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ABSTRACT: 

 

Point cloud data of indoor scenes is primarily composed of planar-dominant elements. Automatic shape segmentation is thus valuable 

to avoid labour intensive labelling. This paper provides a fully unsupervised region growing segmentation approach for efficient 

clustering of massive 3D point clouds. Our contribution targets a low-level grouping beneficial to object-based classification. We argue 

that the use of relevant segments for object-based classification has the potential to perform better in terms of recognition accuracy, 

computing time and lowers the manual labelling time needed. However, fully unsupervised approaches are rare due to a lack of proper 

generalisation of user-defined parameters. We propose a self-learning heuristic process to define optimal parameters, and we validate 

our method on a large and richly annotated dataset (S3DIS) yielding 88.1% average F1-score for object-based classification. It permits 

to automatically segment indoor point clouds with no prior knowledge at commercially viable performance and is the foundation for 

efficient indoor 3D modelling in cluttered point clouds. 

 

1. INTRODUCTION 

Automation in point cloud data processing is central for efficient 

decision-making systems and to cut labour costs. The 

identification of objects of interest in these massive datasets 

constitute the base of many applications. While new supervised 

deep learning architectures show promising results, the amount 

of available labelled 3D data is often insufficient for a good 

generalisation (Poux et al., 2018). 

 

The creation of labelled dataset for training machine learning 

models is a tedious task. Unsupervised algorithms are 

particularly useful in the frequent cases where it is expensive to 

label data. Take the example of annotating a massive point cloud. 

Annotating each point by what it represents can be a long and 

tiresome job, to the point that the people doing it can 

unintentionally introduce errors through inattention or fatigue. It 

is cheaper and perhaps even more efficient to let a clustering 

algorithm group similar points together and then only involve a 

human operator when assigning a label to the cluster. But to this 

end, the underlying algorithm should provide relevant segments. 

 

In this paper, we propose an unsupervised segmentation 

framework to group points in clusters without domain 

knowledge. The approach was designed supported by the fact 

that, to the extent of our knowledge, there exist very few fully 

unsupervised – in the sense there is no need for training data or 

user input – algorithm dedicated to this task. 

 

Our proposal was designed to minimise breaking points in long 

pipelines and provides a self-learning parameter extraction to 

permit generalisation without user supervision. To test its 

potential for the task of classification (i.e. semantic 

segmentation), we offer an object-based classification routine 

using features that work well with supervised classifiers. 

 

 
*  Corresponding author 

 

The paper is structured as follow. Section 2 presents a concise list 

of related works. Section 3 proposes a methodology including 

parameter extraction, unsupervised region-growing and feature 

extraction for object-based classification. Section 4 displays the 

results, and Section 5 highlights the key take-aways and 

limitations that are addressed in future works. 

 

2. RELATED WORKS 

Point Cloud « pure » segmentation algorithms are mainly based 

on strict hand-crafted features from geometric constraints, 

heuristics and rules. The primary process aims at grouping raw 

3D points into unique regions. Those regions correspond to 

specific structures or objects in one scene with a certain degree 

of representativity (an object of interest can be "oversegmented" 

or "undersegmented"). Since no supervised prior knowledge is 

required, the delivered results have no "strong" semantic 

information, which is the task of classification, also known as 

semantic segmentation or labelling. However, to reduce the 

calculation cost, a frequently used strategy is to over-segment a 

raw point cloud into small regions before applying expensive 

algorithms that benefit from the new grouping. 

 

Voxels can be regarded as the most straightforward over-

segmentation structures, extended to supervoxels which can 

primarily reduce the data volume of a raw point cloud at the cost 

of some information loss and minimal overlapping. The work of 

Weber et al. provides the first approach of using relationships 

while conserving the point-based flexibility (Weber et al., 2010). 

