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ABSTRACT: A lot of image matching applications require image comparison to be invariant relative to intensity values variations. 

The Pyt’ev theory for Morphological Image Analysis (MIA) was developed based on image-to-shape matching with mosaic shape 

models. Within the framework of this theory, the problem of shape-to-shape comparison was previously considered too. The most 

sophisticated and weakest part of MIA theory is the comparison of mosaic shapes with some arbitrary restrictions described by 

graphs or relations. In this paper we consider the possible options for comparing images and shapes using morphological projection 

and morphological correlation. Our contribution is a new scheme of morphological shape-to-image projection and, correspondingly, 

the new morphological correlation coefficient (MCC) for shape-to-image correlation with restricted mosaic models. We also refine 

the expressions for shape-to-shape comparison. 
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1. INTRODUCTION

A lot of image matching applications require image comparison 

to be invariant relative to intensity values variations (so called 

“template matching” task). In this context, the Pyt’ev theory for 

Morphological Image Analysis (MIA) was developed based on 

image-to-shape matching with mosaic shape models (Pyt'ev, 

Chulichkov, 2010). Within the framework of this theory, the 

problem of shape-to-shape comparison is considered too 

(Vizilter et al., 2015). The most sophisticated and weakest part 

of MIA theory is the comparison of mosaic shapes with some 

arbitrary restrictions described by graphs or relations. 

Recently, a new motivation has appeared for the development of 

this section of MIA theory. It is related to the need for 

"transparent" analysis of decision making in deep neural 

networks. One of the possible approaches for design of 

"transparent" AI concerning the scene understanding tasks is to 

perform the morphological analysis of mosaic image models 

obtained by CNN-based semantic segmentation. In such 

applications one uses the scene graphs, which are analogues to 

the mosaic models with restrictions in the Pyt’ev morphology. 

In this paper we consider the possible options for comparing 

images and shapes using morphological projection and 

morphological correlation. 

2. IMAGE-TO-SHAPE COMPARISON

 (TEMPLATE MATCHING) 

In the framework of Pyt’ev morphology, we consider images as 

piecewise-constant 2D functions 
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where n is a number of tessellation F on frame  with area S 

into connected regions of constant intensity, F={F1,…,Fn} is 

described by support functions F=(F1,…,Fn)
T; fF=(fF1,…,fFn)

T

is an intensity value vector. Such images we call the mosaic 

images. 

Image class with shape F has a following form: 

F = {f(x,y) = i=1,..,n fFi Fi(x,y): fFiR, i=1,..,n}.    (2) 

Morphological projector PF to shape F is determined by 

solution of optimization problem 

gF = PF g = arg min(gFF) || g(x,y) – gF(x,y) ||2.      (3) 

The solution of (3) has a following evident form: 
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In this framework we could compare the image g(x,y) to the 

shape F of image f(x,y) via the morphological background 

normalization 

gF = g – PF g, 

or morphological pseudo distance 

dM(g,F) = || g – PF g ||, 

or morphological correlation coefficient (MCC): 

KM(g,F) = || PF g || / || g ||.  (5) 

This MCC is a main MIA tool for the image-to-shape 

comparison (template matching). MCC is asymmetrical 

KM(g,F)KM(f,G) and normalized KM(g,F)[0,1], because the 

morphological projector PF is the non-decreasing by norm 

operator. 
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3. DISSFUSION MORPHOLOGY AND DIFFUSION 

MOSAIC SHAPES 

In (Vizilter et al., 2014) we propose the following 

generalization of Pyt’ev projective morphology in the form of 

diffusion morphology. The relational model of the diffusion 

shape F of image f(x,y) is the pairwise image point similarity 

function 

 

bF(x,y,u,v): [0,1], such that: 

bF(x,y,u,v)  0; 

bF(x,y,x,y)  bF(x,y,u,v); 

bF(x,y,u,v) = bF(u,v,x,y), 

 

and there is an unambiguous similarity function , such that  

 

 (f(x,y), f(u,v)) = bF(x,y,u,v). 

 

The operator model of the diffusion shape F is the diffusion 

transformation operator PF,  

 

 PF g(x,y) =  pF(x,y,u,v) g(u,v) du dv, 

 

with normalized kernel pF(x,y,u,v), such that: 

 

 pF(x,y,u,v)  0; 

 pF(x,y,x,y)  pF(x,y,u,v); 

  pF(x,y,u,v) du dv = 1; 

  pF
2(x,y,u,v) dx dy du dv < . 

