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ABSTRACT: 
 
This study explores the capabilities of Sentinel-2 over Landsat-8 Operational Land Imager (OLI) imageries for vegetation monitoring 
in the vegetated region of Minjibir LGA in Kano State. Accurate vegetation mapping is essential for monitoring crop and sustainable 
agricultural practice. Vegetation indices, comprising the Normalized Difference Vegetation Index (NDVI), Green Chlorophyll Index 
(GCI), Leaf Area Index (LAI) and Moisture Stress Index (MSI) were determined for each year. The findings showed an increase in 
Sentinel 2A value of the vegetation indices with respect to Landsat 8 throughout the time of the study (2015-2019). The best average 
performance over the supervised classification was obtained using Sentinel-2A bands, which are dependent on the training sample 
and resolution. While the spectral consistency of the data was inferred by cross-calibration analysis using regression analysis. The 
spatial consistency was assessed by descriptive statistical analysis of examined variables. Regarding the spatial consistency, the 
mean and standard deviation values of all variables were steady for all seasons excluding for the mean value of the LAI and MSI. 
Based on this finding, it is recommended that Sentinel-2A data could be used as a complementary data source with Landsat 8 OLI  in 
vegetation assessment.  
 

 
*  Corresponding author 
 

1. INTRODUCTION 

1.1 General Instructions 

Land-use mapping is a vital topic in the study of surface eco-
physics, together with vegetation, soil, buildings, water, and 
other surface elements. Amongst them, vegetation is the most 
subtle to identifying surface climate change (Yuanhuizi et. al 
2019). Additionally, vegetation is most closely associated 
with global and regional food security, planting intensity, crop 
yields, and other sustainable development goals. Future global 
climate change has increased the likelihood of severe, 
pervasive, and irreversible costs for human civilization and 
agriculture (IPCC, 2014). In the same perspective, the rapid and 
accurate mapping of vegetation has gradually become a 
crucial means for monitoring and evaluating agricultural 
development, and disaster monitoring/ management.  
 
Presently, remote sensing is an applied approach for vegetation 
appraisal by using vegetation variables, which varies vigorously 
in time and space (Yuanhuizi et.al 2019). The foremost role of 
environmental remote sensing to land resource management is 
its prospect to map vegetation resources and to observe changes 
that arise over prolonged epochs. Numerous satellite 
missions are launched with the most objective of observing 
changes within the vegetative cover over the world surface. 
  
Most of such remote satellite missions are concerned with 
retrieving explicit vegetation parameters like the Normalized 
Vegetation Index (NDVI), the Fractional Vegetation Cover 
(FVC), Leaf Area Index (LAI), Green Chlorophyll Index 
(GCL), Soil Adjusted Vegetative Index (SAVI), Enhanced 
Vegetative Index (EVI), etc. (Melaas et al., 2013). Vegetation 
monitoring remains a fundamental focus within the science and 
practices of the remote sensing technology. However, the choice 

or accuracy of remote sensors used in vegetative monitoring 
remains of great importance. This study explores the Spatio-
temporal changes between two remote sensing missions 
(Landsat 8 Operational Land Imager (OLI) and Sentinel 2A) 
and their spectral relationship in the region covering Minjibir 
Local Government Area (LGA) in the Kano State of Nigeria. 
This is with the objective of analysing the proficiencies of 
Sentinel-2 data over Landsat-8 OLI data for vegetation planning 
and monitoring. Four (4) Vegetation indices namely the NDVI, 
GCI, LAI, and MSI were determined for the period of 2015-
2019.  
 
1.2 Study Area 

The study area is Minjibir LGA in Kano State. Minjibir lies 
between geographic latitude 12o 00’ 0’’ and 12o 20’ 0’’, and 
longitude 8o 30’ 00’’ and 8o 40‘00’’. The vegetation of Kano 
State is the semi-arid savannah. The Sudan Savannah is 
sandwiched by the Sahel Savannah in the north and the Guinea 
Savannah in the south. The savannah has been described as the 
zone that provides opportunity for optimal human attainment. 
This is because it is rich in faunal and floral resources, it is 
suitable for both cereal agriculture and livestock rearing, and the 
environment is relatively easy for movement of natural 
resources and manufactured goods. The figure 1 shows the 
study area. 
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Figure 1: Study Area Map, a) Location of Kano State in 
Nigeria, b) Location of Minjibir LGA in Kano state, c) Minjibir 
LGA 
 

2. MATERIALS AND METHODS 

2.1 Data Types and Sources 

Landsat 8 OLI and Sentinel 2A for three different years (2015, 
2017 and 2019) were obtained. These images were used to 
generate the land use and land cover information, and 
vegetation indices (NDVI, GCI, LAI and, MSI) within the study 
area.  
 