They propose an over-segmentation algorithm using 

'supervoxels', an analogue of the superpixel approach for 2D 

methods. Based on a local k-means clustering, they try and group 

the voxels with similar feature signatures (39-dimensional 

vector) to obtain segments. The work is interesting because it is 

one of the earliest to try and propose a voxel-clustering to 

propose a generalist decomposition of point cloud data in 
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segments. Son et Kim use such a structure in (Son and Kim, 

2017) for indoor point cloud data segmentation. They aim at 

generating the as-built BIMs from laser-scan data obtained 

during the construction phase. Their approach consists of three 

steps: region-of-interest detection to distinguish the 3D points 

that are part of the structural elements to be modelled; scene 

segmentation to partition the 3D points into meaningful parts 

comprising different types of elements while using local concave 

and convex properties between structural elements; and 

volumetric representation. The approach clearly shows the 

dominance of planar features in man-made environments. 

Another very pertinent work is (Wang et al., 2017), which 

proposes a SigVox descriptor. The paper first categorises object 

recognition task following the approach of (1) model-fitting 

based (starts with segmenting and clustering point cloud, 

followed by fitting point segments); (2) semantic methods (based 

on a set of rule-based prior knowledge); and, (3) shape-based 

methods (shape featuring from implicit and explicit point 

clusters). They use a 3D 'EGI' descriptor to differentiate voxels 

that only extract specific values from a Principal Component 

Analysis (PCA) (Liu and Ramani, 2009). The approach proves 

useful for MLS point clouds, grouping points in object 

candidates, following the number. 

 

Region growing is another classical point cloud segmentation 

method which is still widely used today. It is initially derived 

from images at the pixel level (2D), emerged in 2.5D LiDAR data 

(possible raster projection), and is now employed at the point 

level (3D) or the voxel level (3D). 3D region growing comprises 

two main steps: the selection of seed points or seed units and then 

the region growing driven by some principles to obtain groups of 

points following some similarity measure. This technique has 

been applied in the segmentation of planar building structures in  

(Deschaud and Goulette, 2010; Xiao et al., 2013) or more 

recently in (Dong et al., 2018; Vo et al., 2015). However, we note 

that the validation was made on low-density dataset or with point 

cloud never exceeding more than some millions of points, which 

doesn't presume the complexity of large scale datasets.  

Non-universality is a non-trivial problem for region growing. The 

accuracy of these algorithms relies on the growth criteria and 

locations of the seeds, which should be predefined and adjusted 

for different datasets. Besides, these implementations are 

computationally intensive and may require a reduction in data 

volume for a trade-off between accuracy and efficiency. Also, the 

definition of the parameters driving the approaches is supervised 

and « empirical ». It largely limits the generalisation of such 

approaches. 

 

Another strategy is the use of model-fitting approaches to match 

a point cloud or some subset to different primitive (geometric 

shapes). As man-made objects are predominant in indoor scenes, 

such approaches provide useful possibilities to detect an 

assembly of geometric shapes/models such as planes, spheres, 

cylinders. Therefore, model fitting can be regarded as a 

segmentation approach to cluster depending on the detected fitted 

models. The most widely used model-fitting methods are built on 

two well-known algorithms, the Hough Transform (HT), used in 

(Hulik et al., 2014; Limberger and Oliveira, 2015; Rabbani and 

Heuvel, 2005) and the RANdom SAmple Consensus (RANSAC) 

used successfully in (Li et al., 2017; Schnabel et al., 2007; Xu et 

al., 2016). One of the significant disadvantages of HT is the lack 

of boundaries in the parameter space, which leads to high 

memory consumption and long calculation time. Therefore, some 

studies have been conducted to improve the performance of HT 

by reducing the cost of the voting process (Limberger and 

Oliveira, 2015). Such algorithms can be found in the review (Xie 

et al., 2019). On the other side, RANSAC-based algorithms do 

not require complicated optimisation or high memory resources. 

Compared to HT methods, efficiency and the percentage of 

auspicious detected objects are two main advantages for 

RANSAC in 3D point cloud segmentation. RANSAC is a 

nondeterministic algorithm, and thus its main shortcoming is its 

artificial surface: the probability exists that models detected by 

RANSAC-based algorithm do not exist in reality. 

 

These strategies are then used to create segments, which 

constitute the base for object-based classification workflow. 

