
TOWARDS A GENERIC MAPPING FOR IFC-CITYGML DATA
INTEGRATION

Helga Tauscher 1,∗

1 HTW Dresden, University of Applied Sciences, Dresden, Germany - helga.tauscher@htw-dresden.de

KEY WORDS: BIM-GIS, IFC, CityGML, Graph transformation, Synchronization, Link generation

ABSTRACT:

Much work has been carried out on the topic of BIM-GIS integration. As a technical challenge in particular, research 
and development tackle the standard data formats of the two areas and aim for the conversion between, linking of 
or overarching querying over data sources of these formats. Usually, these operational cases (conversion, linking, 
querying) are examined in isolation or even treated as mutually exclusive and competing approaches. With Triple 
Graph Grammars, we propose to apply a method that allows to derive solutions for these operational cases from a 
common generic ruleset. We demonstrate this approach in a proof-of-concept implementation using eMoflon. Our 
work focusses on IFC and CityGML and we present and discuss a first end-to-end demonstration of integrating 
these standards with the proposed method. Going forward such representation of the correlation between IFC and 
CityGML, declarative, independent of particular operational implementations, can serve as a vehicle to capture 
and document acknowledged integration schemes for IFC and CityGML, complementing these two standards with a 
specification of their correlation.

1. INTRODUCTION

The integration of BIM and GIS is a precondition to
holistic analysis and planning of the built environment
on the building and urban scale. In particular, we find
growing interest in establishing a connection between the
two prevalent standard formats IFC in the construction
domain and CityGML on the urban scale, with an abund-
ant body of research and development. Several research-
ers have studied unidirectional transformation from IFC
to CityGML (e.g. Donkers et al., 2016). Other efforts
have tackled transformation in the opposite direction
(e.g. Salheb, 2019) or integrated queries over both IFC
and CityGML instances for holistic analyses (e.g. Daum
et al., 2017). Other use case scenarios require the gen-
eration of explicit links between two respective instances
or incremental updates. In this paper we report on work
in progress to implement IFC-CityGML integration in a
generalized manner.

The different operational scenarios — forward, backward
transformation, synchronization, consistency checking,
consistent model and correspondence generation — are
effectively based on the same correlations between the
IFC and the CityGML model. Thus if we had a uni-
versal representation of this correlation, the other op-
erational transformation systems could be deduced from
there. Triple Graph Grammars (TGGs) are built on that
idea and represent the correlation between the two re-
lated domain-specific metamodels (schemas) in the form
of a graph grammar (Schürr, 1995). Such a grammar con-
sists of a set of graph transformation rules, that collect-
ively describe all possible triples of two model instance
graphs and one correlation graph. In other words: a
TGG is a graph transformation system for the genera-
tion of consistently correlated pairs of model instances.
∗ Corresponding author

Building on a previous implementation for IFC-to-
CityGML (forward) transformation (Stouffs et al., 2018;
Tauscher, 2019; Lim et al., 2019; Tauscher and Stouffs,
2019) based on graph-transformation, we are now reim-
plementing the existing ruleset as a proper TGG ruleset.
For authoring the ruleset as well as derivation and exe-
cution of operational transformations we are now using
eMoflon (e.g. Leblebici et al., 2014). In Section 2 we de-
scribe the workflows to create the rulesets and show how
eMoflon supports and simplifies rule development com-
pared to our old system with a simple example ruleset.

EMoflon is based on the Eclipse Modelling Framework
(EMF) and uses ECore representations of the two type
graphs to be integrated. We have set up workflows to
generate ECore files for both IFC and CityGML from
the respective published standards documents. Our cur-
rent ruleset uses IFC4 Add2 TC1 (ISO 16739, 2013) and
the current CityGML 3 draft (Kutzner et al., 2020). We
discuss how to derive the eCore models and parse/seri-
alize instance models in Section 3.

In Section 4 we demonstrate the operational cases imple-
mented and tested using a simple example data set.

2. FROM FORWARD TRANSFORMATION
TO A GENERIC TGG

For the conversion from IFC to CityGML in the
IFC2CityGML project, we had used unidirectional graph
transformation due to the scope of the project and con-
siderations of efficient implementation. We had already
discussed the potential of triple graph grammars and
shown how forward transformation rules can be derived
from generic ones, that generate triples (Stouffs et al.,
2018). The current reimplementation does specify the
generic rules in the first place. Forward rules are then
only one of multiple operational transformation systems

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License. 151



ifcBuilding
IfcBuilding

aggregation
IfcRelAggregates

relatingObject

gmlBuilding
bldg:Building

buildingStorey
IfcBuildingStorey

relatedObjects

buildingPart
bldg:Storey

+

+

+

buildingSubdivision

Figure 1. Forward transformation rule in old system

to be derived. As an example of the reimplementation,
Figure 1 shows a forward transformation rule from our
old rule authoring and management system, Figure 6
shows the corresponding generic TGG rule as reimple-
mented.