Atmospherically corrected surface reflectances of 
multispectral bands of Landsat 8 OLI were freely downloaded 
from the website of the United State Geological Survey 
(USGS) (see, http://earthexplorer.usgs.gov/ ). The Sentinels 
Scientific Data Hub website (see, https://scibub.copernicus. 
eu.dhus/) provided free download of the Sentinel 2A Levels-
1C products. The downloaded images from Sentinel data hub 
images were atmospherically corrected by means of the 
European Space Agency’s (ESA) Sen2Cor atmospheric 
correction toolbox that is an inherent procedure within the 
SentiNel Application Platform (SNAP) tool version 6.0 to 
supply the Level-2A (L2A) products. 

The Table 1 contains the specifics about the assemblage of 
the cloud-free Sentinel-2A and Landsat 8 OLI images of the 
study area. 

 

s/no Date  
acquired 

Path/Row Cloud 
Cover 

Date acquired                                 
by Satellite 

Landsat8 OLI(30m resolution from USGS) 

1 2015 188052 8.89% 15th June 2015 

2 2017 188052 25.3% 24th June 2017 
3 2019 188052 9.5% 21st June 2019 
Sentinel 2A (10m resolution from Copernicus) 
4 2015 N205 R79 0% 27th June 2015 
5 2017 N205 R79 0% 4th June 2017 
6 2019 N205 R79 0% 27th June 2019 

 
Table1: Details of Landsat8 OLI and Sentinel 2A Image 

Acquisition 
 

2.2 Image Pre-processing  

 The portion of interest (Minjibir LGA) was subsetted from each 
of the larger scenes using ArcGIS software. Geometric and 
radiometric corrections were performed on them for the purpose 
of ortho-rectification. The Sentinel 2A images were obtained at 
spatial resolution of 10 m. Therefore, the Sentinel-2A images 
were up scaled to the same spatial resolution as the Landsat-8 
(i.e. 30 m) to match the performances of the datasets of two 
satellites within the same spatial-scale. The two datasets were 
geo-referenced or geo-coded that is registered to a 
geographic frame of reference (UTM Zone 32). 
 
During layer stacking, all bands of the sensor data excluding the 
thermal band were considered for Layers stacking. The nature 
of these different bands had to be considered to make a decision 
as to which three-band combination would be most helpful for 
classification and visual interpretation, thus the false colour 
composite was employed in this study.  
 
2.3 Image Classification and Accuracy Assessment 

A supervised classification was performed on false colour 
composites (bands 5, 4 and 3 for Landsat 8 OLI and bands 8, 4 
and 3 for Sentinel 2A) into the following land use and land 
cover classes; Light vegetation Built-up area, Dense vegetation, 
Water body and Bare surfaces(see Table 2). The classification 
was done according to Anderson et al (1976). Information 
collected during the field surveys were combined with the 
digital satellite image, which was derived from SAS-planet 
software and used to assess the accuracy of the classification. 
 

Code  Land-use/Land 
cover 

Description 

1  
 

Light vegetation 
 

Lands consisting of grassland, 
cultivated area and plantation,  

2  
 

Built-up land  
 

Lands used for residential, 
industrial, commercial, etc. 

3  
 

Dense 
vegetation 
 

Lands covered with natural 
vegetation (any high tree 
plant species)  

4  Bare surfaces   Lands devoid of vegetation, 
exposed soil  

5 Waterbody Land dominated by rivers, 
lake and dams 

            
 Table 2: Classification Schemes 
 
An accuracy assessment was done by determining a confusion 
matrix. This finds the relationships between the mapped class 
label and that observed on the ground or reference data for a 
sample of cases at specific locations. The overall accuracy can 
be determined by dividing the number of correctly classified 
pixels by the total number of reference pixels. Overall accuracy 
is considered as the most suitable method for calculating 
accuracy assessment. The Kappa coefficient of agreement was 
used to improve the overall accuracy. 
 
