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ABSTRACT:

In the era of data-driven machine learning algorithms, data represents a new oil. The application of machine learning algorithms
shows they need large heterogeneous datasets that crucially are correctly labeled. However, data collection and its labeling are
time-consuming and labor-intensive processes. A particular task we solve using machine learning is related to the segmentation
of medical devices in echocardiographic images during minimally invasive surgery. However, the lack of data motivated us to
develop an algorithm generating synthetic samples based on real datasets. The concept of this algorithm is to place a medical
device (catheter) in an empty cavity of an anatomical structure, for example, in a heart chamber, and then transform it. To create
random transformations of the catheter, the algorithm uses a coordinate system that uniquely identifies each point regardless of the
bend and the shape of the object. It is proposed to take a cylindrical coordinate system as a basis, modifying it by replacing the
Z-axis with a spline along which the h-coordinate is measured. Having used the proposed algorithm, we generated new images
with the catheter inserted into different heart cavities while varying its location and shape. Afterward, we compared the results of
deep neural networks trained on the datasets comprised of real and synthetic data. The network trained on both real and synthetic
datasets performed more accurate segmentation than the model trained only on real data. For instance, modified U-net trained on
combined datasets performed segmentation with the Dice similarity coefficient of 92.6±2.2%, while the same model trained only
on real samples achieved the level of 86.5±3.6%. Using a synthetic dataset allowed decreasing the accuracy spread and improving
the generalization of the model. It is worth noting that the proposed algorithm allows reducing subjectivity, minimizing the labeling
routine, increasing the number of samples, and improving the heterogeneity.

1. INTRODUCTION

Many machine learning algorithms are fairly sensitive to the
datasets used for training. Therefore, it is critical to have access
to high-quality datasets. Typically, training and test samples
come from the same statistical distribution. Whilst the paucity
of flexible and rich enough datasets limits the ability of ma-
chine learning or statistical modeling techniques and leaves the
algorithm generalization capability superficial. However, if it
is possible to generate labeled samples with a distribution close
enough to the studied one, these samples can be used to test
solution performance and reliability. Synthetic datasets that are
generated programmatically can help immensely in the field of
machine learning. These datasets are not collected by any real-
life survey or experiment. Their main purpose, therefore, is to
be flexible and rich enough to help in conducting experiments
with various classification, segmentation, and object detection
algorithms.

Nowadays data synthesis algorithms are quite popular in the
∗ Corresponding author

healthcare industry. For instance, K. Antczak and Ł. Liberadzki
try to solve a stenosis detection problem based on convolution
neural networks (Antczak, Liberadzki, 2018). To increase the
training dataset, the authors use a relatively straightforward al-
gorithm generating artificial patches. To draw veins with sten-
osis and atherosclerotic plaques, the algorithm uses the Bézier
curves. The classifier used in this study is trained in two stages.
In the first stage, it uses artificial patches for training and then
tuned-up on real samples. Such an approach allowed the au-
thors to reach a classification accuracy equal to 0.90.

Another approach connected with the Generative Adversarial
Networks (GANs) is widely used for medical image synthesis
(Yi et al., 2018). One of the studies, performed by J.T. Guibas
et al., describes an implementation of dual GANs for medical
image synthesis (Guibas et al., 2017). The first GAN is used
for the generation of a segmentation mask. The second GAN
translates the masks produced by the first GAN to photoreal-
istic images. To tackle the problem of image synthesis, P. Costa
et al. developed a method that learns to synthesize eye fundus
images directly from data (Costa et al., 2017). In this method,
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adversarial networks and adversarial autoencoders are used to
synthesize retinal images. The authors pair real retinal images
with their respective vessel trees by means of a vessel segment-
ation technique. Then these pairs are used to learn a mapping
from a binary vessel tree to a new retinal image. The produced
data can help generate labeled data for training and testing the
models dedicated to retinal image analysis. It should be also
noted that GANs are also used for cross-modality synthesis.
The latter allows generating new training samples with the ap-
pearance constrained by the anatomical structures delineated
for the available modality.