Works related to 3D Point Cloud are most often applied on Aerial 

LiDAR datasets, such as in (Miliaresis and Kokkas, 2007) to  

extract the building class from digital elevation models, (Zhang 

et al., 2012) to classify urban airborne LiDAR point clouds with 

multiple echoes using Support Vector Machine, or in (Rutzinger 

et al., 2008) for Urban Vegetation Classification. Newer 

approaches such as in (Vosselman et al., 2017) and (Poux et al., 

2018; Poux and Billen, 2019) propose a contextual segment-

based classification of point cloud data by leveraging essential 

proximity and topology features between segments. 

 

In this brief state-of-the-art review of pertinent related work, we 

highlighted different directions that will drive our methodology. 

First, the definition of parameters for the segmentation approach 

should be as automatic as possible. Secondly, the performances 

and scalability should permit extensive point cloud processing. 

Finally, the level of supervision necessary should be minimal to 

permit a good generalisation. 

 

3. METHODOLOGY 

The applied workflow of unsupervised segmentation and object-

based classification is organised as follows: first, the point cloud 

is analysed to extract, without supervision, relevant parameters 

for the normal estimation, region growing and refinement steps. 

Then, we extract a concise set of features from the segmented 

point cloud, for a short yet informative feature vector ensemble. 

Finally, we propose a Random Forest classification that leverages 

planar predominance in scenes. 

 
Figure 1 Workflow of the methodology 

 

3.1 Unsupervised segmentation 

In the unsupervised segmentation step, the point cloud is 

partitioned into subsets of neighbouring points called segments. 

Our method only considers spatial coordinates (X,Y,Z) without 

using spectral values to better generalise the approach to different 

sensors and platforms at the cost of lower performances. We aim 

at a set of internally homogeneous segments, informative for 

classification tasks. Our segmentation procedures aim to produce 
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relatively small segments, representing only object parts (sub-

objects) rather than the final objects of interest directly. Then 

adjacent segments with similar properties can be merged to 

spatially contiguous objects. Such a step-wise procedure based 

on an initial over-segmentation permits to reduces the risk of 

combining multiple real-world objects in one segment (under-

segmentation). The principle of the approach is to limit any 

domain knowledge as well as parameter tweaking to provide a 

fully unsupervised workflow. This is conducted in 4 steps as 

described below. 

 

3.1.1 Data analysis: extracting heuristics 

 

For usability and simplicity, we designed an automatic heuristic 

determination of three RANSAC-inspired parameters being the 

distance threshold for the region growing (ε); the threshold for 

the minimum number of points needed to form a valid planar 

region (τ); the decisive criterion for adding points to a region (α). 

 

As we are later using a principal component analysis (PCA) to 

compute the normals of the data points, we use additional 

information provided by an eigenanalysis of the neighbourhood 

of points for parameter's extraction. 

 

ε is automatically defined so that the search radius is well above 

the noise level of each dataset. To estimate ε, we find the smallest 

neighbourhood radius such that the planarity from the 

eigenanalysis is above 50% for every point. Then we set ε as the 

median of these values, as we assume that roughly 50% of the 

points in the point cloud are part of a planar region. The actual 

choice of the percentage is usually non-critical, as for most 

datasets the median will be part of a large plateau of similar radii. 

 

The parameter τ, which is used as a threshold for the minimum 

number of points needed to form a valid planar region, contains 

more of a user preference than the value for ε (e.g. users might 

want regions above a specific surface area primarily). As the 

basis for this analysis, we recall that ε is chosen to be well above 

the width of the noise in the dataset. Thus, the minimal area of a 

region should be in the order of magnitude of a disk with radius 

ε, as this prevents regions assembled purely from noise data from 

being accepted. Since the area of a region is not clearly defined, 

we use a threshold number of points τ as stand-in. For this, we 

again analyse the neighbourhoods of the points in our dataset, this 

time counting the number of points inside an ε-sphere around 

each point. We then select τ0 as the median of these point counts. 

 

In order to estimate α, which represents the maximum angle 

deviation between the normal of a point and the normal of a 

region for the point to be incorporated into that region, we 

imagine a sphere of radius 2ε. The choice is based on the fact that 

the PCA-based normal estimation will smooth out the normals at 

sharp corners to roughly resemble a section of a sphere of radius 

ε, thus making a sphere 2ε the smallest sphere that is reliably 

distinguishable from a hard corner of the same size. Such a sphere 

we consider desirable to include into the segmentation, rather 

than classifying it as clutter. For this in turn it is necessary to 

choose α in such a way that a region of size τ can be created along 

the sphere surface such that all its points fit into a cone with 

opening angle α and the tip coincident with the center of the 

sphere. 