2.4 Estimating Vegetative Indices 

Landsat 8 OLI of 2015, 2017 and 2019 and Sentinel 2AMSI of 
2015, 2017 and 2019 were used for estimating vegetative 
indices and subsequent analysis. Digital number was converted 
to spectral radiance for the Landsat 8OLI and then into 
reflectance. Different vegetative types have different spectral 
characteristics. Based on the understanding of the satellite 
spectral data, we obtained different spectral information 
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regarding vegetation in the study area. Four (4) vegetative 
indices derived at all the satellite epochs as described in the 
succeeding subsection 
 

• Derivation of Moisture Stress Index(MSI) 
This index is sensitive to the increase of leaf water content. It is 
used for analyzing vegetation coverage, predicting the 
productivity and modeling, analyzing the plant use conditions 
and studying the ecosystem physiology. The MSI is calculated 
as a ratio of  the mid-infrared (MIR) and the  near-infrared 
(NIR)(Hunt et al., 1989; Welikhe et al., 2017). The formula 
used to derive the MSI is shown in equation (1). 
  

 ( )                                                  1MSI MIR NIR=  

• Derivation of Green Chlorophyll Index (GCL) 
In remote sensing, the Green Chlorophyll Index is employed to 
estimate the content of leaf chlorophyll in countless species of 
plants. The chlorophyll content reveals the physiological 
condition of vegetation; it drops in strained plants and may 
therefore be used as a measurement of plant well-being. 
Enhanced estimation of chlorophyll amount with the GCI are 
often achieved by using satellite sensors that have broad NIR 
and green wavelengths (Gitelson et al., 2003). The formula used 
to derive the GCI is shown in equation (2). 

 

( ) ( )[ ] ( )1                                 2GCI NIR Green= −  

 
• Derivation of Normalized Difference Vegetation 

Index(NDVI) 
 
The NDVI is the most important vegetation index in remote 
sensing. It is widely used for analysing land use changes, 
including vegetation and other factors. This index is suitable for 
areas with moderate and higher vegetation density since it is 
less susceptible to soil and the effects of atmosphere. 
 
The NDVI is calculated from the visible red and near infrared 
bands. The rationale of the index is that healthy vegetation has a 
high reflectance in the near infrared (NIR) and a low reflectance 
in the red, thereby enhancing the interpretation of vegetation 
cover while suppressing subtle noise from other land cover 
types(Rouse et al., 1974). The formula used to derive NDVI is 
shown in equation (3). 
 

( ) ( ) ( )              3NDVI rNIR rRED rNIR rRED= − +  
Where r is reflectance and is defined as in equation (4), in the 
equation (4), L  is spectral radiances at the sensor aperture, 
dr is the inverse square of earth-sun distance, sunE represents 

the mean solar exoatmospheric irradiances, θ is the solar zenith 
angle and, d is the distance from the earth to the sun. 
 

2

                                        (4)
sun

L d
r

E Cos dr

π

θ

∗ ∗
=

∗ ∗
  

 
• Derivation of Leaf Area Index(LAI) 

LAI can be determined directly by taking a statistically 
significant sample of foliage from a plant canopy, measuring the 
leaf area per sample plot and dividing it by the plot land surface 
area. Indirect methods measure canopy geometry or light 
extinction and relate it to LAI (Juutinen et al., 2017).  This 

study adopted a relation between the NDVI and LAI as 
presented in equation (5). 

   ( ) ( ) ( )2
22.758 13.107 2.197        5LAI NDVI NDVI= − +  

 
3. RESULTS AND DISCUSSION 

3.1 Detection of Land use and Land Cover Changes 

The total land area for Minijibir LGA is estimated to be 
431.14km2. The satellite data were classified using Maximum 
Likelihood Classification Algorithm of supervised classification 
into five types of land cover, including Built- up, Water body, 
dense vegetation, Light vegetation and bare land with the aid of 
ArcGIS software. In this classification, the rocks and 
uncultivated land that are not covered with vegetation are 
grouped under bare land while impervious surface are referred 
to as built-up. 
 
