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ABSTRACT: 

 

Sensors are the vehicle through which Internet of Things (IoT) applications collect timely data of which are communicated to objects, 

or “Things”, to make them aware of their environment. With multiple sensors within an IoT system sending continuous streams of 

data, the potential scale of data is large, so efficient data management and useful representation is a key concern. As the information 

required from sensors benefit from a spatial context, 3D indoor models, such as IndoorGML, have been identified to support this 

condition. As it stands, a standardised structure to the amalgamation of sensors with IndoorGML has not been defined. The goal of 

this paper is to explore this opportunity by firstly, reviewing previous approaches to the integration of the two systems. Research into 

the interpretations of sensor information through existing standards is conducted before narrowing these attributes down into a minimal 

profile according to identified functional requirements of sensor applications. Finally, this knowledge is organised into a conceptual 

data model and presented as a thematic module in IndoorGML. 

 

 

1. INTRODUCTION 

The Internet of Things (IoT) is set to disrupt industries as we 

know it with the number of internet-connected devices already 

surpassing the total human population and is continuing to grow 

exponentially (Dave et al., 2018). As the name suggests, it 

involves a network of connected devices, sensors and actuators 

(“Things”) that are able to make dialogue with one another over 

web communication protocols (“Internet”). Through this system, 

it is aimed that data can be gathered and analysed, and responses 

to events in the physical world be created autonomously with 

minimal human intervention (Gubbi et al., 2013).  

 

A key proponent of this technology are the sensors. A sensor is a 

small device capable of monitoring and collecting data on real-

world conditions including audio, visual, chemical, 

environmental, positioning, and proximity information through 

sensing physical phenomena such as temperature, light, 

humidity, and vibrations. Their capability to provide real-time, 

context-rich insights about the environment have opened up 

opportunities in the smart buildings space, with sensing 

technologies being used in an ever-growing list of applications 

from proactive facility management systems which are able to 

self-regulate building services according to the feedback and 

needs of its occupants, as well as can play a role in reactive 

emergency response (Jia et al., 2019). With the notion of Internet 

of Things quickly becoming a household name, and even more 

so in industry, the wealth and timeliness of information 

assembled by IoT sensor sources has a need to be communicated, 

stored, and managed efficiently. 

 

Spatial models are a significant opportunity to accomplish these 

goals as (1) they are visual representations of spaces, (2) they are 

proven urban information analysis and management tools, and 

(3) geometric and semantic descriptions of space can be 

discerned. When it comes to representing the indoor 

environment, two of the most renown spatial models are the 

Industry Foundation Classes (IFC) from the Building 

Information Modelling (BIM) domain and Indoor Geography 

Markup Language (IndoorGML) from the Geographic 

Information System (GIS) domain.  

 

IndoorGML was devised by the Open Geospatial Consortium 

(OGC) to overcome the absence of space modelling and 

topological relationships of BIM standards, such as IFC, which 

focus on feature representation (Kang, Li, 2017). IndoorGML 

places magnitude on the semantics and relationships of indoor 

spaces, of which are significant to describe location and 

activities. It accomplishes this by adopting a cellular space model 

where spaces are embodied as cells mapped to nodes within the 

topology space,  which have defined connectivity and adjacency 

to other nodes through edges and are further semantically 

categorised (e.g. navigable and non-navigable) (Lee et al., 2016). 

In this work, we have chosen to focus on IndoorGML because, 

unlike BIM standards, IndoorGML was developed with the idea 

to support Location Based Services (LBS), which naturally 

involves the inclusion of IoT sensors to support activities such as 

indoor navigation. Although previous versions of the standard 

provided limited support to such options, the version 2, which we 

are targeting here, is bringing several improvements for a 

stronger LBS support, including for example POI definitions 

(Claridades et al., 2019), modelling of indoor features (Diakité 

and Zlatanova, 2016). 

