

AUTOMATIC CONVERSION OF CITYGML TO IFC

N. Salheb*, K. Arroyo Ohori, J. Stoter

3D Geoinformation, Department of Urbanism, Faculty of the Built Environment, Delft University of Technology,

Julianalaan 134 Delft 2628BL the Netherlands

KEY WORDS: CityGML, IFC, Conversion, GeoBIM

ABSTRACT:

The trend of increased usage of both BIM and 3D GIS and the similarity between the two has led to an increase in the overlap between
them. A key application of such overlap is providing geospatial context data for BIM models through importing 3D GIS-data to BIM
software to help in different design-related issues. However, this is currently difficult because of the lack of support in BIM software
for the formats and data models of 3D Geo-information. This paper deals with this issue by developing and implementing a
methodology to convert the common open 3D city model data model into the most common open BIM data format, namely CityGML
(Gröger et al., 2012) to IFC (buildingsmart, 2019b). For the aim of this study, the two standards are divided into 5 comparable subparts:
Semantics, Geometry, Geographical coordinates, Topology, and Encoding. The characteristics of each of these subparts are studied
and a conversion method is proposed for each of them from the former standard to the latter. This is done by performing a semantic
and geometrical mapping between the two standards, converting the georeferencing from global to local, converting the encoding that
the two standards use from XML to STEP, and deciding which topological relations are to be retained. A prototype implementation
has been created using Python to combine the above tasks. The work presented in this paper can provide a foundation for future work
in converting CityGML to IFC. It provides an insight into the relationship between the two standards and a methodology for the
conversion from one to the other, and the process of developing software to perform such conversion. This is done in a way that can
be extended for future specific needs.

1. INTRODUCTION

Since 2008 there was an increase in the use of Building
Information Modeling (BIM) within the construction industry.
Similarly, Geographic information systems (GIS) have been
increasingly used to generate detailed 3D data, and in particular
3D city models. Both GIS and BIM can, therefore, provide 3D
data, but they differ in terms of their characteristics and focus. As
a result, BIM models are more detailed and semantically rich than
GIS. On the other hand, GIS has less detailed but more updated
datasets describing the environment in a wider area (Arroyo
Ohori et al., 2018). The trend of increased usage of both BIM and
3D GIS and the similarity between the two has also led to an
increase in the overlap between them.

A possible application of such overlap is providing geospatial
context data for BIM models through importing 3D GIS to BIM
software (Figure 1). Currently, this is difficult because of the lack
of support in BIM software for the formats and data models of
3D Geo-information. This paper aims to address this issue by
providing a methodology to convert the common open 3D city
model data model into the most common open BIM data format,
namely CityGML (Gröger et al., 2012) to IFC (buildingsmart,
2019b).

* Corresponding author

.
Figure 1. Contextual design of a new building requires the BIM

models of the immediate surroundings

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

127

2. BACKGROUND

Both CityGML and IFC provide a representation of different
aspects of 3D models, including semantics, geometry, topology,
and appearance. However, they differ widely in the way they
store and represent this data. Hereafter, the characteristics of each
standard are analyzed, divided into 5 main components in order
to make it clear how to compare and later convert between each
of them. These components are: Encoding, Semantics,
Geometry, Coordinates, and Topology.

2.1. CityGML

Encoding: CityGML is an application schema for GML 3 that is
based on XML. It provides a common definition of basic entities,
attributes, and relations of a 3D city model. It has a tree
representation of data that will create a hierarchal structure that
reaches down to individual features and attributes. In CityGML,
objects can be represented in five different levels of detail, where
objects become more detailed with the increased LOD and it
differs regarding its geometry and thematic representation.

Semantics: In CityGML, features are an abstraction of real-
world objects and, semantically, it is modeled by classes that are
specified using UML notation. These geographic features may
have an arbitrary number of spatial and non-spatial attributes.
(Kolbe - 2009 - Representing and Exchanging 3D City Models
with Ci.Pdf, n.d.).