Deep learning methods require extensive and representative
samples of data to enable high-quality training of neural net-
works. However, acquiring such data is sometimes very dif-
ficult or even impossible especially when experimenting and
labeling are expensive. When solving the problem of localiza-
tion and segmentation of the distal end of the catheter inside the
heart, we encountered the problem of insufficient data and weak
representativeness. To solve this problem we propose a new al-
gorithm for synthesizing echocardiography data with inserted
medical devices. The key idea behind the proposed algorithm is
to insert a catheter from one three-dimensional image to another
with the ability to control its position and shape. To maintain
an accurate configuration of the inserted catheter, the algorithm
uses the kinematics of continuum robots. Despite there are such
strategies dealing with homogeneous and small datasets as aug-
mentation and GANs, they have a common weakness, relying
on an initial dataset. As a result, all generated elements are
related to real ones, which can be a significant obstacle if the
dataset is small enough. Having used the proposed algorithm,
we overcame this problem since the algorithm allowed gener-
ating as many new configurations and positions of the catheter
as possible. It is also important to note that existing methods of
data augmentation do not consider the correlation of neighbor-
ing slices/images and randomly apply a particular transforma-
tion. In turn, the proposed algorithm is designed to transform
the object of study, taking into account the relationship of data.

2. SOURCE DATA

The initial data were obtained by means of epicardial three-
dimensional echocardiography when performing cardiac sur-
gery on three Yorkshire porcine hearts. This dataset was col-
lected at Boston Children’s Hospital (Boston, USA). During
each surgery, a medical instrument (catheter) was inserted into
the cavity of the left ventricle. The transthoracic X7-2t sensor
was placed on the epicardium of the left ventricle apex. In
addition to the transthoracic sensor, the Philips iE33 ultra-
sound machine and PMS5.1 ultrasound software were used to
acquire the data. In the process of data collection, we ac-
quired 75 three-dimensional ultrasound grayscale samples of
176x176x208 voxels each. Some of these samples are reflected
in Fig. 1. It is worth noting that the catheter is poorly visible to
the human eye on the data of echocardiography. In this regard,
we highlighted the catheter in green circles and ellipses.

Additionally, we obtained data with empty cavities of human
hearts where no medical instrument was used. This dataset was
collected at the Cardiology Research Institute (Tomsk, Russia).
The total amount of data with empty heart cavities made up
600 3D images. Examples of such images are shown in Fig. 2.
Further in our study, these images are used for placing a catheter
into their empty cavities.

Experiment 1 Experiment 2 Experiment 3

(a) Axial view

(b) Sagittal view

Figure 1. Examples of the source three-dimensional dataset with
a catheter inserted into the left ventricle cavity

Experiment 1 Experiment 2 Experiment 3

(a) Axial view

(b) Sagittal view

Figure 2. Examples of the source three-dimensional dataset with
empty heart cavities

3. METHODS

3.1 Data synthesis

The application of neural networks for the localization and seg-
mentation of a medical instrument in three-dimensional echo-
cardiography requires a relatively large training dataset. The
lack of such images in sufficient quantities is one of the key
problems of the deep learning approach. One of the solutions
to this problem is the generation of new artificial images based
on existing ones. The concept of this generation is the distor-
tion of the image with a medical instrument and its transfer to
the real image of the heart with empty cavities. The proposed
data synthesis algorithm uses different transformations such as
bending, twisting, scaling and displacement. Thus, to gener-
ate artificial three-dimensional echocardiography of the heart
containing the distal end of the catheter, the following inputs
are needed: a three-dimensional image of the catheter, a three-
dimensional image of the heart with empty cavities, the starting
point and orientation of the catheter. The result of the gener-
ator is three-dimensional images containing a catheter inside
the anatomical structures of the heart. The generator model has
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Figure 3. Scheme of the synthetic data generator

4 inputs and is shown in Fig. 3. It is worth adding that a pair of
vectors (P , V ) sets the position and orientation of the catheter
in a new blank image.