 

However, the current state of knowledge in this area is limited to 

conceptual proposals (Tang et al., 2019). Standards, including 

SensorML and ISO 19115, have been developed that are capable 

of organising sensor information, but there exists no open method 

that have integrated them with spatial information models. This 

is critical as sensor data is prone to being misinterpreted (Dawes 

et al., 2008) if sensor readings, sensor metadata and contextual 

awareness are not analysed in synchrony as these aspects are 

usually correlated. For example, if a temperature reading of a 

certain room is much higher than that of adjacent rooms, by 

gaining an understanding of the space’s conditions such as its 

occupancy levels, existence of heating devices etc., it can provide 
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a critical layer of reasoning. Additionally, a lack of 

standardisation in representation makes sensor interoperability a 

challenge due to the proliferation of varying sensor types, usages, 

manufacturers, protocols and software, garnering it difficult to 

deploy and manage large-scale sensor networks (Ding et al., 

2013) without extensive fiddling into their interfaces. This may 

limit sensors to operate only within its application domain.  

 

Taking everything into account, a gap in the research has been 

identified in the development of an open standard that integrates 

3D spatial models with IoT sensors. It is the objective of this 

study to bridge this gap by proposing a conceptual framework 

uniting both IndoorGML and sensor information. As an indoor-

navigation centric spatial model, IndoorGML currently does not 

have any well-defined modules that cater to the adoption of 

sensor systems, which leads to inefficiencies in setting up GIS-

IoT systems and adversely affects information flow among 

heterogenous devices and networks. 

 

In this paper, a review on previous work towards the integration 

of sensors into indoor spatial models, as well as two existing 

standards that can describe sensors will be undertaken in Sections 

2 and 3. Section 4 presents a study towards discovering the 

fundamental properties of sensors. A proposition of the 

integrated data model is presented in Section 5 before the paper 

is concluded with a summary of research project and any future 

directions in Section 6. 

 

2. PREVIOUS WORK TOWARDS THE INTEGRATION 

OF SENSORS INTO 3D INDOOR MODELS 

The need to integrate building models with sensor data in a 

generic way is unmet. However, evaluation of related work can 

be used to further push research further into this direction. 

 

2.1 Integration of IFC with SensorML 

After study into numerous existing sensor metadata standards, a 

prototype of a SensorML based integration with IFC was decided 

by Liu and Akinci (2009). Their methodology consisted of 

comparing six existing standards including IEEE 1451, ANSI 

N42.42, SensorML, TransducerML, oBix and IFC in relation to 

how they described the metadata properties of location, measured 

object(s), measurement, calibration, sensor readings, interface, 

and functional/spatial aggregation.  

 

SensorML was able to represent most richly each of these 

criteria, though it was not able to infer the measured object (i.e. 

what space/objects are being measured). It was also realised that 

IFC was adept at embodying the environment and location of the 

sensor, whilst SensorML can accurately pinpoint sensor readings 

and metadata, and so form a compatible pairing that marries the 

strengths of BIM with the strengths of IoT sensors. A prototype 

using IFC Parser to edit an IFC model and SensorML Model 

Editor to input sensors according to their data model were able to 

validate their claims of the feasibility of a sensor-integrated 

model under the IFC standard. 

 

Due to the potential of SensorML for describing sensors as 

recognised in their work, it was deemed worthy to review it, as 

given in Section 3.1.  

 

2.2 Extending IFC for specific sensor support 

Instead of combining two representations of BIM and sensors 

into the one model, Theiler et al. (2017) have opted for an 

approach that defines an extension, which they named IFC 

Monitor, to the existing IFC standard. This was executed by 

defining a subset of new classes. Three main entities – structural 

health and monitoring and control system, sensor network and 

sensor nodes – were established into new IFC classes – 

IfcMonitoringControlSystem, IfcSensorNetwork and 

IfcSensorNode, and integrated within the existing hierarchal 

structure of IFC (see Figure 1). For example, the first two are 

both able to be satisfactorily represented by the IfcSystem class 

as they aggregate smaller components, sensor networks and 

nodes respectively, for a common function. Accordingly, they 

have an inheritance relationship with that class.  

 

 
Figure 1. IFC Monitor model (from Theiler et al., 2017) 

 

A prototype of the IFC-based system was tested to investigate its 

effectivity in sensing changes in the test structure to mimic 

monitoring of structural health. The sensors were able to detect 

the deformations and so their proposed schema was effective. 