Geometries: The geometries of geographic features are
represented as objects that have an identity and further geometric
substructures. Buildings and building objects' geometrical
representations are defined implicitly. This means that an object
is defined by attributes that define its sub-elements, which are
then combined to form the complete object.

Coordinates: In CityGML all coordinates belong to a world
coordinate reference system (CRS) and local transformations are
not allowed, which means that geometry belongs to exactly one
fixed place in space.

Topology: The topology model of GML3 follows a well-defined
relational schema between elements, which is a line of full
decomposition of n-dimensional topological primitives into (n-
1)-dimensional primitives, which again are decomposed down to
the level of nodes (0D) (Kolbe, 2009).

2.2. IFC

Encoding: IFC is an open standard and format to exchange BIM
data, it provides a very detailed semantic model for 3D building
(Eastman et al., 2011; Shen et al., 2010). The IFC architecture
has an entity-relationship model that is based on Express
relations. It consists of hundreds of entities that have a hierarchy
that is based on object inheritance relation (buildingsmart,
2019b). The most common file format is IFC-SPF which has a
STEP encoding which is a plain text format that is human
readable and more compact compared to XML.

Semantics: Since the scope of IFC is restricted to buildings and
sites, no topographic feature classes like terrain, vegetation,
water bodies, etc. are included. IFC is a semantic model like
CityGML, but with a different scope and at a different scale (El-
Mekawy et al., 2012, p. 160). And unlike CityGML there is no
formal approach adapted for multi-scale representation
(Borrmann et al., 2013, p. 1).

Geometries: There are distinctive geometrical models
characterized in IFC for example: CSG (Constructive Solid
Geometry), BRep, or Sweeping. The semantic implementations
of objects are unambiguously mapped in IFC with a strict
separation between geometry and semantics. In IFC 2x3 there are
653 entities, however, most of these classes are used to create a
spatial relation between elements and their geometric
representation.

Coordinates: IFC has classes that can describe the information
required for georeferencing. IFCSite (buildingsmart, 2019a) can
have the information of a geographic reference point for the
project site in WGS84 with Longitude, Latitude, and Elevation.
If these values are given, it provides absolute placement in
relation to the real world. The geographic reference point would
be the location of the point (0.,0.,0.) of the local placement of the
IFCSite.

Topology: The IFC structure is designed to support dynamic
modeling, that provides the users with the flexibility to represent
their building data. All the objects in IFC can be created using
some core elements, these core elements contain the general
information. This flexibility in IFC results in different possible
ways of connecting two different elements in IFC.

3. METHODOLOGY

Figure 2 shows an overview of the methodology that we have
developed to convert CityGML to IFC. The first step in the
methodology is to study and provide a theoretical conversion for
each of the different components of both standards, these are:
semantics, geometry, topology, encoding, and georeferencing.
Next, all these conversion requirements are combined in one
implementation and then implemented via an incremental
development process starting from converting a simple dataset to
a complete dataset and different datasets. Next, a collection of
software is selected to check the results. By checking the results
in this software, the methodology is improved accordingly, and
the implementation is debugged in an iterative process. At the
end of this process, the conversion implementation is finished.

Figure 2. Overview of methodology

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

128

3.1. Encoding

Encoding is the first major obstacle that can obstruct the
conversion. Here, a software is developed using Python to read
the source XML data, parse the data, apply the transformation,
and write the STEP file (STEP, 2017) for IFC. The development
of the Python tool is done incrementally, for example: starting
from converting one single CityGML element (such as a wall) to
IFC, then converting a complete building and then including
other buildings and other city objects. The difference between the
two data models requires remodeling of the source elements from
the hierarchical encoding of CityGML to their counterparts of the
non-hierarchal encodings in the IFC data model.