To implement the transfer and transformation of the catheter,
we developed our own coordinate system based on a cubic
spline. This system allows working flexibly with the points of
the catheter and carrying out all the necessary transformations.
The spline passes through the longitudinal axis of the catheter
and sets its configuration. In turn, all points of the catheter
are calculated relative to the spline using (ρ, ϕ, z) coordinates
according to the principle of a cylindrical coordinate system.
The spline plays the role of the Z-axis in the proposed system.
While the Z-axis is represented by a straight line in the clas-
sical cylindrical coordinate system. Thus, the z coordinate is
the length of the spline from its beginning to the point O on
the spline (see Fig. 4). At this point, the X-axis is plotted; the
angle and distance to the point M belonging to the catheter are
determined. The point O is the closest point on the spline rel-
ative to the point M , and the segment OM is perpendicular to
the tangent line of the spline at the point O.

This approach allows us to position the points of the catheter
relative to its axis, regardless of the shape of the spline. The
transfer of a point from the spline occurs according to the fol-

Figure 4. Definition of the coordinates of the point M

lowing formula:

M
′

= F−1 (F (M, S1) , S2) (1)

where F is the transformation described above, F−1 is the in-
verse transformation. This expression allows mapping points
from spline S1 to spline S2, which solves the problem of trans-
forming the overall shape of the catheter. Additionally, the cath-
eter can be stretched by normalizing the z coordinates to the
length of the spline using the following transformation:

z
′

=
z

l1
l2 (2)

where l1 and l2 are the lengths of the corresponding splines S1

and S2, respectively.

It is impossible to unequivocally plot the X-axis at the point O
without additional information about its direction. This is be-
cause the condition of perpendicularity to the tangent at a given
point is satisfied by an infinite set of vectors lying in the plane
perpendicular to the tangent. For the exact construction of this
axis, it is proposed to use the function D(z), which determines
the direction of the axis at the nodes of the main spline, and is
interpolated between the nodes. However, the interpolation of
this function does not guarantee the perpendicularity of the tan-
gent vector at points other than nodal. This vector is corrected
so that the condition of perpendicularity to the tangent is met
with minimal deviations. Thus, the X-axis can be found using
the following formulas:

α =
−(K̄(z), D̄(z))

(K̄(z), K̄(z))
(3)

X̄ = D̄ (z) + aK̄(z) (4)

where K̄(z) is the tangent vector, D̄(z) is the function that sets
the twisting of the catheter around its axis, which is one of the
ways to transform the data.

The catheter configuration is generated using forward kinemat-
ics algorithms, which build an axial spline, as well as the vector
function D̄(z) for the given bending angles and the lengths of
the corresponding catheter joints. The kinematics algorithm of
the catheter is described in more detail in (Kolpashchikov et al.,
2018).

The mapping process occurs for each voxel separately. It is
worth noting that in the general case the result of the mapping
is the real Cartesian coordinates, while the values of the three-
dimensional voxels are determined only for integer coordinate
values. In this regard, instead of a rounding method, we propose
to use a trilinear interpolation on a three-dimensional regular
grid, which improves image quality.

The generation of a new configuration is randomly carried out
until an obtained configuration completely fits into the required
anatomical structure of the heart. The control is performed by
checking the catheter point cloud and the mask of a blank three-
dimensional image, where the catheter is placed. It should be
also noted that the position and orientation changes of the cath-
eter, placed inside the heart chambers, are randomly generated.
The results of artificial data generation are reflected below in
Section 4.1.
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3.2 Deep learning

To estimate how synthetic data affect the model performing
segmentation, we used an encoder-decoder U-net architecture
(Ronneberger et al., 2015). However, when implementing the
original architecture without normalization, the gradient des-
cent algorithm did not converge well, so that the segmentation
accuracy did not exceed the level of 5%. Therefore, we decided
to make several modifications in the architecture, where the en-
coder and decoder blocks were significantly reworked. Most
layers were replaced and the proposed modified U-net architec-
ture contained dilated convolution layers, instance normaliza-
tion, ELU activation layers, max-pooling layers, and transposed
convolution layers. The proposed modification of the U-net ar-
chitecture is shown in Fig. 5.