  

In a similar vein, Rio et al. (2013), took the existing sensor 

property sets of IFC, and adapted it for their structural sensors, 

for application within the structural health monitoring area, as 

well. Because the type of sensor this study used, a vibrating wire 

strain gauge sensor, was not already defined in IFC, a custom set 

of properties Pset_SensorTypeVibratingWireSensor, that 

addressed all the sensor data’s requirements and was compatible 

with IfcSensorType, was crafted. As part of their validation 

process, they created a BIM including a virtual vibrating wire 

strain gauge sensors and were able to exhibit that their prototype 

was successful in visualising sensors within a building 

information model and performing structural analysis. Whilst the 

approach was viable, it was deemed as inconvenient due to the 

differing requirements of BIM applications. 

 

Whilst the concern for this investigation is to support sensors in 

a universal means, the methodologies and results of both works 

are still valuable, even if they have been applied to the field of 

civil engineering. This is because they demonstrate the ability of 

existing spatial models (i.e. IFC) to be revised to accommodate 

specific sensors and their use cases through (1) the creation of 

new classes that inherit from existing elements within the 

standard or (2) adapting existing profiles to accommodate for that 

sensor, revealing possible approaches the problem. 

 

3. REVIEW OF EXISTING STANDARDS FOR SENSOR 

REPRESENTATION 

 

3.1 Sensor Model Language (SensorML)  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-135-2020 | © Authors 2020. CC BY 4.0 License.

 
136



 

3.1.1 Description of SensorML: Sensor Model Language 

(SensorML) is an OGC standard to encode sensor attributes to 

enable their discovery, selection, processing, and actuation. 

 

Processes are designed in SensorML to classify components such 

as physical and virtual hardware (e.g. detectors, actuators, and 

sensors) and actual processes (e.g. computations, mathematical 

functions). Given an input, such as a reading of a phenomena by 

a sensor, a method can be applied over it using passed parameter 

values to generate an output which is either numerical or 

descriptive in nature. Optionally, metadata can be defined to aid 

in documentation and provide more context.  

 

A sensor for our purposes can be best represented as a 

Component, specifically a PhysicalComponent class – real 

devices in which spatiotemporal position is significant. A model 

of this class is given in Figure 2. 

 

 
Figure 2. Data model for the PhysicalComponent class 

 

At the base layer is a PhysicalComponent which has a single 

attribute – a method. This feature inherits properties related to the 

spatial and temporal contexts (e.g. attachedTo, position, 

timePosition) from AbstractPhysicalProcess of a sensor 

component. The AbstractPhysicalProcess is also a type of 

AbstractProcess comprising of a set of descriptions including 

inputs (e.g. wind), outputs (e.g. wind chill, wind speed), 

parameters, featuresOfInterest, configuration and modes, of 

which also inherits properties from DescribedObject, a class to 

define metadata. 

 

Metadata, which is optional and should not be required for the 

proper execution of a process, is annotated through lists of 

descriptive attributes including keywords, identification (e.g. 

shortName, processorID, serialNumber), classification (e.g. 

sensorType, intendedApplication), constraints (e.g. validTime, 

securityConstraints and legalConstraints), characteristics (e.g. 

dimensions, weight, power demands, lifetime), capabilities (e.g. 

measurable range, sampling frequency, operational and 

survivable limits), references (e.g. contacts and documentation), 

and history.  

 

3.1.2 Evaluation of SensorML: SensorML embraces a strong 

focus on geolocation by targeting multiple approaches to 

expressing location –  it can be described through text 

description, point, vector (e.g. latitude, longitude, and altitude), 

trajectory and process (e.g. orbital model). Therefore, even 

dynamic components are supported, and a true heading and pitch 

degrees together can provide a sensor’s orientation. This trait 

makes it fit for incorporation into 3D models. 

 

Other advantages of the standard is that it is rich in information 

that can classify a sensor according to its associated keywords, 

identification, references and history fields and qualify its data 

due to the facility to specify constraints, characteristics and 

capabilities. Additionally, its physical inputs can be processed 

via the method property of PhysicalComponent to compute 

outputs without the need for extra software. For example, 

windchill can be derived from temperature and wind speed. 

 

Though, a major shortcoming with the standard is that the 

definition of the sensing area and coverage is not encapsulated in 

the standard, wherein the sensor data’s location is usually 

attributed to that of the sensor itself. This means that there is no 

way to determine the spatial extent of data or to geolocate an 

individual reading, where a query such as “What is the current 

humidity at (x, y, z)?” is difficult to answer. 