The Landsat 8 and Sentinel 2A classified images for Minjibir 
LGA are illustrated in Appendix 1. The main aim of this 
classification is to access how Sentinel 2A behave over a high 
vegetation region as compared to Landsat 8 OLI. 
 
The table 3 presents the area of each class extracted by different 
images. For Landsat 8, built-up areas cover 18.77, 20.14, and 
22.59 km2 for 2015, 2017 and 2019, respectively of the whole 
area, while for Sentinel 2A, built-up areas cover 14.34, 18.22, 
and 20.64 km2 for 2015, 2017 and 2019 respectively of the 
whole area. This shows Sentinel 2A and Landsat 8 has extracted 
more hard surfaces areas (e.g. buildings, roads). However, Built 
up area dominated more in Landsat 8 as compared to Sentinel 
2A within the region. However, this may be because the built up 
signature for Sentinel 2A has better similar characteristics, and 
it is well clustered within similar wavelength bands. 
 

 
LULC  

Area (km2) 

2015(S2A, L8) 2017(S2A, L8) 2019(S2A, L8) 

Light 
vegetation 

201.15, 201.74 200.25, 201.13 202.12, 206.14 

Dense  
vegetation 

110.46, 116.53 106.83, 106.21 99.03, 95.62 

Bare land 84.88, 53.5 82.18, 83.54 80.19, 83.15 

Waterbody 15.88, 45.03 21.74, 22.04 27.21, 25.59 

Built up 18.77, 14.34 20.14, 18.22 22.59, 20.64 

Total 431.14, 431.14 431.14, 431.14 431.14, 431.14 

** S2A = Sentinel2A, L8 = Landsat8 OLI 
Table 3: Landsat-8 OLI and Sentinel 2A image classification 

 
However, the major class differences in the area are observed in 
vegetation cover (Light and dense vegetation). Sentinel 2A 
extracted an area of 318.27 km2, 307.34 km2 and 301.76 km2  
for imagery of 2015, 2017 and 2019, respectively. In contrast, 
Landsat 8 OLI shows 311.61 km2, 307.08 km2 and 301.15 km2 
area for imagery of 2015, 2017 and 2019 respectively of the 
whole area covered with vegetation, thus, it can be argued that 
Landsat 8 and Sentinel 2A has continuously classified 
vegetation accurately. Additionally, Sentinel 2A image showed 
53.5 km2, 83.54 km2 and 83.15km2 area as bare cover for 2015, 
2017 and 2019 respectively, while for Landsat 8 bare cover is 
around 84.88 km2, 82.18 km2 and 80.19 km2 for 2015, 2017 and 
2019 respectively. Finally, Sentinel 2A has marked 45.03 km2, 
22.04 km2 and 25.59 km2 for 2015, 2017 and 2019 respectively 
of the area as water bodies. Landsat 8 has marked 15.88 km2, 
21.74 km2 and 27.21 km2 as water bodies for 2015, 2017 and 
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2019 respectively. In contrast, signature developed for Sentinel 
2A on vegetation region are better fitted with water bodies and 
considered a good fit for vegetation areas when comparing the 
false colour composite (FCC). Features for Sentinel 2A are 
more related to specific objects, and they are clearly 
distinguishing the objects with clear boundaries but it usually 
misclassifies vegetation into water body within the project area. 
It is clear that even with optimized better resolution, Sentinel 
2A water body signature for 2019 are not as well developed as 
Landsat 8 features. 
 