The introduction of the dilated convolution (Yu, Koltun, 2015)
into this study is connected with minimizing the number of
trained weights. It is easy to note that when using the dila-
tion rate l > 1, the number of trainable weights in comparison
with the regular convolution is significantly reduced while the
size of the receptive window remains unchanged. For example,
a standard 5×5 convolution filter has 25 trainable weights. In
turn, a dilated convolution with the same filter size has 9 non-
zero weights. This modification allows using filters of a larger
size, which, in turn, increases the field of view of the convolu-
tion kernel.

The use of ELU activation layers accelerates the learning pro-
cess, partially eliminates the problem of vanishing gradients,
and also increases the classification accuracy of neural networks
(Clevert et al., 2016). In contrast to the ReLU activation func-
tion, the ELU activation function has a non-zero negative com-
ponent. The use of negative gradients makes it possible to shift
the mean activation value to zero, which, in turn, helps to min-
imize unnecessary shifts and offsets. A similar procedure is per-
formed by batch normalization. However, the ELU activation
layer performs this task with less computational complexity.

3.3 Experiments description

To evaluate the influence of synthetic data on the accuracy and
generalization ability of neural networks, 4 models were trained
based on the proposed modified U-net architecture, described in
Section 3.2. Initially, we trained one model using the original
non-synthetic dataset. As indicated in Section 2, this dataset
was obtained from three porcine hearts with catheters inserted
into the left ventricles for surgical purposes. Having applied the
proposed algorithm, we generated synthetic samples with the
catheters inserted into the echocardiographic images of empty
human hearts. Once the synthetic dataset was generated, we
gradually added synthetic samples to the training dataset. By
performing these experiments, we checked how synthetic data
influence the accuracy of neural networks, and whether it brings
positive or negative dynamics. In total, we performed four dif-
ferent experiments varying Real Data Ratio (RDR), which is
calculated as follows:

RDR =
Real samples

Real samples+ Synthetic samples
(5)

A short description of the data used in the experiments is
presented below in Table 1.

To estimate the segmentation accuracy with different RDR val-
ues, the Dice similarity coefficient (DSC) was used as the main

Table 1. Data distribution within 4 different experiments

Experiment Real Synthetic Samples RDR
samples samples in total

1 75 0 75 1.00
2 75 75 150 0.50
3 75 150 225 0.33
4 75 225 300 0.25

segmentation metric. This metric is computed as follows:

DSC = 2 · |A ∩B||A| + |B| =
2 · TP

2 · TP + FP + FN
(6)

where |A| and |B| are the cardinalities of setA andB, TP is the
number of true positives, FP is the number of false positives,
FN is the number of false negatives.

4. RESULTS

This section presents the results obtained by the proposed al-
gorithm for data synthesis. In addition to visualizing synthesis
and segmentation results, we reflect accuracy assessment. In
Section 4.2, we demonstrate DSC distributions varying the dif-
ferent RDR values.

4.1 Synthesis and segmentation

Having performed the proposed algorithm on the source data
with empty cavities, we generated 225 three-dimensional
samples of echocardiography with the catheter inserted into
them. One of these samples is reflected in Fig. 6, where the
catheter is shown in green circles and ellipses. As shown, the
catheter was placed in the left ventricle according to the con-
straints of this cavity.

Once the real and synthetic datasets were obtained, the modi-
fied U-net was trained with different values of RDR. In total,
4 models were trained. An example of segmentation of a 3D
image by the modified U-net is shown in Fig. 7. As seen, the
proposed modification of U-net segment the catheter accurately.

4.2 Accuracy assessment

Having the ground truth of the data, we performed an analysis
of segmentation accuracy. According to the obtained results, we
observed an inverse proportionality between RDR and DSC i.e.
the less the RDR is, the more the DSC is. The results of the cal-
culated DSC are shown in Table 2. Additionally, we compared
the DSC distributions obtained with different RDR values. This
comparison is reflected in Appendix A. The DSC distribution
at RDR = 1.00 was considered as a baseline distribution which
means that the network was trained and tested only on real data.
The remaining distributions obtained at RDR = 0.50, RDR =
0.33 and RDR = 0.25 were compared to the baseline distribu-
tion.