 

Overall, SensorML is a sensing standard that is highly applicable 

to the deployment and management of sensors with spatial 

models due to fact that it effectively combines both sensor-

related requirements (i.e. sensor reading and sensor metadata) 

into the one model, and adapts to multiple applications. 

 

3.2 ISO 19115 

3.2.1 Description of ISO 19115: The International 

Organization for Standardization created an information 

standard, ISO 19115, which was targeted at structuring and 

describing geographic metadata including information about its 

identification, extent, data quality, spatial reference, distribution, 

access and rights. In 2013, a revision, ISO 19115-2, was 

produced to add further capabilities in defining the acquisition 

and processing of data captured from other sources, such as 

remote sensing, as opposed to just imagery. This extension came 

about as information about the instrument and its measuring and 

computational methods was deemed valuable to support the 

process of transforming raw data into geographic information. 

The standard is composed as an XML schema, akin to the other 

sensor standard reviewed in this study, SensorML, and the indoor 

spatial model of reference, IndoorGML. Although it is not strictly 

a sensor standard, it has elements that capture properties about 

sensors’ metadata, observations, and locality, and hence was still 

regarded as relevant and worthwhile to examine. 

 

ISO 19115-2 is divided into many packages that each express a 

specific area of description. The root package is Metadata 

(MI_Metadata), which provides a high-level overview of all the 

information to represent geographic data. Metadata may be 

quantitative or qualitative as denoted by contentInfo. A range of 

descriptive parameters are defined within identificationInfo that 

further assists in classifying data according to its purpose, usage, 

constraints and spatiotemporal extent, as well as providing more 

avenues for sensors to be discovered through definition of 

keywords and topics. The quality of the data may be assessed on 

varying scales, according to metrics such as positional and 

quantitative accuracy. In addition, a history of the data’s 

activities (e.g. source) can be recorded. This is all achieved 

within dataQualityInfo of the schema. The 

acquisitionInformation (see Figure 3) attribute introduced in the 

second iteration of ISO 19115 is where the instrument, such a 

sensor, and platform information can be obtained. An acquisition 

can be defined in terms of its operational status and its objective 

which can be made up of a series of events.  
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3.2.2 Evaluation of ISO 19115: It is clear that ISO 19115 is 

observation-centric, as opposed to being a sensor standard, since 

nearly all groups of information revolve around the geographic 

data itself. Taking the example of maintenanceInfo, this 

parameter does not describe the instrument’s maintenance habits, 

it revolves around the upkeep of the resource or metadata records. 

 

 
Figure 3. Organisation of acquisitionInformation attribute 

 

A big concern is recognised as the lack of representation in 

positioning a sensor – a prominent factor required for integration 

with spatial models. This inevitably raises issues into how and 

where to locate the device. 

 

What ISO 19115 does well is through its comprehensive methods 

to classify data, such as by keywords, categories and usage, 

making the process of selecting the most appropriate sensor(s) to 

extract data from more precise. Its verbose log of a dataset’s 

lineage is also valuable when extracting changes or patterns in 

data over time. 

 

3.3 Comparison of SensorML and ISO 19115 

It is notable to point out that, whilst both standards function in 

somewhat opposite regards, SensorML is primarily used to 

describe sensors and secondarily, its data, whereas the focus of 

ISO 19115 is on the data representation but has references to its 

source – at their core, they describe sensors comparatively to 

each other. The key disparity between the two standards, which 

renders SensorML more suitable to use “out of the box”, is in 

their interpretation of sensor location, or lack thereof for ISO 

19115. This is a major disadvantage against ISO 19115 as this is 

a fundamental property required to localise a sensor into a spatial 

model. 

 

Both have their own strengths, from the wealth of metadata 

information that ISO 19115 supports and SensorML’s suitability 

for sensor definition. However, there is still a gap in the 

information. Moving forward, if concepts of either or both 

standards is reused, it will also need to be supplemented with 

representations of the sensing coverage. 

 

4. RELEVANT PROPERTIES OF IOT SENSORS 

The significant task of identifying the most relevant information 

items in view of standardisation, whilst maintaining a profile that 

is comprehensive enough that functional requirements of all 

application domains are met. 

 

4.1 Survey of Sensor Applications – Functional 

Requirements and Key Information 

A review of use cases involving sensors deployed in multiple 

industries from disaster relief to agriculture was conducted to 

extract the information that were considered critical to satisfy the 

application’s functional requirements. This exercise provided an 

understanding into the universal characteristics of sensor 

systems. 