 

It is easy to see that any diffusion relational model can be 

matched by its operator model: 

 

pF(x,y,u,v) = bF(x,y,u,v) /  bF(x,y,a,b) da db. 

 

The diffusion shape F of the image f(x,y) is the Eigen space of 

the diffusion transformation operator PF: 

 

 F = span{11(x,y),…, nn(x,y)}, 

 

where {1,…,n} are the eigenvalues and {1(x,y),…,n(x,y)} – 

the Eigen functions of PF: 

 

 PF i(x,y) = i i(x,y), i=1,….,n. 

 

In particular, the choice of 

 

(f(x,y), f(u,v)) = {1, if f(x,y) = f(u,v); 

                             0 – otherwise} 

 

leads to the standard Pyt’ev morphology, which describes the 

shape as a tessellation of the frame into regions of equal 

brightness. In this case, the similarity relation bF(x,y,u,v) 

becomes the equivalence relation between the points of the 

frame, which separates them into disjoint regions F={F1,…,Fn}, 

where n is the number of regions of the tessellation F of the 

frame . As a result, the diffusion operator becomes a 

projector, 

 

PF PF = PF. 

 

All eigenvalues of it are singular, and Eigen functions are the 

characteristic functions of frame tessellation regions: 

 

PF i(x,y) = i(x,y), i=1,….,n, 

i(x,y) = Fi(x,y) = {1, if (x,y)Fi; 0 – otherwise}. 

 

Accordingly, in this particular case, the diffusion shape 

becomes the standard Pyt’ev shape of the form 

 

F = { f(x,y) = i=1,..,n fi Fi(x,y), fRn}. 

 

So, for each image g(x,y)L2() the projection onto the shape 

F can be expressed as: 

 

gF(x,y) = PF g(x,y) = i=1,..,n gFi Fi(x,y), 

gFi = (Fi,g) / || Fi ||
2, i=1,…,n. 

 

It is also interesting to note that the equivalence relation on 

image points generates here an equivalence relation on images 

(equivalent images belong to the same shape). 

Diffusion mosaic shapes could be produced from usual mosaic 

shapes by diffusion mosaic filters. The diffusion mosaic filter 

PGK with kernel KG = [kGjt]mm maps the image g of shape G 

 

 g(x,y) = j=1,..,m gj Gj(x,y) 

 

to the image of the same shape, such that 

 





m

j

GjiGGG yxgyxgPyxg
1

),(),(),( KKK

 
gGKj = t=1,..,m kGjt gt, 

kGjt  0, kGjt = kGtj, j=1,..,m, t=1,..,m, 

t=1,..,m kGjt = 1, j=1,..,m. 

 

We meet such diffusion (fuzzy) shapes in the next section. 

 

 

4. MOSAIC SHAPE COMPARISON  

(SHAPE MATCHING) 

Morphological comparison of mosaic shapes by complexity is 

traditionally implemented in terms of a partial order relation 

"not more complex by shape". The set of mosaic shapes has an 

algebraic lattice structure: for any shapes F and G we can find 

the more complex shape FG and less complex shape FG. 

More complex shapes are obtained by region splitting, and less 

complex shapes are obtained by regions merging. In terms of 

sets (classes) of images, F is not more complex than G, if F  

G. In terms of morphological projectors, F is not more complex 

than G if PGPF = PF. 

Consider the image comparison by shape, which is traditionally 

determined using a morphological projector (4). If image g(x,y) 

is mosaic too, then 

 

 gF(x,y) = PF g(x,y) = PF j=1,..,m gGj Gj(x,y) = 

               = j=1,..,m gGj PF Gj(x,y) = j=1,..,m gGj GFj(x,y),       (6) 

               GFj(x,y) = i=1,..,n GFij Fi(x,y), 

               GFij = (Gj(x,y), Fi(x,y)) / || Gj(x,y) ||2 = 

                       = SWij / SFi, i=1,..,n; j=1,..,m. 