 

3.1.2 Normal Estimation 

 

To develop a robust normal-based region growing approach, one 

needs to extract low-noise normals. Thus, the first step of our 

approach is to provide a normal per point. We start by 

constructing a k-d tree spatial structure of the point cloud to 

permit quick nearest neighbors queries for each point. A radius 

search is used to obtain a locally representative subset of the 

point-cloud. We then use a PCA to estimate a local tangent plane 

and thus an extract an unoriented normal for the point. The main 

limitation of using PCA for the normal estimation is that we 

approximate the local neighborhood of every point in the point 

cloud with just a single tangent plane. While this approach 

delivers high quality normals for any point far away from sharp 

features, any points inside a range of the chosen radius around an 

edge or corner will be assigned a smoothed normal. While 

methods that robustly estimate normals yet successfully replicate 

sharp features in the point cloud are readily available (e.g. (Li et 

al., 2010)), these methods come with a substantial runtime 

overhead (x10 for the implementation provided by the authors of 

(Li et al., 2010) as compared to our own PCA-based 

implementation in Julia) which prompted us to rely on the PCA-

based method instead. 

 

3.1.3 Region Growing 

 

Once each point is provided with a normal estimate, we establish 

a segmentation approach to obtain consistent planar regions from 

the point cloud. The region-growing method start by repeatedly 

selecting a random point that is not yet assigned to a region from 

the point cloud, and then determine the region it belongs to. 

If the number of points in the computed region exceeds the 

heuristic threshold τ, it is accepted as a large region. This process 

stops once the probability that all planes in the data set are found 

reaches a threshold of 99%. 

 

The actual process of growing a region from a single seed point 

is driven by two sets of indices R, which contains the indices of 

all points we currently consider part of the region and F, the 

"Front", which references only those points that were added to R 

in the last iteration. Additionally, we keep an estimate of the 

normal n of the plane, as well as its center of mass c. 

 

The algorithm starts by adding the seed point to both R and F and 

initialising n and c with the normal and position of the seed point. 

In every step of the growing procedure itself, all the points inside 

a k-neighborhood around any of the points in F are determined. 

Of the points in these neighborhoods we add those that have a 

normal that differs by an angle of at most α from n and have a 

position with a distance of at most 3ε to the plane defined by c 

and n are then added to the region R and become the new front F. 

The maximum width of the extracted region is chosen as 3ε to 

reduce unnecessary over-segmentation in accordance with the 

prior work of (Schnabel et al., 2007). 

 

 
Figure 2 Segmentation results over an office area 
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In order to reduce the impact, the selection of the seed point has 

on the extracted region, the plane estimate is refitted to R at 

exponentially increasing intervals using PCA on the point 

positions. After each refitting, the points that now fail to fulfill 

the normal and distance criteria for the new plane estimate are 

removed from the region. 

 

3.1.4 Refinement 

 

The edge-point refinement step was constructed to bypass the 

limitations of PCA-based normal estimation. Indeed, due to the 

nature of the PCA used for normal estimation, normals of hard 

edges in the point data will be smoothed out. 

When applying the fast region growing method to a point cloud 

with PCA-derived normals, the points close to hard edges will 

therefore usually not be part of any region (unless α is set to at 

least half the edge angle). The edge-point refinement permits to 

correct this effect by reconsidering the assignment of formerly 

unassigned points in the cloud. 

 

For every unassigned point, all regions that appear in the 

neighbourhood of the point will be considered. Of all found 

regions, we assign the point to the one region it is found closest 

to, provided it falls into an ε-band around the region. So 

compared to the original region growing approach, we effectively 

relinquish the normal angle criterion while keeping the plane 

distance criterion in effect. This refinement step, while fast and 

easy to implement, permits to obtain a segmentation of good 

quality even around sharp features, without the need to rely on 

computationally expensive methods to obtain artefact-free 

normals, such as the one presented by (Li et al., 2010). 