3.2 Image Classification Accuracy 

Accuracy analysis was undertaken using the confusion matrix 
otherwise referred to as the error matrix presented in Tables 4. 
The confusion matrix involves different statistical measures 
such as producer’s accuracy and user’s accuracy for each of the 
classes, after which, the overall accuracy and kappa index for 
the classification were determined. The producer’s accuracy 
was obtained by dividing the total number of pixels classified 
correctly in a category by the total number of pixels of that 
category as derived from the reference data. While the user 
accuracy, on the other hand, is expressed as the ratio of 
correctly classified pixels to the total number of pixels classified 
in that class.  Hence, the result of the Landsat 8 (Table 4) shows 
that the producer’s accuracy of light vegetation was 100%, 
98%, 96%, for Sentinel 2A, against 93%, 89% and 100% for 
Landsat 8 for the three epoch period. With user accuracy of 
98%, 100%, 100% against 85%, 97% and 89% for Landsat 8 for 
the three epoch period, bare land was 98%, 100%, 94%, for 
Sentinel 2A, against 88%, 100% and 90% for Landsat 8 for the 
three epoch period. With user accuracy of 98%, 100%, 94% 
against 96%, 100% and 89% for Landsat 8 for the three epoch 
period,, water body was 100%, 100%, 100%, for Sentinel 2A, 
against 85%, 100% and 90% for Landsat 8 for the three epoch 
period. With user accuracy of 100%, 100%, 100% against 80%, 
84% and 100% for Landsat 8 for the three epoch period, and 
built-up was 96%, 94%, 100%, for Sentinel 2A, against 84%, 
79% and 88% for Landsat 8 for the three epoch period. With 
user accuracy of 98%, 98%, 100% against 84%, 100% and 85% 
for Landsat 8 for the three-epoch period. Finally, dense 
vegetation was 98%, 100%, 98%, for Sentinel 2A, against 90%, 
98% and 85% for Landsat 8 for the three-epoch period. With 
user accuracy of 98%, 94%, 100% against 95%, 85% and 90% 
for Landsat 8 for the three-epoch period.  
 

Land cover 
Class 

2015     
(S2A, L8) 

2017       (S2A, 
L8) 

2019      
(S2A, L8) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

Water body 100, 
85 

100, 
80 

100, 
100 

100, 
84 

100, 
90 

100, 
100 

Dense 
Vegetation 

98, 
90 

98, 
95 

100, 
98 

94, 
85 

98, 
85 

100, 
90 

Built-up 
Area 

96, 
84 

98, 
84 

94, 
79 

98, 
100 

100, 
88 

94, 
85 

Bare Land 98, 
88 

98, 
96 

100, 
100 

100, 
100 

94, 
90 

94, 
89 

Light 
Vegetation 

100, 
93 

98, 
85 

98, 
89 

100, 
97 

96, 
100 

100, 
89 

Overall 
Accuracy 

0.98, 0.88 0.98, 93.2 0.98, 0.91 

Kappa 
Statistic 

0.70, 0.72 0.78, 0.76 0.79, 0.74 

**PA = Producer’s Accuracy, UA = User’s Accuracy, S2A = 
Sentinel2A, L8 = Landsat8 OLI 

Table 4: Classification Accuracy Assessment Report 

The overall accuracy is the number of correctly classified pixels 
(sum of the diagonal cells) divided by the total number of pixels 
checked. The overall accuracy of Sentinel 2A was found to be 
98%, 98% and 98% for the three-epoch period with a kappa 
index of 70%, 78%, and 79% (Table 4). While the overall 
accuracy of Landsat 8 was found to be 88%, 93% and 91% for 
the three-epoch period with a kappa index of 72%, 76%, and 
74%.In the accuracy assessment test results presented in Table 
4, it is quite clear that Sentinel 2A has better user accuracy and 
producer accuracy for built-up, water, bare land and vegetation 
classes compared to Landsat 8.  
 
The overall accuracy of Sentinel 2A is considerably higher than 
Landsat 8. However, the kappa for Sentinel 2A is again higher 
than Landsat 8, apart from 2015 result, which records 0.70 of 
Sentinel 2A against 0.72 of Landsat 8, despite being less than 
the standard acceptable threshold of 0.75. The Landsat 8 kappa 
value is considerably lower for 2017 and 2019 imagery and 
indicates less credibility for Landsat 8 extractions in all the 
classes. The initial assumption of equal performance in some 
classes was no longer valid, and Sentinel 2A performed better 
than Landsat 8 with higher accuracy. Results show that Sentinel 
2A can be used in vegetation mapping with over 80% accuracy. 
In view of the value of the methods and the accessibility of 
Sentinel 2A, it might be considered an efficient substitute if 
progresses are made in terms of image processing and 
classification methods. 
 