 

Thus, we obtain two alternative descriptions of the projection of 

gF(x,y): based on a usual mosaic model F,gF and a fuzzy 

model of GF,gG. Hence, the PF operator can be considered no 

longer as an operator in image space, but as an operator in the 

space of mosaic shapes. In such scheme, the fuzzy or diffusion 

(Vizilter et al., 2014) model GF automatically arises as a 

projection of the mosaic model onto another mosaic model: 
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 GF = PF G  GF = PF G.  

 

So, now we can define all standard Pyt’ev morphological tools, 

but for shape-to-shape comparison instead of image-to-shape 

one. We introduce the Morphological Shape Background 

Normalization: 

 

 GF = G – PF G = G(x,y) – GF(x,y), 

 

the Morphological Shape Pseudo Distance: 

 

 dM(G,F) = || G – PF G || =  || G(x,y) – GF(x,y) ||, 

 

and the Morphological Shape Correlation Coefficient (MSCC)  

 

 

 KM(G,F) = || PF G || / || G || = 

                             =  || GF(x,y) || / || G(x,y) ||.                     (7) 

 

Then we substitute (6) into (7) and obtain the evident formula 

for KM(G,F): 

 

 KM
2(G,F) = || GF(x,y) ||2 / || G(x,y) ||2 =  

                 = j=1,..,m i=1,..,n Sij 
2 / (S SFi) = 

                               = j=1,..,m i=1,..,n pij 
2 / pFi,                      (8) 

 

where pij = Sij
 / S, pFi = SFi

 / S. Note that was previously received 

the expression (8) from completely different, statistical 

considerations (Vizilter, Zheltov, 2012). We supposed that 

mosaic images from F and G of the form 

 

f(x,y) = i=1,..,n fi Fi(x,y); g(x,y) = j=1,..,m gj Gj(x,y), 

|| f ||2 = i=1,..,n fi
2 Si, || fG ||2 = j=1,..,m fGj

2 Sj, 

fGj = (i=1,..,n fi Sij)/Sj, j=1,..,m. 

 

satisfy the following asumptions about the distributions of 

intensity valuses f1,…,fn: 

 

1) p(f1,…,fn) = p(f1)…p(fn) –  

values f1,…,fn are mutually independent; 

2) p(f1) = … = p(fn) –  

values f1,…,fn have the same distribution; 

3) i=1,..,n: p(fi) = p(–fi) – 

the distribution is symmetrical relative to 0. 

 

These assumptions directly lead to conclusion that all 

mathematical expectations of intensity values are zero-valued 

fi =0, and their pairwise covariations have the simple form: 

 

fi fk  ={2, if i=k; 

              0 – otherwise}, 

 

where  is a dispersion of p(fi) distribution. Based on this, the 

average square of the norm of image f from F takes the form: 

 

  || f ||2  = i=1,..,n fi
2 Si = 

               = i=1,..,n 
2 Si = 2 i=1,..,n Si = 2 S. 

 

Correspondingly, the average square of the norm of image f 

from F to the shape G is 

 

 || fG ||2  = j=1,..,m fGj
2 Sj = 

                = j=1,..,m (i=1,..,n fi Sij)
2/Sj

2 Sj = 

          = j=1,..,m (i=1,..,n fi Sij)
2 / Sj =  

           = j=1,..,m i=1,..,n k=1,..,n fi fk Sij Skj  / Sj = 

           = j=1,..,m (i=1,..,n k=1,..,n fi fk Sij Skj ) / Sj = 

           = j=1,..,m (i=1,..,n 
2 Sij

2) / Sj =  

           = 2 j=1,..,m i=1,..,n Sij
2 / Sj . 

 

We determined the mean square effective morphological 

correlation coefficient (MSEMCC) as the root of the ration of 

average square of the projection norm of the image shape F to 

the shape G to the average square of the projected image norm: 
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The formula for the MSEMCC based on assumption of the 

mutual independence of the region intensities on G, turned out 

to be exactly the same as the expression we obtained here for 

the MSCC (8). 

 

In conclusion of this subsection note that instead of GF we can 

use the following absolute morphological shape difference map 

 

|G|F = (G(x,y), G(x,y)) – (GF(x,y), GF(x,y)) = 

         = 1 – (GF(x,y), GF(x,y), 

 

which is close the morphological difference map. The greater 

difference between G(x,y) and GF(x,y) at some (x,y) point, the 

greater the |G|F value at this point. So, this operation 

highlights those regions from mosaic shape G, which have no 

the close matches by shape in the set of regions from the mosaic 

shape F. 