3.2. Geometry

The CityGML geometry of buildings consists mainly of 2D
surfaces. On the other hand, IFC objects are built using different
geometry representations including: sweep volumes, explicit
faceted surface models, and CSG (Arroyo Ohori et al., 2017). To
be able to convert an element from CityGML to IFC; the accurate
matching geometry should be created. Since the focus of this
research is on converting buildings classes, the representations of
IFCWall and IFCSlab are particularly interesting since it is
possible to model the whole LOD2 building geometry with these
two classes. In IFC 2x3, the use of 'SweptSolid' and 'Clipping'
representations is supported for these classes. Also, the general
representation types 'Brep', 'SurfaceModel', and 'BoundingBox'
are allowed (buildingsmart, 2017). In this research, the direct
conversion from 2D surface in CityGML to 'SurfaceModel' in
IFC is performed.

Figure 3 shows the conversion process, where the same process
is repeated for every surface element in CityGML. Here, the
source file in CityGML is a ground surface that is defined by a
linear ring that consists of 6 points:

Figure 3. Example of CityGML GroundSurface geometry to be

converted to IFC

The total number of values in gml:posList is 21 defining the
coordinates of 7 points because the end of the ring is the same as
the beginning. Here, using element tree
tree.findall('.//{%s}posList' % ns_gml) is used to a create list of
IFCCartesianPoint entities, where IFCCartesianPoint is a point
defined by a three-dimensional Cartesian coordinates system.
The list of these points forms an IFCFaceOuterBound, which
defines the outer boundary of the face, i.e. IFCFace. To define
the geometric representation of the face the following entities
inheritance is defined:

IFCOPENSHELL
↳ IFCSHELLBASEDSURFACEMODEL
 ↳ IFCPRODUCTDEFINITIONSHAPE
 ↳ IFCSLAB

The resulting geometry is compliant with the requirement of the
IFC standard and provides an accurate syntactical representation
of the external shell of the building. But it is lacking the real
volume of the emanates (i.e. thickness) as would probably be
found in IFC datasets that are generated from BIM models.

3.3. Coordinates

To georeference the resulting IFC data file out of the source
CityGML files, the following process is followed: Firstly, a
reference point for the model is created, this is done by iterating
over all the points in the model and selecting the minimum value
for all the points. For example, in Figure 4, a reference point for
a GroundSurface in CityGML is created, with an EPSG:28992
coordinate system.

Figure 4. Creating a reference point based on minimum values

Secondly, the values of all points are converted to local
referencing in relation to the reference point. The local
referencing is calculated by subtracting the values of all points
from the reference point value, which is shown in Figure 5.

Figure 5. Converting calculating local referencing to all points

Lastly, latitude, longitude in WGS 84, and elevation of a project
are dedicated to the IFCSite class (Diakité, 2018). BIM model
coordinates are usually stored in an IFC transformation file.
Since the EPSG:28992 system in the Netherlands is based on XY

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

129

coordinates that are aligned with longitude and latitude, the
rotation degree is not needed (Diakité, 2018).

3.4. Semantics

For semantics mapping, different criteria are used to create
semantics mapping between the IFC domain and the CityGML
domain, including; checking if there is an existing class in IFC
that matches the source CityGML class, and the possibility to
match the geometry, and the semantic matching practiced in
different research. For example, in Kavisha (2015), the classes
and notations of the two data models are collected and semantic
mapping is created. In addition, the different practices in software
that deals with this problem, most notably in FZK Viewer
(Hütter, 2016). That helped to match the semantic terminologies
of objects and classes used in the data models, which are shown
in Table 1:

CityGML IFC

AbstractBuilding IfcBuilding

-GroundSurface
-FloorSurface
-CeilingSurface

IfcSlab
-GroundSlab
-FloorSlab
-CeilingSlab

RoofSurface IfcRoof

-WallSurface
-InteriorWallSurface

IFCWall
-Interior Wall
-Exterior Wall

WallSurface IfcCurtainWall

GenereicCityObject IfcBuildingElementProxy

SolitaryVegetationObject IfcBuildingElementProxy

Opening
Door
Window

IfcOpeningElement
IfcDoor
IfcWindow

BuildingInstallation IfcBeam,
IfcColumn,
IfcCovering,
IfcStair,
IfcRailing,
IfcRamp