 
3.3 Comparative Analysis of Landsat 8 OLI and Sentinel 
2A Derived NDVI 

The NDVI value as presented in Table 5 revealed that lower 
NDVI is associated with the developed settlements while high 
NDVI values are associated with the less developed natural 
surfaces. The results of NDVI maps are shown in appendix2. 
 
In Landsat 8 imagery, The highest values of the vegetation 
index were decreased from 0.51 in 2015 to 0.50 in 2017 and 
0.49 in 2019 (Table 5). This shows that the vegetation cover 
was by far decreased in some parts of the area from 2015 to 
2019. This can also be seen in (appendix2) as shades of green 
colour in both images. The darker the green colour in the image 
the highest NDVI values were recorded and the highest 
vegetation cover and vice versa. In the same way, the lowest 
values are decreased from -0.12 in 2015 to -0.11 in 2017 and -
0.03 in 2019. This means that status of vegetation in 2015 is 
better than the vegetation in 2017 as the vegetation values tend 
to decrease. This comparison result shows that lowest 
vegetation cover was observed in 2015 whereas average 
vegetation cover was observed in 2017. 
 
While in Sentinel 2A imagery, The highest values of the 
vegetation index were decreased from 0.8 in 2015 to 0.67 in 
2017 and 0.67 in 2019 (Table 5). This shows that the vegetation 
cover was by far decreased in some parts of the area from 2015 
to 2019. This can also be seen in (appendix 2) as shades of 
green colour in both images. The darker the green colour in the 
image the highest NDVI values were recorded and the highest 
vegetation cover and vice versa. In the same way, the lowest 
values are decreased from -0.3 in 2015 to -0.29 in 2017 and -
0.17 in 2019. This means that status of vegetation in 2015 is 
better than the vegetation in 2017 as the vegetation values tend 
to decrease. This comparison result shows that lowest 
vegetation cover was observed in 2015 whereas the average 
vegetation cover was observed in 2017 as observed in Landsat 8 
result. 
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Landsat 8 OLI Sentinel 2A 
Year Lowest  

Value 
Highest 
 Value 

Mean Lowest 
 Value 

Highest  
Value 

Mean 

2015 -0.12 0.51 0.21 -0.3 0.8 0.20 
2017 -0.11 0.5 0.17 -0.29 0.67 0.23 
2019 -0.03 0.49 0.21 -0.17 0.67 0.22 
Table 5:  NDVI Value Ranges for Landsat 8 and Sentinel 2A 

3.4 Comparative Analysis of Landsat 8 OLI and Sentinel 
2A Derived GCI 

The Green Chlorophyll Index is used to estimate the content of 
leaf chlorophyll in various species of plants. The chlorophyll 
content reflects the physiological state of vegetation; it 
decreases in stressed plants and can be used as a measurement 
of plant health. In Landsat 8 imagery, The highest values of the 
GCI were decreased from 1.65 in 2015 to 1.55 in 2017 and 
increased from 1.60 in 2019 (Table 6). This shows that the 
vegetation cover was  decreased in some parts of the area from 
2015 to 2017. This can also be seen in (Appendix 3). In the 
same way, the lowest values are decreased from -0.25 in 2015 
to -0.21 in 2017 and -0.16 in 2019. This means that status of 
vegetation in 2015 is better than the vegetation in 2017 as the 
vegetation values tend to decrease. This comparison result 
shows that lowest vegetation cover was observed in 2015 
whereas average vegetation cover was observed in 2017. 
 
While in Sentinel 2A imagery, the highest values of the GCI 
were decreased from 4.53 in 2015 to 2.77 in 2019 (Table 6). 
This shows that the vegetation cover was  decreased in some 
parts of the area from 2015 to 2019. In the same way, the lowest 
values are decreased from --0.25 in 2015 to -0.25 in 2017 and -
0.16 in 2019. This means that status of vegetation in 2015 is 
better than the vegetation in 2017 as the vegetation values tend 
to decrease. This comparison result shows that lowest 
vegetation cover was observed in 2015 where as average 
vegetation cover was observed in 2017 as observed in Landsat 8 
result. The derived statistical results of the trend of GCI is 
presented in Table 6. 
  