 

Sha et al. (2006) proposed FireNet, a sensor network application 

used in fire response which can track firefighters working on the 

field, providing commanders at remote fire departments with 

information to detect potential hazards, unsafe conditions or 

events for informed real-time decision making and planning. 

Although it is not constrained to indoor environments, it is still 

relevant in answering this research question. This is because the 

principal function of this application, in detecting phenomena 

that is location-dependent, is equivalent to the motivations 

behind a sensor’s inclusion into spatial models.  

 

One of the key information items required is the location of the 

firefighter since commanders need to know where firefighters are 

in the field to direct them appropriately. This stream of data has 

to be received in a timely fashion and be to a high degree of 

accuracy since positions of the firefighters change rapidly and 

responses to events have to be made promptly and precisely due 

to the high risk nature of the work. The information about the 

firefighter such as their age and role, is useful for identification 

and tracking but does not correlate with an attribute of a sensor, 

rather it can be regarded as the measured object. Information 

about events that occur during the firefighting procedure (e.g. 

death of a firefighter) are observed as well. Because of the 

extreme environments that these sensors may operate in, the 

requirement for robustness is vital so properties such as operating 

requirements are captured to detect situations where nodes may 

fail or malfunction. If so, the status of each device should be 

closely observed as any faults with the sensor can result in 

distorted data. 

 

A similar mapping exercise between the characteristics and 

equivalent sensor properties was performed on further use cases 

and are given in Appendix A. 

 

In Table 1, a matrix with the applications on one axis and the list 

of sensor attributes on the other is made for comparison. 

Attributes are grouped under one of three categories – 

Observation, Metadata or Spatial Context – following the implied 

categories represented by the AbstractProcess, DescribedObject 

and AbstractPhysicalProcess classes of SensorML, respectively. 

 

 
Table 1. Matrix of sensor key information according to 

application 

 

Matrix of sensor information 

according to application

Fire rescue

Soil moisture 

distribution 

mapping

Habitat 

monitoring

Indoor air 

quality 

monitoring

Indoor 

emergency 

monitoring 

and navigation

Observation: Value and Unit Y Y Y Y Y

Observation: Timestamp Y Y Y Y Y

Observation: Event Y Y

Metadata: Observation Type Y Y Y

Metadata: Measured Object(s) Y Y

Metadata: Physical Qualities Y

Metadata: Status Y Y

Metadata: Operating Requirements Y Y Y

Metadata: Accuracy Parameters Y

Metadata: Accessibility

Spatial Context: Location Y Y Y Y Y

Spatial Context: Orientation and 

Motion

Spatial Context: Coverage
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From the sample of use cases examined, trends between their 

requirements and, consequently, their data models are made 

apparent: 

• Sensors are data collectors: A universal factor 

between all systems was the need to detect a type of 

phenomenon, whether it be the occupancy of a location 

or the humidity of an indoor environment. Thus, the 

principal role of the sensor nodes was to collect these 

data values which is associated with the property of  

“Observation: Value and Unit”.  

• Sensors and their data should have a temporal 

context: The concept of time is recurrent in every use 

case, albeit in its own utilisation. Applications either 

require access to information in a time-constrained 

manner such as is typical in emergency response. The 

sensor network designed for fire rescue relies on being 

able to obtain real-time data on the firefighters, the 

field and emergent events (Sha et al., 2006) as they are 

integral to fulfill objectives of live rescue monitoring. 

On the other hand, real-time data collection is not the 

requirement for soil moisture distribution mapping  or 

habitat monitoring. Rather, they utilise historical data 

for the intent of trend analysis. For the latter use case, 

by recording the times in which data is captured, 

predictive models built upon patterns in burrow usage 

according to time of day or how usage fluctuates 

throughout the breeding season (Mainwaring et al., 

2002) can be generated. A similar case can be made in 

agriculture, where field conditions, such as soil water 

content, can be monitored across a specified temporal 

interval to detect environmental patterns which can 

assist in the development of automated scheduling 

systems for activities such as irrigation (Ayday, Safak, 

2009). Thus, observations would benefit from being 

associated with a time property (“Observation: 

Timestamp”).   