Table 1. IFC-CityGML Mapping (Kumar & Saran, 2015), own

work

Based on this table, CityGML models in different LODs can be
converted to IFC while preserving most of their semantic
information (El-Mekawy et al., 2012). Based on the above
proposed semantic mapping, the semantic transformation is
performed based on the mapping in Figure 6:

Figure 6. Semantic mapping application

3.5. Topology

It is important to show the spatial structure of the project
elements using ‘IfcRelAggregates’. This is particularly important
for some BIM software to read the IFC file correctly. To
complete this relation IfcRelAggregates is used to represent the
physical containment of the buildings in the IFCProject, this
creates a certain level for the building in the spatial structure,
which allows the use of ‘IfcRelContainedInSpatialStructure’ to
assign sub-elements of the building. It is worth noting that an
element can be assigned once to a certain level of spatial
structure. However, using IfcRelContainedInSpatialStructure
spatial containments can be assigned on multiple levels. Hence a
wall, for example, can be contained in both a building and a
building story. For the purpose of this study no additional spatial
relations are created beyond the relations that originally exist in
the CityGML dataset (aggregation and containment), hence no
association of the elements to a building story for example.

The complete methodology resulting model is shown in Figure
7:

Figure 7. The complete methodology resulting data model

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

130

 In the figure above the following transformations are shown
numbered:

1. Semantic mapping from CityGML features to IFC
objects.

2. Creating Geometry resources for IFC objects based on
source CityGML geometry.

3. Creating Georeferencing point from the CityGML
dataset.

4. Georeferencing IFC objects.
5. Storing Georeferencing information in the IFCSite

object.

4. IMPLEMENTATION

The main implementation part consists of a program named
“CityGML2IFC.py” it is a script file written in Python 3. When
compiled, the program will convert a source file in CityGML to
the destination file in IFC. The complete code and license
information is be found on GitHub here:
https://github.com/nsalheb/CityGML2IFC

Table 2 shows the modules that are imported and, which should
be preinstalled before running the program:

Module names usage

XML.etree.ElementTr
ee

Is used here for parsing the XML
data

os To interact with the operating
system where the computer is
running, for example, reading time
and file bath.

time To read the current time and
stored in the created IFC files

itertools Is used to create a hashtagged
unique id with an incremental
value starting from a given value

sys Is used to allow files to be written
on the hard disk

numpy To perform mathematical
operations such as finding
minimum value or subtract arrays

UUID To automatically generate unique
IDs

pyproj To convert the projection of the
resulting file

Table 2. Necessary modules for the Python program to run

The function ‘CityGML2IFC (path,dst)’ is the main function of
this application, in which all the other functions are called. Here,
path refers to the source CityGML file and dst is the destination
IFC file. The main operations that are performed within
CityGML2IFC(path,dst) are described as follows. The source
CityGML file is parsed using ‘xml.etree.ElementTree’. Next, the
CityGML version is identified based on the root tag. The
namespaces are created based on the CityGML version as

dictionaries with keys and value. Next unique ids are generated
for every object using the function ‘guid()’which will
automatically generate a unique id for every time it is called. For
example: 'dcdc161f86a246cfb37dcb'. The results from the
conversion are printed in a destination file. With the format:
‘dst.ifc’. The file dst.ifc starts with the mandatory header part
with the following information: file description, name, and
schema. In which other IFC compatibility formatting is added
such as time and file destination. Followed by the data part.
(STEP-File, ISO 10303-21, 2017). Which consists of a sequence
of entities, where each line represents a different entity. The
names of these entities are defined by a sequence of numbers that
is generated using a counter starting from 1000.