 

 
Figure 3 In red, all the points targeted, added to the closest region 

 

3.2 Segment-based feature extraction 

Any intelligent system basically consists of an end-to-end 

pipeline starting from ingesting raw data, leveraging data 

processing techniques to process and engineer meaningful 

features and attributes from this data. Then we usually pull 

techniques like statistical or machine learning models to act on 

these features, and then deploy a working model for future usage 

based on the problem to be solved at hand. 

 

Point-based features, aside from sensor attributes, are usually 

extracted from the neighbourhood of the point. The neighbour 

search strategy (E.g. fixed number of neighbour points, search 

radius) has a predominant role as stated by (Weinmann et al., 

2015). For the given neighbourhood point set, such features can 

describe the local point density, height distribution or deviations 

from a locally fitted plane, for instance. Eigen-based features 

derived from a 3D covariance matrix describing a point set are 

largely used as a descriptor for the shape of the points' 

distribution in 3D space. 

 

In contrast to per-point features, object-based features exploit 

features that relate to segments (sub-objects). Such segment 

features can be the average or the standard deviation of all point-

specific feature values in a segment. These segment features are 

often more representative for class characteristics than single 

point features, which can be very variable within a class and even 

within one object. Additional features, like segment shape and 

size, may also be useful to separate classes. We distinguish in this 

paper between local features and contextual features, and we 

refer the reader to the paper (Bassier et al., 2020) for an extended 

analysis on the impact of features. 

 

3.2.1 Shape segment features 

 

Typically, feature engineering is a drawn-out manual process, 

relying on domain knowledge, intuition, and data manipulation. 

Even though a lot of newer methodologies like deep learning and 

meta-heuristics aid in automated machine learning, each problem 

is domain-specific and better features (suited to the problem) is 

often the deciding factor of the performance of a system. Local 

features are engineered so that they are all relative to the dataset 

being processed and drop any absolute value. Then, they are 

scaled to a [0,1] interval. We selected only 9 standard features at 

no extra computational cost through an ensemble voting process:  

relative segment centroid (3), segment normal (3) and segment 

variance (tangent, bi-tangent and normal). 

 

Then, we include 5 segments shape features based on segments 

eigenvectors to be invariant to translation and rotation: the length, 

width, height, surface and volume of each segment. 

 

3.2.2 Contextual segment features 

 

The ability to model context in terms of a spatial relationship 

(E.g. topology) between objects is an essential gain over point-

based featuring. By taking into account segments at different 

scale levels, hierarchical relationships between elements and sub-

elements can be established. Such topological relationships can, 

for instance, be used to correct misclassifications by applying 

topological rules. Contextual features build on the following: 

Number of neighbours, centrality eigenvalue, betweenness 

centrality, closeness centrality and degree centrality. Adjacent 

segments with similar properties can be merged to spatially 

contiguous objects. Such a step-wise procedure based on the 

initial over-segmentation permits to reduces the risk of 

combining multiple real-world objects in one segment (under-

segmentation). 

 
Figure 4 The graph-representation of segments connexions. 
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3.3 Supervised classification 

We use a Random forest classifier, a non‐parametric ensemble 

learner which can efficiently model non‐linear relationships, 

handle a large number of (potentially redundant) features and 

prevent overfitting (Belgiu and Drăguţ, 2016). It aggregates the 

results of several randomised decision trees by a majority vote, 

as explained in (Mayr et al., 2017). Each tree is built based on a 

bootstrap sample of the training instances (subsampling with 

replacement), and each tree node is split using a user-defined 

number of randomly selected features. 

 

The classification procedure thus relies on a set of feature vectors 

that characterise the different classes while enabling a distinct 

separation, i.e. the classes must have a unique signature in the 

feature space, with sufficient differences between classes. The 

segments are assigned class labels based on their characteristic 

feature values. Figure 5 shows an example for object-based 

classification of furniture in a point cloud. Finally, semantic 

labels ('floor, 'ceiling', 'walls', "furnitures") are assigned a 

posteriori to these classes. 