• Sensors and their data should have a spatial 

context: The importance of spatial context is another 

persistent trend amongst the applications for two main 

purposes. Firstly, as with time, data can change along 

space such as where rooms within a building or areas 

across a soil field can possess varying microclimate 

conditions. A sensor in the use case of habitat 

monitoring needed to be specified a location to offer 

knowledge about which burrow was being observed 

(Mainwaring et al., 2002). Giving a sensor a location 

adds values in terms of context about its surroundings 

and can clarify what the feature(s) of interest are. In 

addition, users often want to know information about a 

specific region or point. It is not possible to do so if 

sensors, and by extent, their data, are not geo-

referenced in any way. All applications referenced 

some form of location, which was either a standard 

Cartesian coordinate or a symbolic representation, 

which is parallel to the property “Spatial Context: 

Location”. 

• Heterogenous sensors must be distinguishable: In 

systems in which different types of sensors are 

employed, there needs to be a way to classify 

observations captured by the network. An observation 

value by itself is just a number with no other 

identifying characteristics and in a database where 

sensor data from various sources may be stored, it is 

difficult to assume a selected observation is the 

corresponding data type to a query. Even with a unit, 

there may still be some misunderstandings. Such as in 

the case of the measurements of CO2 and VOC 

concentrations in the indoor air quality monitoring 

application, wherein both forms of sensors provide 

outputs in units of parts per million (ppm) (Abraham, 

Li, 2014). The trend follows that where there may exist 

different output types (“Metadata: Observation Type”), 

it is recommended represent these categories. 

• Accuracy of sensor data is a crucial quality: 

Multiple use cases mention the need to obtain accurate 

information such as being able to precisely locate 

firefighters in rescue missions. When discussing sensor 

networks, a major characteristic of these systems is in 

the need for them to be fault-tolerant (Gupta et al., 

2006), which refers to the idea that the system must still 

be able to operate to achieve its objectives and maintain 

its correctness even whilst a subset of sensor nodes fail. 

By involving a sensor’s working status (“Metadata: 

Status”), it forms a method to filter out 

misrepresentative data procured from faulty devices.  

• Sensors sometimes need to detect and respond to 

events:  Systems that provide autonomous services 

where information is periodically sampled or acquired 

in real-time from sensors are also typically tasked to 

detect events. The definition of an event is dependent 

on the application. Both emergency related use cases 

mention the ability to identify special events, such as 

dramatic changes of temperature in the case of fire 

emergencies. However, for this framework it is 

assumed that all processing of data will happen in the 

application side of the integrated system, rather than on 

the sensor-perception layer where the focus is on the 

capture and classification of raw data. 

 

To summarise, three crucial properties related to sensors are 

realised: the sensor’s observation value (and unit) as well as the 

spatial and temporal characteristics of this data. Supplementary 

attributes which contribute to the correct dissemination and 

assessment of data, include the type of data the sensor senses, and 

the sensor’s working state.  

 

4.2 Importance of Spatial Context on Data Classification 

 

One aspect that was not overtly remarked on is that of the sensing 

area or coverage of the sensor. Coverage is defined in this paper 

as the bounded spherical region around a sensor calculated as a 

function of its sensing radius and location,  which is in line with 

the disk model, the most renown sensor coverage model in 

literature (Wang, 2010). Whilst the sensor’s location is 

mentioned, this is not necessarily the same as the observation’s 

location. Since observations are not taken at discrete points, 

rather, the state of the surrounding area of a sensing device is 

taken, we take this space (i.e. the sensor’s coverage) as the 

observation’s locality. To obtain this critical insight, a sensor 

should have a defined coverage model within which it is able to 

operate. Thus, we consider a “Spatial Context: Coverage” 

property. This is the one of the greatest advantages of 

incorporating information from spatial models and what 

differentiates this schema from existing standards SensorML and 

ISO 19115. 

 

Furthermore, since a sensor might be located at a specific 

position and have a specific coverage, this placement will have 

influences on the its measurements. Reasons for this include 

impacts by obstructions or other objects (Tsai, 2008) in the space 

within its coverage. For example, longitudinal mechanical 

waves, such as those detected by acoustic sensors, are influenced 

by properties of materials and obstacles, such as walls, it passes 

through. Without reference to this spatial contextual information 
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as supplied by 3D models, it is not possible for computers to 

discern the effects of nearby objects to judge data appropriately.  