 

 

5. IMAGE AND SHAPE COMPARISON  

(RESTRICTED TEMPLETE MATCHING) 

Consider an example of mosaic shapes with ordered intensity 

values as the simplest case of morphological models with 

oriented relationships. In this case, we suppose that the regions 

of shape F are ordered for a particular image f such that: 

 

 f(x,y) = i=1,..,n fFi Fi(x,y),                                     (9) 

               fFi  fFi+1, i=1,..,n-1. 

 

The shape class for such modes has a following form 

 

      F(+) = {f(x,y) = i=1,..,n fFi Fi(x,y): fFi  fFi+1, i=1,..,n-1}. (10) 

 

Morphological projector PF(+) to shape F(+) is determined by 

solution of optimization problem 

 

   gF(+) = PF(+) g = arg min(gF(+)F(+)) || g(x,y) – gF(+)(x,y) ||2. (11) 

 

Level functions Fi(x,y) play here the role of support functions: 

Fi(x,y) = k=i,..,n Fi(x,y), i=1,..,n. The image reconstruction 

based on intensities and level functions (fF,F) is performed as 

 

 f(x,y) = maxi=1,..,n fFi Fi(x,y).                               (12) 

 

The projection (11) is calculated via the monotonous least 

squares approximation (MLSA). This algorithm is based on the 

construction of the bottom convex cover of data. We describe 

the MLSA-projection (11) in terms of level functions. Let 

 

Fn+1(x,y)  0, 
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mean(i,ki)(g,F(+)) = mean(g(x,y),Fi(x,y) – Fk+1(x,y)) =  

          = j=i,..,k mean(g(x,y),Fj(x,y)) SFj / j=i,..,k SFj, 

.                          = j=i,..,k gFj SFj / j=i,..,k SFj. 

 

The Algorithm 1 iteratively forms the level representation of 

projection gF(+) as a set of level functions {GFj(x,y)}j=1,..,m. and 

corresponding intensity values {gGFj}j=1,..,m. In result, we obtain 

both the image projection gF(+), and the shape of projection 

GF(+) ={GFj(x,y)}j=1,..,m. The projection shape is always simpler 

than the class shape, which we project to. We select the level 

functions from the same set, but not all of them will be of use. 

All functions will be preserved just in case of gF(+). The MCC 

based on such projection (11) has the following obvious form: 

 

 KM(+)(g,F(+)) = KM(+)(g, PF(+)) = || PF(+) g || / || g ||.   (13) 

 

Algorithm 1: Approx(F(+),mean). 

(MLSA-projection to the ordered mosaic shape). 

 

Step 1. Set m=1, r=0, GF1(x,y) = F1(x,y). 

 

Step n. At each next step n: 

 

q = arg min k=r+1,..,n mean(r+1,k)(g,F(+)); 

gGFm = mean(r+1,q)(g,F(+)). 

 

If q = n,  

then exit the iteration process, 

otherwise 

       r=q; 

       m=m+1; 

       GFm(x,y) = Fr+1(x,y); 

       and proceed to next iteration step. 

 

Final Step. Recover the MLSA-projection image: 

 

gF(+)(x,y) = maxj=1,..,m gGFj GFj(x,y). 

 

End of Algorithm 1. 

 

The analysis of MLSA projection algorithm demonstrates that 

 

 PF(+) g(x,y) = PGF g(x,y) = 

                   =  j=1,..,m mean(g(x,y),GFj(x,y)) GFj(x,y),         (14) 

               GGF ={GFj(x,y) = GFj(x,y) – GFj+1(x,y)}j=1,..,m, 

               Fm+1(x,y)  0, 

 

where PGF is a standard projector of g(x,y) to the (non-ordered) 

shape GGF, which is a basic mosaic shape for ordered shape 

GF(+). Moreover, we can introduce the projection of shape F(+) 

to the image g(x,y): 

 

 P(g): P(g) F(+) = GGF,                                               (15) 

 

which is obviously the idempotent and non-increasing (by 

norm) operation. So, it is a new morphological filter in the MIA 

framework. 

Note that expression (15) describes the new scheme of two-

stage mutual adaptive filtering of image g and shape F. 

Step 1: Project shape F+ onto the image g; 

Step 2: Project image g onto the shape projection P(g) F(+). 