According to the DSC distirbution comparsion, the average seg-
mentation accuracy of the modified U-net increases with de-
creasing RDR metric (see Appendix B). Nevertheless, the aver-
age segmentation accuracy of the network makes up approxim-
ately 90%. It is also worth noting that there is no clear asymp-
totic saturation. Therefore, mixing data, for example, at a ratio
of 1:4, can presumably lead to either an increase in the DSC or
to the achievement of its asymptote.
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Figure 5. Modified U-net architecture used for concept proof.

(a) Source real data with an empty heart cavity

(b) Synthesized data with the catheter transferred
to a heart cavity

Figure 6. An example of an artificial sample synthesized by the
the proposed algorithm.

(a) Source data with the ground truth mask (red)

(b) Segmentation performed by the modified U-net (white)
and the ground truth (red)

Figure 7. Segmentation of the catheter based on the dataset with
RDR = 0.25.
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Table 2. DSC of the modified U-net with different RDR values

RDR

1.00 0.50 0.33 0.25

Train 0.85±0.05 0.87±0.03 0.88±0.05 0.93±0.01

Val 0.88±0.03 0.88±0.03 0.89±0.04 0.93±0.02

Test 0.86±0.04 0.88±0.03 0.90±0.03 0.93±0.02

5. DISCUSSION

Despite the fact that the proposed algorithm helped us to suc-
cessfully solve the problem of catheter segmentation in three-
dimensional echocardiographic images, it has several limita-
tions. The first limitation is related to the object shape. The cur-
rent version of the algorithm is only applicable cylinder-shaped
objects. The second limitation of the algorithm does not accur-
ately take into account ultrasound effects i.e. noise, structure,
texture, etc. This drawback is partially solved by the trilinear in-
terpolation used in the algorithm. In order to completely solve
this issue, some image processing or deep learning techniques
can be applied. It should be also noted that synthetic data gen-
eration is a relatively time-consuming process. On average 54
seconds are needed to generate one three-dimensional synthetic
image of 128×128×128 voxels. This is due to the relatively
lengthy procedure of integrating the spline function along the
catheter length, which is performed for each voxel. However,
data generation does not have to be run in real-time. It is worth
noticing that the usage of real input data allows obtaining im-
ages with a high degree of plausibility. In turn, forward kin-
ematics allows simulating the shape of the real catheter.

One of the requirements applied to data synthesis is the ability
of the synthesizer to generate data easier than it can be acquired
in real life. It should be noted that creating a data synthesis
algorithm may be very time-consuming. However, if the cost
of creating this algorithm is lower than the cost of collecting a
training set of real data, it is better to lean towards data syn-
thesis. An important restriction of the data synthesizer is its
ability to generate a distribution that is close to a set of real dis-
tribution. Another restriction is related to the randomness of
data synthesizing. It means that the underlying random process
should be precisely controlled and tuned. As an additional fea-
ture, data synthesis algorithms should apply random noise to an
image in a controllable manner.

6. CONCLUSION

When using machine learning to solve a segmentation or loc-
alization task, a dataset should be large and representative. If
the latter fails, the network may have a weak generalizing abil-
ity. To solve the problem of data unrepresentativeness, we pro-
posed an algorithm inserting and transforming a cylindrical ob-
ject into a constrained area. The proposed algorithm was used
for the generation of synthetic data of a catheter located inside
the cavities of the heart. In order to control the correct shape of
the catheter, we applied forward kinematics of the real catheter.
As for the catheter insertion area and its constraints, the image
where the catheter is inserted should have a labeled mask. The
latter is used to control the placement of the catheter inside the
anatomical structure of the heart. Having generated the data,
we checked how the proposed modification of U-net performed

segmentation. According to the obtained results, we observed
a positive dynamics for the models used both real and synthetic
data. For instance, modified U-net performed segmentation of
the catheter with a DSC of 92.6±2.2% for RDR = 0.25 and
86.5±3.6% for RDR = 1.0.
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APPENDIX A

Comparison of the DSC distributions for different RDR values

(a) RDR = 0.50 vs RDR = 1.00

(b) RDR = 0.33 vs RDR = 1.00

(c) RDR = 0.25 vs RDR = 1.00
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APPENDIX B

Comparison of DSC for different RDR values over training, validation, and testing subsets

(a) Training (b) Validation (c) Testing
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