 
Figure 5 Result of the classification in a conference room 

 

4. RESULTS 

4.1 Metrics 

To quantify the quality of our segmentation approach, we first 

determine an "ideal" segmentation from the ground truth data by 

identifying connected components of points with the same 

classification. This segmentation is ideal in the sense that it 

contains the minimum number of segments while still allowing a 

per-segment classification with perfect accuracy. 

 

In practice however, due to the fact that our method identifies 

planar regions instead of more complex objects that will be 

assigned to a single class in the ground truth (such as a chair or a 

book case), a significant amount of oversegmentation is 

expected. While strong oversegmentation will impact the 

performance of the subsequent classification step, it will usually 

not reduce the quality of the classification. 

 

We measure the oversegmentation of a ground-truth segment as 

the number of planar regions for which the current ground-truth 

segment has the largest overlap (measured in points). A more 

critical aspect of the segmentation is undersegmentation, i.e. the 

combination of multiple ground truth segments into a single 

extracted segment, as this actively limits the accuracy any per-

segment classification can achieve. Similarly to 

oversegmentation, the undersegmentation of a planar region is 

measured as the number of ground-truth segments for which the 

current planar region has the largest overlap. 

 

A low amount of under segmentation however does not directly 

imply a good segmentation quality, as a planar region might still 

overlap multiple ground-truth segments leading to 

misclassifications, while not making up a large enough fraction 

of each segment to be counted as under segmentation. As more 

direct measure of the classification quality that we can achieve 

with a given segmentation, we first assign every planar region to 

the ground-truth segment that it has the largest overlap with. We 

then define the ̀ `sharpness'' of the segmentation as the percentage 

of points where the ground-truth segment and the assigned 

segment of their planar region are identical. The sharpness of the 

segmentation is thus an upper bound for the accuracy that a 

subsequent region-based classification can achieve. 

  

Existing literature has suggested several quantitative metrics for 

assessing the semantic segmentation and classification outcomes. 

We define the metrics regarding the following terms: 

True Positive (TP): Observation is positive and predicted  

positive; False Negative (FN): Observation is positive but is 

predicted negative; True Negative (TN): Observation is negative 

and is predicted to be negative; False Positive (FP): Observation 

is negative but is predicted positive. Subsequently, the following 

metrics are used: 

 

𝐼𝑜𝑈̅̅ ̅̅ ̅ =
𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 𝐹1−𝑠𝑐𝑜𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

The precision is the ability of the classifier not to label as positive 

a sample that is negative, the recall is intuitively the ability of the 

classifier to find all the positive samples. The F1-score can be 

interpreted as a weighted harmonic mean of the precision and 

recall, thus giving a good measure of how well the classifier 

performs. 

 

4.2 Segmentation and classification outcomes 

A shortened summary of the over- and under-segmentation 

metrics, as well as the sharpness is presented in Table 1. 

 

Dataset 
Oversegmentation Undersegmentation Sharpn. 

Median 75% Max 99% Max 

Area 1 11 17 3883 1 9 89.92% 

Area 2 12 20 644 1 13 90.34% 

Area 3 11 21 427 1 9 91.25% 

Area 4 9 19 896 1 15 89.86% 

Area 5 10 18 1525 1 21 86.10% 

Area 6 11 18 794 1 9 90.61% 
Table 1 Quantitative results of the segmentation 

 

It becomes clear that our method introduces a significant amount 

of over-segmentation, which is expected as our method only 

recognises planar regions while segments in the ground-truth data 

set can be of any shape Figure 6. 

 

 
Figure 6 Segmentation results over Area-1 
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On the other hand, we find that under-segmentation is not a 

significant issue with our method, as we do not observe any 

under-segmentation for over 99% of ground-truth segments. And 

even in cases where under-segmentation occurs, this is largely 

due to features such as boards mounted tightly to walls that are 

hard to recognise using point cloud geometry alone and would 

require the inclusion of colour information into the clustering. 

 

We report results for fourteen classes, of which we detail 9 

among structural (ceiling, floor, walls), transition (windows, 

doors), furniture (tables, chairs, boards) and clutter elements as 

in Table 2. 