Landsat 8 OLI Sentinel 2A 
Year Lowest  

Value 
Highest 
 Value 

Mean Lowest 
 Value 

Highest  
Value 

Mean 

2015 -0.25 1.65 0.71 -0.60 4.53 1.00 
2017 -0.25 1.55 0.63 -0.29 2.31 0.94 
2019 -0.16 1.60 0.74 -0.33 2.77 1.01 

 
Table 6:  GSI Value Ranges for Landsat 8 and Sentinel 2A 

3.5 Comparative Analysis of Landsat 8 OLI and Sentinel 
2A Derived MSI 

The values of MSI for Landsat 8 for 2015, 2017 and 2019 were 
observed with the range of values from 0.489 to 1.44, 0.477 to 
2.152 and 0.517 to 1.847 respectively while 0.141 to 2.99, 0.408 
to 2.656 and 0.330 to 3.502 respectively is derived from 
Sentinel 2A. It was observed that Sentinel 2A range of values 
continues to be greater than that of Landsat 8 (Appendix 4). 
Based on exploratory analysis, remote sensing measured MSI 
2015, 2017 and 2019 mean value of 1.02, 1.08 and 1.04  was 
observed for Landsat 8 while 1.28, 1.20 and 1.23 was observed 
for Sentinel 2A respectively.  
 
While in Sentinel 2A, the standard deviation of the MSI value 
shows that it ranges from 0.10 in 2015 to 0.12 in 2019 and 

Landsat 8, the standard deviation of the MSI value shows that it 
ranges from 0.05 in 2015 to 0.06 in 2019. Generally, the result 
of the MSI values shows that the vegetation cover values, in 
general, were reduced for Landsat 8 but increasing continuously 
for Sentinel 2A. A summary of the  derived statistical results of 
the trend of MSI is presented in Table 7. 
  

Landsat 8 OLI Sentinel 2A 
Year Lowest  

Value 
Highest 
 Value 

Mean Lowest 
 Value 

Highest  
Value 

Mean 

2015 0.49 1.44 1.03 0.14 2.99 1.28 
2017 0.47 2.15 1.08 0.41 2.66 1.20 
2019 0.52 1.85 1.04 0.33 3.50 1.23 

 
Table 7:  MSI Value Ranges for Landsat 8 and Sentinel 2A 

3.6 Comparative Analysis of Landsat 8 OLI and Sentinel 
2A Derived LAI 

 High values of LAI for Landsat 8 for 2015, 2017 and 2019 
were observed with the range of values from 0.31 to 4.03, 0.31 
to 3.91 and 0.31 to 2.66, respectively while 0.31 to 8.11, 0.31 to 
4.00 and 0.31 to 5.00 respectively is derived from Sentinel 2A. 
It was observed that Sentinel 2Arange of values continue to be 
greater than that of Landsat 8. Based on exploratory analysis, 
remote sensing measured LAI 2015, 2017 and 2019 mean value 
of 0.48, 0.70 and 0.50 km2 was observed for Sentinel 2A while 
0.55, 0.51 and 0.53 were observed for Landsat 8, respectively.  
 
This comparison can be better explained by its mean and 
standard deviation of the three epoch’s maps. The standard 
deviation of the LAI value for Landsat 8 shows the value ranges 
from 0.11 in 2015 to 0.1 in 2019. While the standard deviation 
of the LAI value for Sentinel 2A shows, the value ranges from 
0.12 in 2015 to 0.2 in 2019. The Table 8 and Appendix 5 
contain summary of the LAI as determined in the study area. 
  

Landsat 8 OLI Sentinel 2A 
Year Lowest  

Value 
Highest 
 Value 

Mean Lowest 
 Value 

Highest  
Value 

Mean 

2015 0.31 4.03 0.48 0.31 8.11 0.56 
2017 0.31 3.91 0.67 0.31 4.00 0.52 
2019 0.31 2.66 0.48 0.31 4.99 0.53 