It seems that we did not meet such mutual correction of shapes 

in classical MIA: shape F was always the constant part of 

statement, and the image was always the subject of modification 

(projection). But there is one special case of MIA standard 

projection, which presumes the modification (simplification) of 

the target shape. If intensities of some neighbor regions have the 

same values in projection, then these regions of target shape 

could be merged, thus the shape of projection will be simpler. If 

some constant valued region of projected mosaic image g 

contains two or more regions of target shape F, then these 

regions will be merged in projection, and the resultant projected 

image gF will be of shape Fg  F. So, in traditional and ordered 

MIA we have the same effect: image and shape always mutually 

simplify each other. This effect was not so obvious in non-

ordered MIA due to the fact of very often target shape 

preserving and too rare cases of shape simplification. In the 

morphology of ordered mosaic shapes we see the opposite 

situation. Really, it is easy to demonstrate that 

 

 

GGF  GF   || PF(+) g ||  || PF g ||  

 KM(+)(g,F(+))  KM(g,F), 

 

so, the operator PF(+) is always the stronger simplifier than PF. 

This is just due to the fact that F(+)  F, and the cardinalities of 

these classes differ very dramatically: 

 

 || F(+) ||  || F || / n!, 

 

where n! = Pn = An
n is a number of permutations of region 

orders (ranks) in the shape F. So, the each mosaic shape with n 

regions corresponds to n! ordered shapes with equal occasion 

probabilities, and only the one of them does not require the 

simplification of gF and corresponding projected shape gF(+). 

Thus, we can perform not only image-to-shape comparison, but 

also the shape-to-image comparison using the following altered 

MCC: 

 

 KM(+)(F(+),g) = || P(g) F(+) || / || F ||.                         (16) 

 

This tool (16) is new and was not considered earlier in the 

framework of MIA. 

 

 

6. CONCLUSIONS 

In this paper, we consider the possible options for comparing 

images and shapes using morphological projection and 

morphological correlation. Our contribution is a new scheme of 

morphological shape-to-image projection and, correspondingly, 

the new MCC for shape-to-image correlation with restricted 

mosaic models. We also refine the expressions for shape-to-

shape comparison. 

We hope the further development of these approaches will make 

them applicable to morphological comparison of semantically 

segmented images and scene graphs. 

 

 

REFERENCES 

Pyt'ev, Yu.P., Chulichkov, A.I., 2010. Morphological methods 

for image analysis. - Moscow: Fizmatlit Publisher, 2010. - 336 

p. (in Russian). 

 

Vizilter, Y. V. and Zheltov, S. Y., 2012. Geometrical 

Correlation and Matching of 2D Image Shapes, ISPRS Ann. 

Photogramm. Remote Sens. Spatial Inf. Sci., I-3, 191-196, 

doi:10.5194/isprsannals-I-3-191-2012, 2012. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-2/W1-2021 
4th Int. Worksh. on “Photogrammetric & computer vision techniques for video surveillance, biometrics and biomedicine”, 26–28 April 2021, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-2-W1-2021-207-2021 | © Author(s) 2021. CC BY 4.0 License.

 
210



 

Vizilter, Yu. V., Gorbatsevich, V. S., Rubis, A. Yu., and 

Zheltov, S. Yu., 2014. Shape-Based Image Matching Using 

Heat Kernels and Diffusion Maps. // Int. Arch. Photogramm. 

Remote Sens. Spatial Inf. Sci. – Volume XL-3, 2014, pp. 357-

364. 

 

Vizilter, Yu.V., Pyt’ev, Yu. P., Chulichkov, A.I., and 

Mestetskiy, L.M., 2015. Morphological Image Analysis for 

Computer Vision Applications // in M.N. Favorskaya and L.C. 

Jain (eds.), Computer Vision in Control Systems-1. 

Mathematical Theory. Intelligent Systems Reference Library 73, 

DOI 10.1007/978-3-319-10653-3_2, Springer International 

Publishing Switzerland, 2015. pp.9-58. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-2/W1-2021 
4th Int. Worksh. on “Photogrammetric & computer vision techniques for video surveillance, biometrics and biomedicine”, 26–28 April 2021, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-2-W1-2021-207-2021 | © Author(s) 2021. CC BY 4.0 License.

 
211