Other tools the tools that are used in this research are:

1. FME: to view and select and apply basic
transformations on CityGML and IFC datasets.

2. FZK viewer: useful and fast to view data for both
formats; CityGML and IFC. Moreover, it can apply
basic transformations between the two data formats
which are useful for testing the developed
transformation.

3. ArchiCAD and Revit: both are BIM software and they
are the most commonly used by users in the BIM
world. This software is used to visualize and test the
resulting IFC datasets. Moreover, they are used to
produce samples for IFC data.

4. IfcCheckingTool: which is an analysis tool for
checking the semantic and syntactic correctness of IFC
data.

5. A set of BIM software to test the results on, namely:
FZK Viewer, DDS-CAD viewer, Arreddo BIM viewer,
BIM Vision, ArchiCAD, Revit.

5. VALIDATION

5.1. Rotterdam 3D 2.0

To test the implementation, different CityGML datasets rea used,
particularly Rotterdam3D 2.0, This data is in LOD2 and based on
both BAG and Rotterdam-Height model (Hoogtebestand) it
contains the following features: Buildings, Terrain model, Trees,
Street lanterns, Underground Cables, Other specially created city
objects such as the Erasmus bridge.

5.2. Filtering the Dataset

IFC models are generally more rich and detailed datasets than
CityGML with regards to buildings. However, IFC2x3 does not
support some feature data types such as; Vegetation and
Textures. Therefore, these features are ignored within the scope
of the project. For these features that require to be filtered, the
filtration process is done automatically because of the
implementation method of choice, this is done as follows; The
software will look for features with a certain tag (say: building)
and convert these features. If a future tag is not incorporated in
the program, then it will be automatically left out of the
conversion (say: vegetation). Another filtration of the data is
done based on areas, feature type, or featured ID.

5.3. Incremental development

Incremental development was done to make the methodology
complete. After every test, the methodology was adjusted, and
the conversion was developed to reach the complete software
hence the “incremental “description.
This procedure to check the results is as follows:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

131

1. FZK viewer: check if the results shoes probably on it

FZK viewer (visual inspection).
2. Check with BIM viewer software (DDS-CAD viewer,

Arreddo BIM viewer).
3. Check with Building information modeling software

(Revit, ArchiCAD).
4. FZK viewer: check message log, if any message report
5. Use IfcCheckingTool tool to see advanced errors
6. Check with users.

In the beginning, initial conversion for LOD2 buildings was
performed, the resulting IFC building was able to be viewed on
FZK viewer after ignoring the error messages. However, for one
building there were 32 errors found divided into 7 categories.
These errors were a result of inaccurate conversion and indicated
certain areas of the program to be improved by resolving these
errors. Table 3 describes these errors and how they were solved.

Error type Error name How the error is solved

Data prepare Illegal GUID
found, 10
errors:(in
every element
including 2
times for both
IFCsite and
IFCbuilding)

Some elements had
incorrect GUID, for
example, because of too
many characters in GUID or
including a space in the
name. This problem was
solved by giving accurate
IDs for all elements. As
shown in the example
below:
‘IFC-wall’→
‘36d1601925d54a5ca6a4cd
’

EccoError Runtime
error:
incomplete
assignment, 7
errors

In STEP encoding; when
assigning an object to
multiple other objects the
comma should be removed
at the end of the list as
shown in the example
below:
3. [#109,#110,

] →
[#109,#110]

EccoError Runtime
error:
unresolved
reference, 2
errors

References to unexacting
objects were removed

EccoError Runtime
error: missing
parameter for
construction
type
IFCRoot, 1
error

For unknown parameters,
the sign: “$” is added. To
avoid these kinds of errors:
missing parameter

EccoError Runtime
error: too
many
parameters

The number of parameters
should be accurate
according to the IFC
standard.

