 8.3385 9.6962
SNR 13.4829 21.8214 23.1791 26.2871
PSNR 18.5706 26.9091 28.2668 31.3748
MSE 903.6861 132.4865 96.9168 47.3804
RMSE 30.0614 11.5103 9.8446 6.8833
MAE 23.9732 8.859 7.3348 5.1677
MAX 132.8668 75.5255 91.096 80.6614

Noisy TV TV Our
σn = 50 λ = 0.1 λ = 1 SIMRES

ISNR 0 6.6068 6.7098 10.3572
SNR 9.046 15.6527 19.4032 23.7146
PSNR 14.1337 20.7404 24.4909 28.8023
MSE 2510.2392 548.3248 231.2018 85.6752
RMSE 50.1023 23.4163 15.2053 9.2561
MAE 39.9553 18.2235 11.6915 6.9234
MAX 221.4447 125.7949 109.3267 96.1648

λ = 1 (piecewise smoothed) our SIMRES obtains better re-
stored result (devoid of staircasing) by automatically estimating
the regularization parameter. We also notice that the residual
image in SIMRES does not contain outlines of the tulip and the
petals compared to TV regularization with constant regulariza-
tion parameters. At the higher noise level σn = 50 traditional
TV models retained noise and created staircasing artifacts in
flat regions in contrast to smoother SIMRES-TV result. Table 3
shows a comparison of various signal to noise ratio (SNR) im-
age quality metrics (higher is better) and error metrics (lower
is better): improved SNR (ISNR, dB), SNR (dB), PSNR (dB),
mean squared error (MSE), root MSE (RMSE), maximum ab-
solute error (MAE), maximum absolute error (MAX) for the
Tulip color image restorations with two different noise levels
σn = 30, 50. Overall, the SIMRES-TV result quantitatively
outperformed the standard TV regularization with fixed regu-
larization parameter, obtaining higher SNR based metric values
and lower in error metrics.

4. CONCLUSION

In this work, we studied a noise and residual similarity meas-
ure based parameter estimation for TV regularization scheme in
image restoration. The proposed SIMRES approach for estim-
ating the regularization parameter automatically as part of the
TV minimization is general in the sense that it can be used along
with other (possibly) non-convex minimizations. It will also be
interesting to add an independent noise estimation step which
will make the proposed method completely automatic for vari-
ous image processing tasks. Also, combining with other reg-
ularization models that utilize adaptive regularization (Prasath,
Thanh, 2019) or higher order TV mdoels (Thanh et al., 2020)
are also an interesting direction of research.
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(c-d) λ = 0.1, (e-f) λ = 1, and (g-h) our SIMRES-TV. In each of the restoration results, we show restored images on the left and

corresponding residual images on the right.
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