 

4.3 Sensor Property Profile 

 

To answer the question “What are the fundamental properties to 

describe sensors?”, a sensor property profile is presented in Table 

2. 

 
Table 2. Description of sensor properties to be used in the 

conceptual framework 

 

4.4 Comparison with Query Decomposition Approach 

The main interface with which users can interact with sensors is 

through queries, such as “How many meeting rooms in UNSW 

Main Library have been empty in the past hour?”. In their paper, 

Liu and Akinci (2009) identified two types of information queries 

– those related to sensor reading discovery and those related to 

contextual information discovery. Through decomposing both 

types of queries, they conclude that a query is made up of spatial 

constraints, functional constraints, temporal constraints, 

constraints related to target information, and a processing 

method. To assist with efficiency of searching, another category 

functional/spatial aggregation was also considered. 

 

The shortlisted attributed listed in Section 4.4 can be associated 

back to the query constraints in Figure 4. 

 

The two properties lists are comparable with the main differences 

due to the inclusion of accuracy-based traits and the exclusion of 

hardware associated interfaces in this study’s proposition, which 

is not a concern since the aim in contributing to a standard is to 

abstract those details out.  

 
Figure 4. Relationship between sensor information and query 

constraints 

 

5. INTEGRATED INDOORGML-SENSOR DATA 

MODEL 

5.1 Sensor Module for IndoorGML 

To adopt these sensor descriptions, we define a thematic 

extension module Sensor for IndoorGML. A conceptual data 

model for the integration of this module with IndoorGML is 

proposed in the form of a UML class diagram (see Figure 5), with 

an XML schema to be left for future work. The version of 

IndoorGML that was considered was version 2.0. 

 

The Sensor extension covers the semantic representation of 

sensors within indoor spaces. 

 

 
 

Figure 5. UML schema of proposed Sensor extension module 

for IndoorGML  

 

Three main classes form the basis of the Sensor module: 

 

1. Metadata, 

2. Observation, and  

3. Condition. 

 

Metadata represents characteristics of a sensor device which 

have been deemed pivotal to its classification and description as 

justified in Section 4. It is composed of an observationType, 

which is a description of the type of physical quantity that the 

sensor measures such as “occupancy”, “temperature”, or 

“voltage”; a sensorLocation defines the position of the sensor 

with respect to a 3D coordinate system; and includes a 

sensingRange to designate the maximum distance from the 

sensor’s position in which it has the ability to reasonably sense. 

 

The Observation class represents the reading of a sensor. A 

sensor may detect zero or more readings. Accordingly, an 

instance of Metadata can have zero or more Observation 

instances. Conversely, a sensor reading can only have ever been 

observed from one sensor, and so the relationship between 

Observation and Metadata has been assigned a multiplicity of 1. 

The Observation class includes a value, a type of gml:resultOf 
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which can specify a numeric quantity or have a reference to a file 

such as an image for camera-based instruments (e.g. CCTV). The 

unit (i.e. unit of measurement) is an optional parameter given a 

cardinality of none or one as in some instances, such as in 

occupancy counting, no measurement unit is involved. Each 

Observation must have a timestamp to denote the date and time 

at which it was measured. 

 

A sensor’s Condition is comprised of attributes which both are 

relevant to a sensor and its observations but may not necessarily 

be equivalent to one another due to the dynamic nature of the 

sensor. Firstly, spatialCoverage defines the geometry of the 

sensing or the sensed region for a Metadata and Observation, 

respectively. This will take the form of a sphere with centre at the 

sensorLocation and a boundary formed at the radius or the 

sensingRange in all directions. The coverage of a sensor might 

not always be the same as its observations, as is the case with 

mobile sensors whose location, and thus, coverage, can change 

with time. Secondly, a status attribute is prescribed to denote the 

Metadata’s changing operating condition or, for an Observation, 

it would be representative of the corresponding Metadata’s status 

at the time of reading and will remain constant. This is given as 

an enumeration of values UP, DOWN, PAUSED, UNUSUAL, 

and UNKNOWN1. As with coverage, a sensor’s status is not 

necessarily static and so its observations cannot simply inherit 

this parameter from it. As a result, the new class was formed as 

opposed to defining coverage and status properties within both 

the Metadata and Observation classes to avoid duplication. It is 

mandatory for a sensor to have a Condition as enforced by the 

one-to-one association between the Metadata and Condition 

classes. However, for Observation and Condition, if an 

Observation does not have its own Condition, it would use the 

corresponding Metadata’s values by default. Accordingly, the 

association between an Observation and a Condition is given a 

multiplicity of none or one. 