Table 8:  LAI Value Ranges for Landsat 8 and Sentinel 2A 

3.7 Correlation Analysis of Landsat 8 OLI and Sentinel 2A 
Derived Vegetative Indices 

The Sentinel-2A MSI and Landsat-8 OLI spectral response 
functions are quite different. to look at the impact of this, 
scatterplots of simulated Sentinel 2A against simulated Landsat 
8 OLI sensor reflectance were generated for every of the 
approximately equivalent sensor bands and for the derived 
vegetative index. The degree of correspondence between the 
sensor data was examined by reduced axis (RMA) regression 
that permits for both the dependent and independent variables to 
possess comparable error and implies that swapping the 
dependent and independent variables (i.e., the Sentinel-2A and 
Landsat-8 band data) won't alter the bivariate relationship. The 
corresponding results of individual sensor (Sentinel 2Aand 
Landsat OLI) type was compared for the results generated from 
both pixel and index based classification using the coefficients 
of a linear regression and the Pearson correlation coefficient in 
other to identify whether they have a good linear correlation, or 
the regression lines depart slightly from the identity line.  
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The relationship between the Sentinel 2A and Landsat 8 is 
presented  in Table 9.  The figures 2-5 show the scatter plots for 
the different vegetation indices. It was observed from the 
Figures that there exists a weak correlation between Sentinel 2A 
and Landsat 8. The cross-calibration analysis results showed 
that Coefficient of determinant values of the satellite data of 
Sentinel-2 and Landsat-8 were obtained as 0.119, 0.034, and 
0.590 for 2015, 2017 and 2019 respectively. 
 
 

 NDVI GSI MSI LAI 
Coefficient of Determination(R2) 

2015 0.119 0.263 0.452 0.072 
2017 0.034 0.154 0.382 0.032 
2019 0.590 0.520 0.598 0.237 

 Correlation Coefficient (r) 
2015 0.345 0.513 0.672 0.269 
2017 0.184 0.392 0.618 0.179 
2019 0.770 0.721 0.773 0.487 
Table 9: Coefficient of Determination (R2) and Correlation 

Coefficient(r) Values for Landsat8 and Sentinel 2A 
 
 

 
Figure 2: Scatter Plots for NDVI Relationship in Landsat 8 OLI 
and Sentinel 2A 
 

 

Figure 3: Scatter Plots for GCI Relationship in Landsat 8 OLI 
and Sentinel 2A 

 
Figure 4: Scatter Plots for MSI Relationship in Landsat 8 OLI 
and Sentinel 2A 
 

 
Figure 2: Scatter Plots for LAI Relationship in Landsat 8 OLI 
and Sentinel 2A 

4. CONCLUSION 

In this study, the multi-temporal analysis was performed on two 
different satellite sensor (Sentinel 2Aand Landsat 8 OLI for 
Minjibir LGA of Kano State. Through the retrieved vegetation 
indices, it was observed that high vegetation indices are 
attributed with Sentinel 2Avalue with respect to Landsat 8 
throughout the time of study. From the comparison, it was 
found that the supervised classification from both the two 
sources are corresponding. Correlation was also made between 
the NDVI, MSI, GCI and LAI of the Landsat 8 and Sentinel 2A 
data. The result of correlation between Landsat 8 and Sentinel 
2A for the indices shows that the two are weakly correlated.  
However, the best average performance over the supervised 
classification was obtained using Sentinel-2 bands. The models 
based on Sentinel-2 data outperformed Landsat 8 models for all 
forest variables. Results were clearly shown in Sentinel 2A 
supervised classification due to the fine spatial resolution of 10 
m. The study recommends the integration of datasets from 
satellite remoting sensing sensors for improved or optimized 
vegetation monitoring. 
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Appendix 1: Landsat-8 (L8) and Sentinel 2A (S2) image classification   for 2015-2019 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-3/W1-2020, 2020 
Gi4DM 2020 – 13th GeoInformation for Disaster Management conference, 30 November–4 December 2020, Sydney, Australia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-65-2020 | © Authors 2020. CC BY 4.0 License.

 
71



 

APPENDIX 

 
Appendix 2:  Landsat-8 (L8) and Sentinel 2A (S2) Derived 

NDVI for 2015-2019 
 
 

 
Appendix 3: Landsat-8 (L8) and Sentinel 2A (S2) Derived GSI 

for 2015-2019 
 

 

 
Appendix 4: Landsat-8 (L8) and Sentinel 2A (S2) Derived MSI 

for 2015-2019 
 
 

 
Appendix 5: Landsat-8 (L8) and Sentinel 2A (S2) Derived LAI 

for 2015-2019 
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