EccoError Runtime
error:

For unknown parameters,
the sign: “$” is added. To

parameter
expected

avoid these kinds of errors:
parameter expected

MapView_00
2

(can’t find
file material
in FZK
program)

This is a program-related
error, When the capabilities
of a program, in this case,
FZK viewer, are unable to
view a defined material in
the data file.

Table 3. Errors after initial conversion and how they were

solved

After fixing the above errors, FZK viewer was able to view the
results, unlike other software. Also, noticeably some errors are
related to the program itself, for example, a missing material is
considered an error in FZK while in other viewers is not. This
error is fixed by adding material entities to the files and creating
a relation between the different entities.

The IfcCheckingTool is an analysis tool for checking the
semantic and syntactic correctness of IFC data. The check
considers IFC Schema versions as of IFC2X3 in the file formats
SPF (STEP Physical File) and ifcXML. In an automatically
generated interactive report, the results can be sorted according
to different criteria. As far as possible, a hyperlink to the
corresponding definition in the IFC specification is output for
each error, and the error within the instance document can be
displayed via an EXPRESS navigation window.

After running the tool on the above city object that does not
contain any errors according to FZK message log, then an error
report is generated. According to the report, there are 68 errors,
these errors consist mainly of a missing definition for example:

- No view definition in the header
- No material definition

The later problem was fixed by assigning different materials for
every kind of element: (wall, roof, ground). However, adding
materials increased the size of the file exponentially and can be
ignored if not needed. Adding correct IFCRELAGGREGATES
has fixed the problem with the conversion making the files
readable with all the tested software. With ArchiCAD and Revit
you can add elements to the resulting file. With Revit, you can
even edit the resulting file. Basic editing with Revit includes
moving elements such as walls and roofs, copy and paste
elements, applying an array copy, and creating facades and
sections. Revit is also able to provide a list of found errors. These
errors were also traced and fixed (as much as possible in the final
conversion).

6. CONCLUSIONS

In this paper we have described the methodology that we have
developed to convert CityGML to IFC. The methodology is a
result of trial and error in which a validation process of
intermediate result splayed a crucial role.
Form our research, we can conclude that taking controlled
CityGML data set as input (Rotterdam 3D for example), the
methodology can convert the data set to a semantically accurate
IFC2x3 data set that is readable by all BIM software and editable
with some (e.g. Revit). The ability of a BIM modeling software
also depends on the ability of the software itself to deal with IFC
files. Besides, the resulting BIM models are geographically

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

132

referenced with a local coordinate system. And it has the
necessary topological relations to be accurate schematically.

Some attributes are carried to the IFC file from CityGML.
However, attributes are dataset dependent and the program
should be edited accordingly for each different dataset. IFC data
model is expected to provide enough ability to retain most of the
attributes from CityGML in a straightforward way, but that
requires checking which attributes are to be retained. The
resulting semantic conversion is shown in Figures 8 and 9.

Figure 8. Source CityGML example dataset

Figure 9. Resulting IFC dataset

This method to convert CityGML to IFC has different
applications. The resulting IFC models could give context to
designers directly in their software. This would help them in
multiple design-related issues such as visualizing the shadow that
their new building casts on neighboring buildings, assessing
quickly whether the gardens of neighbors are visible, and
detecting any clashes between a new project and its surroundings.
This conversion can also encourage the production of BIM
models that are possible to be prepared and later be exported to
CityGML. Converting CityGML to IFC can also be helpful for
creating complete BIM models for buildings that require one.
Another application is the use of the resulting models to create a
simplified BIM model of buildings and then develop the models
using BIM software to create a thematic representation of
buildings.

6.1. Discussion

This research provides a basic framework of conversion from
CityGML to IFC. It is possible with additional work and
adjustment to extend the work to include more feature classes and
other versions of CityGML and IFC.