 

Areas 
Ceil. Floor Wall Win. Door Table Chair Board Clutter F1-

score 0 1 2 5 6 7 8 11 13 

A-1 98.8 98.4 86.8 80.0 73.8 84.6 83.9 33.1 83.1 88.0 

A-2 97.0 89.2 89.0 97.6 67.9 87.6 97.2 33.4 67.2 86.9 

A-3 98.5 99.3 87.0 72.8 79.0 88.5 93.1 30.4 78.0 89.2 

A-4 95.3 98.8 89.4 82.5 79.5 86.6 89.9 16.3 71.5 88.4 

A-5 97.6 99.0 89.4 69.0 83.7 85.9 81.3 4.1 71.7 88.1 

A-6 98.1 98.8 86.5 77.6 76.5 88.9 90.1 19.9 80.7 88.3 

Table 2 Quantitative results of the object-based classification 

 

While the data presents several challenges, we obtained resulting 

F1-scores that globally vary between 88.0% and 89.2%. Planar 

dominant classes are among the best-recognised classes, and the 

improvement margin is found for the board, windows, doors and 

clutter classes. It is interesting to note that while chair variation 

in orientation, shape, size and distribution is really high, the 

detection rate is still performing above 83.9%, and is consistent 

independently of the considered dataset as seen in Figure 7.  

 

 
Figure 7 Ground-truth vs prediction for Area 5 of the PCID5 

 

Also, the clutter class presents a relatively low score as it contains 

a large variance in the "objects" it contains, thus providing a great 

candidate to improve scores at the classification level by refining 

elements within (see Figure 8).  

 

 

 
Figure 8 Ground Truth (Top) vs Classified result (Bottom) 

We can also note that columns and beams (in light green and blue 

in Figure 8), geometrically share similar properties to walls for 

some portions, and thus can become another problematic case to 

improve on. To get better insights on its performances, we 

present in Table 3 the associated precision and recall scores over 

the biggest area of the S3DIS dataset: Area 5. 

 

Area 5 Ceil. Floor Wall Win. Door Table Chair Board Clutter 
W. 

Av 

  0 1 2 5 6 7 8 11 13   

precision 97.2 98.9 82.8 92.4 90.8 85.4 74.8 88.1 79.2 89.2 

recall 97.9 99.2 97.1 55.1 77.6 86.3 89.0 2.1 65.4 88.9 

f1-score 97.6 99.0 89.4 69.0 83.7 85.9 81.3 4.1 71.7 88.1 

mIoU 95.3 98.1 80.8 52.7 72.0 75.3 68.5 2.1 55.9 78.7 

Table 3 Precision, recall, F1-scores and mIoU over Area 5 

 

We note that the precision and recall values are high and close to 

one another for the three structural classes. However, the 

windows and door classes show a drop in recall scores, which is 

explained by the direct proximity and similar geometry to 

surrounding walls. The problematic class (expected) is the board 

class, with a recall score of 2.1%, thus no close to no-detection. 

This is due to the undiscernible geometric change that group 

points within wall segments and would be detectable only using 

additional information such as colour. 

Finally, while the clutter class is an overly broad class, 

performances are still above 71% F1-score but give a great 

improvement margin with a low recall score at 65.4%. In general, 

low recall values shown in Table 3 are mainly due to the 

geometric distinctiveness challenge of classes definitions, which 

is not found in the segmented point cloud. This resemblance is 

due to a lack of contrasting geometric criteria for accurately 

defining the classes separation. In future work, we will study the 

addition of other characteristics such as spectral information, to 

allow a more distinct feature definition of each class. 

 

5. DISCUSSIONS AND FUTURE WORKS 

In this article, we provide an unsupervised segmentation 

framework followed by an object-based classification within 3D 

point clouds. A Random Forest classifier is applied to label all 

segments, depending on their feature values. A direct gain is that 

the segmentation reduces the number of inputs to be classified by 

several magnitudes (e.g. from several billion of points to a 

hundred thousand segments). This improves the scalability of 

computationally expensive machine-learning algorithms to 

enable the semantic segmentation of large point clouds. 