 

The Sensor module is integrated into the core module of 

IndoorGML via two main associations: Metadata to CellSpace 

and Condition to Node. In the former, the association of a 

Metadata to the CellSpace has a multiplicity of one as a sensor is 

only ever located in a single indoor space. On the other side of 

the relationship, a CellSpace, such as a room or corridor may 

have no sensor object within it. The association between the two 

classes provides a sensor with a symbolic (i.e. “Sensor 1 is in 

CellSpace A”) representation of location, in addition to its 

geometrically-defined locality as stipulated through the 

sensorLocation. The second key relationship is the duality 

relationship between a Node in IndoorGML and a Condition. 

Through this association, the geometry of a sensor’s coverage can 

be mapped into a node in the DualSpace as a SpaceLayer to 

signify what CellSpaces (which has an association of duality with 

Node) that the sensor covers (to some extent).  

 

5.2 Use Case for Indoor Navigation 

The proposed data model benefits from the consideration of a 

spatial coverage component for both the sensor itself and its 

readings. In this way, the system can be queried according to 

discrete positions in coordinate space, rather than just based on 

the semantic space descriptions.  

 

Taking the use case of indoor navigation, the primary application 

domain of IndoorGML, a question that might be asked is “Can a 

person at (x, y, z) in Room A be localised by its sensors right 

 
1 Sensor status adopted from PRTG Manual 

(https://www.paessler.com/manuals/prtg/sensor_states) 

now?”. If an object/feature can be localised, then navigation 

services such as pathfinding can be coordinated. This query may 

be answered through the following pseudocode in Figure 6. The 

procedure assumes that all localisation sensors are static at the 

current time, so the Condition parameter of the Metadata is used 

instead of that of the Observations. 

 

This query may be adjusted to verify whether a given space can 

be covered completely by its sensors and hence, whether 

localisation of any object in that space is possible. This can be 

achieved by employing Boolean vector operations with the 

Metadata’s Condition instances and CellSpace’s geometry 

property. This is a relevant question to the sensor coverage 

problem (Argany, 2011). 

 

 
Figure 6. Pseudocode for localisation related query 

 

6. CONCLUSIONS AND FUTURE WORK 

The two featured components of this research – IoT sensors and 

3D indoor models – form a mutualistic relationship. From the 

sensor’s perspective, it gains from the pairing through the offered 

geometric, semantic and topological interpretation of space 

which brings with it an understanding of the context in which a 

sensor operates. On the other hand, 3D indoor models, such as 

IndoorGML, can have access to real-time datasets about its 

spaces and objects to become dynamic and visual repositories of 

information, in what is traditionally seen as a static entity. 

 

With the current state of research in this field in its early stages, 

a review of related work has exhibited that links exist to tie sensor 

information with existing standards for indoor space, chiefly IFC. 

Thus, the integration of 3D models to IoT Sensors under 

IndoorGML is feasible. However, to our knowledge, there is no 

definitive solution yet in the form of an open standard to integrate 

the representation of the two elements. The main contribution of 

this study is then to explore this possibility.  

 

The research process towards this objective is described through 

a study of the core characteristics needed to represent sensors 

with respect to objectives of sensor and observation discovery. 

With this insight, we present a Sensor data model to be defined 

as an extension module of IndoorGML. Three main classes are 

developed – Metadata, Observation and Condition – which 

encompass descriptions of the chosen sensor attributes, which are 

associated with IndoorGML through the CellSpace and Node. 

 

Future work is required to discover to what extent IndoorGML 

can support the integration of IoT sensors under this proposition 

through the creation of a prototype to be tested under a range of 

independent variables including types of sensors and use cases as 

well as the sensors’ opportunity to be represented within a multi-

layered space model. Topics such as the effect of incorporating a 

sensor’s capabilities as part of the model for the evaluation of 

sensor data in terms of accuracy and reliability, an investigation 

into how to assess whether a sensor is able to transmit through 
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walls with respect to its sensing method and properties of the 

wall, and the utilisation of other sensor coverage models (e.g. 

sector model) are also possible areas of further research. 
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