It is clear from the research and practice that the complexity of
IFC also comes with flexibility, in contrast to the strict rules of
CityGML. This leads to the conclusion that there could be
different ways in terms of semantics and geometry to convert
some elements from CityGML to IFC, which can lead to a
different result.

Different BIM software deals with IFC data in different ways.
This was helpful to provide different readings to debug the errors.
It was evident also that commercial software such as Revit
expected only completely accurate IFC models to be imported,
unlike free software such as FZK Viewer. This could be because
commercial software tries to push its own proprietary data
formats.

6.2. Future work

It is important to make the conversion adequate to the needs of
the user so that unnecessary information is left out from the
conversion to reduce file size and for simplicity. One approach
to be taken is to make the conversion as complete as possible by
including all the possible information. Next, we can leave out
parts of this complete conversion according to the user needs, this
can be done by developing specialized tools or provide the users
with the possibility to run the software with different options;
“with material” and “without material” where the later create a
smaller in size files.

This study presents a methodology of conversion with certain
assumptions of the state of the source CityGML data. Any
changes with the source data require some adjustments on the
methodology. One important limitation that could be faced with
other data sets is the geographical reference system. This
research is done on data with an EPSG:28992 coordinate system.
Data that belongs to a different coordinates system would require
some adjustments accordingly. The study focuses on producing
data in IFC2x3 format, while IFC4 is available since January
2019 and it is expected to become more prevailing in the
upcoming period hence the required adjustment should be
considered.

ACKNOWLEDGEMENTS

The authors would like to thank Ordnance Survey GB
(https://www.ordnancesurvey.co.uk) and 1Spatial
(https://1spatial.com/) for sponsoring the publication of this
paper.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
Research & Innovation Programme (grant agreement no. 677312,
Urban modelling in higher dimensions).

REFERENCES

Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., &
Jubierre, J. R., 2013: TRANSFERRING MULTI-SCALE
APPROACHES FROM 3D CITY MODELING TO IFC-
BASED TUNNEL MODELING. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information
Sciences, II-2/W1, 75–85. https://doi.org/10.5194/isprsannals-II-
2-W1-75-2013

buildingsmart., 2019a: IFCSite. http://www.buildingsmart-
tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcsit
e.htm

buildingsmart., 2019b: Start Page of IFC2x3 Final
Documentation. http://www.buildingsmart-
tech.org/ifc/IFC2x3/TC1/html/index.htm

Diakité, A., 2018: About the Geo-referencing of BIM models. 13.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

133

El-Mekawy, M., Östman, A., & Hijazi, I., 2012: An Evaluation
of IFC-CityGML Unidirectional Conversion. International
Journal of Advanced Computer Science and Applications, 3(5).
https://doi.org/10.14569/IJACSA.2012.030525

GIS and BIM Integration Will Transform Infrastructure Design,
2018: Redshift EN. https://www.autodesk.com/redshift/gis-and-
bim-integration/

Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-H., 2012: OGC
City Geography Markup Language (CityGML) Encoding
Standard. 344.

Hütter, J., 2016: KIT - IAI - FZKViewer [Text].
https://www.iai.kit.edu/1648.php

Kolbe, T. H., 2009: Representing and Exchanging 3D City
Models with CityGML. In J. Lee & S. Zlatanova (Eds.), 3D Geo-
Information Sciences (pp. 15–31). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-87395-2_2

Kolbe, 2009: Representing and Exchanging 3D City Models with
Ci.pdf. (n.d.).

Lee, N., & Hollar, D. A., 2013: Probing BIM Education in
Construction Engineering and Management Programs Using
Industry Perceptions. 8.

Arroyo Ohori, K., Diakité, A., Ledoux, H., Stoter, J., & Krijnen,
T., 2018: Final report 10 January 2018. 30.

STEP-file, ISO 10303-21., 2017: [Web page].
https://www.loc.gov/preservation/digital/formats/fdd/fdd000448
.shtml

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-127-2020 | © Authors 2020. CC BY 4.0 License.

134