 

One of the most crucial steps in the approach is achieving a valid 

segmentation. It should keep points from different target objects 

separated, while creating segments that are sufficiently large to 

provide meaningful additional features, such as segment size, 

shape, and number of neighbours. The analysis of indoor objects 

is especially challenging since object definitions are sometimes 

ambiguous and gradual transitions exist at object boundaries. Our 

approach provides an innovative way to tackle these challenges 

and improve the scene understanding through spatial 

contextualisation and instancing such as in Figure 9. 

 

  
Figure 9 Segment instances for each class (left) and their associated 

class (right) 

 

To test the robustness of the "one-button" method to varying 

scenarios, several experiments are conducted on other complex 
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buildings with labelled point clouds from different sensors and 

platforms, in different environments (indoor, outdoor, buildings) 

and with different objects of interests (AEC-related, BIM-related, 

navigation-related). Current investigation are very promising 

(E.g. Figure 10), and results produced by applying the self-

learning parameter estimation method are found to be preferable 

to manually selected and fine-tuned parameter values. 

 
Figure 10 Segmentation results on a noisy indoor point cloud captured 

by a hand-held laser scanner Zeb-Revo 

 

In particular, we found that we would often overestimate the ideal 

values for ε and τ to avoid a costly re-computation of normal 

estimate and segmentation. In contrast, lower values for these 

parameters would afford a better extraction of detailed 

information from the point cloud. Generally, results show that the 

approach outperforms conventional methods both in computing 

performances and accuracy. It is very robust to noise, 

misadjusted density and provides a clear hierarchical point 

grouping where fully unsupervised parameter estimation gives 

better results than "user-defined" parameters. The presented 

method is easy to implement. It is independent from any high-

end GPUs, and mainly leverages the processor and the Random-

Access Memory in its current state. It is crucial for many 

companies that do not possess high-end servers, but rather web-

oriented (no GPU, low RAM, and Intel Core processors). As 

such, it is easily deployable on a client-server infrastructure, 

without the need to upgrade the server-side for offline 

computations. It is to expect a coherent result within 10 minutes 

for a dataset of 100 million points. 

 

By conducting the experiments, we stressed that using segments 

as the base unit for classification is a promising alternative to the 

classification of individual points. Indeed, the geometric detail 

and accuracy of the original 3D point cloud is preserved for use 

in further analyses, while permitting an instance delineation per 

class. The object-based classification using Random Forest 

classifier delivers state of the art results with a minimal training 

time and a particularly useful potential to generalise. One can 

incorporate it in a semantic segmentation workflow easily by 

labelling a small sample of the data that was tested up to 25% of 

any dataset proving a small drop in correct prediction. We 

delineated F1-scores close to the sharpness results of the 

segmentation. Down the line, it is used for extracting the surface 

of ceilings, walls, or floors if one wants to make digital 

quotations (Poux et al., 2017b); it can provide a basis for 

extracting semantic spaces (sub-spaces) organised regarding 

their function (Poux et al., 2017a, 2016); it can be used to provide 

a basis for floor plans, cut, section creation or visualisation 

purposes (Kharroubi et al., 2019). These are currently 

investigated as part of future works. As it stands, the 

methodology permits offline automatic segmentation, 

classification and modelling as shown in Figure 11. 

 
Figure 11 Example of an .obj file automatically created from the 

segmentation results 

 

Finally, the unsupervised segmentation and supervised 

classification is easily extensible by limiting over-segmentation. 

For example, one can differentiate clutter based on connectivity 

and proximities to enhance the classification further (e.g., clutter 

on top of a table may be a computer; clutter linked to the ceiling 

and in the middle of the room is a light source). Some of these 

potentials are addressed as research tracks.  

 

6. CONCLUSION 

Object-based classification has the benefit of using informative 

features such as contextual relationships for classification and 

object interpretation. However, it is highly dependent on the 

previous tasks that lead to the creation of a segmented dataset, 

and associated feature set. Our unsupervised approach permits to 

ensure a robust segmentation delivering sharpness scores close to 

90%. It also provides a fully automatic workflow without human 

supervision. Future work will explore the possibility given by the 

approach to generalise to complex scenes and massive datasets, 

as well as self-supervised classification possibilities to provide 

hyper-automation. 
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