The visual representation of the rules is similar in both
systems and like or old system and eMoflon also uses
a domain specific language (DSL) to specify the rules.
The diagrams are then generated from the (textual) DSL
with PlantUML1 which is based on GraphViz, same as
our earlier rule management platform (Tauscher, 2019).
The visualization support in eMoflon goes beyond rule
diagrams and does also help with visualization of model
instances or selected instance elements (see Figures 8 and
9 for examples). As a downside, we would like to see an
improved layout algorithm in eMoflon.

ifc1 : IfcObjectDefinition ifc2 : IfcObjectDefinition

r : IfcRelAggregates

RelatingObject RelatedObjects

Figure 2. Abstract rule for aggregation

gml0 : CityModelMember

gml2 : Building

gml1 : CityModelifc1 : IfcProject ifc2 : IfcBuilding

cityObjectMember

cityModelMember

:Buildin...

:Project...

Figure 3. Abstract rule for buildings

Also similar to our old application, eMoflon checks the
syntax of the rule DSL as well as the metamodels in-
volved. Here, the functionality in eMoflon supersedes
ours, because it allows metamodel checking for arbit-
rary models, while we only implemented checking on the
IFC side. Beyond checking, eMoflon simplifies rule au-
thoring with autocompletion both for the rule DSL and
1 PlantUML: http://plantuml.com

gml1 : Building

gml2 : Storey

ifc1 : IfcBuilding

ifc2 : IfcBuildingStorey

buildingSubdivision

:Buildin...

:Storey2...

Figure 4. Abstract rule for storeys

metamodels elements (e.g. type and attribute names).
The eMoflon implementation is based on Eclipse editors.

In our old rule system implementation, we ended up with
a large number of similar rules, which do only differ in
details, e.g. particular type or attribute names and are
identical otherwise. While we had implemented ways
to reuse rules in multiple rulesets, we could not reuse
smaller parts of rules. This is now possible with eMoflon
through a mechanism called “rule refinement”. Rules can
be marked as abstract and hence not to be applied in a
transformation directly, but only be used as blueprints
for derived (refined) rules. Figures 2, 3 and 4 show such
abstract rules. The rule in Figure 2 defines the IFC part
of an aggregation relation which is used identically for the
aggregation of buildings in projects (Figure 5) or storeys
in buildings (Figure 6), among others. Instead of fully
typing out these two rules, the rule in Figure 5 is created
as a refinement of the rules in Figures 2 and 3, whereas
the rule in Figure 6 is created as a refinement of the rules
in Figures 2 and 4. This allows for more fine-grained
modularity of rules.

gml0 : CityModelMember

gml2 : Building

gml1 : CityModel ifc1 : IfcProjectifc2 : IfcBuilding

r : IfcRelAggregates

cityObjectMember

cityModelMember

RelatingObjectRelatedObjects

:Buildin...

:Project...

Figure 5. Concrete rule for buildings (extends
aggregation, building rule, see Figures 2 and 3)

gml1 : Building

gml2 : Storey

ifc1 : IfcBuilding ifc2 : IfcBuildingStorey

r : IfcRelAggregates

buildingSubdivision

RelatingObject RelatedObjects

:Buildin...

:Storey2...

Figure 6. Concrete rule for storeys (extends aggregation,
storey rule, see Figures 2 and 4)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
152

http://plantuml.com


Apart from these functionalities that support editing and
maintenance of rulesets better than our old implement-
ation, eMoflon has also some further advantages with
regard to rule application, formal rigidity, and complete-
ness of implementation. EMoflon allows to substitute
the pattern matching engine and is currently distributed
with two different engines, Democles and HiPE. The lat-
ter is an incremental pattern matcher with can employ
multiple cores with parallelized rule application. Ecore
metamodels are not only to be defined on the source
and target side, but also for the correspondence graph.
Further, attribute conditions can be employed to con-
vert values (e.g. coordinate transformation) or establish
criteria for the equality of measures to be used when
searching for matches — something that our previous
conversion engine did only implement partially. In our
first implementation, the conversion engine could only
handle graph patterns of a specific structure and with a
fixed direction of edges (from entry to exit pair). For this
reason, inverse IFC attributes where essential and some
rules could not be interpreted by the conversion engine
due to the lack of inverses. EMoflon’s pattern matching
does not suffer from this restriction.

The most relevant advantages of eMoflon, however, are
the capabilities to (a) employ the Eclipse Modelling
Framework for arbitrary domain models, schemas, serial-
izations as described in Section 3 and (b) derive various
operational transformations as described in Section 4.

3. WORK AND DATA FLOW TO DERIVE
ECORE AND INSTANCE MODELS

Figure 7 shows the larger context of the IFC2CityGML
transformation. The parts that are not directly in the
focus of this work are greyed out, while the core parts
are highlighted in deep black. The core transformation
part, the square labeled “IFC2CityGML”, consists of four
models: the two metamodels on the left (IFC4.ECore.emf
and CityGML.ECore) represent the IFC4 and CityGML
schemas as EMF ECore. The TGG rules refer to these
models for the types of their elements. Similarly, the
two instance models on the right (BldgModel.ifc.emf and
BldgModel.citygml.emf) refer to these models as their
metamodels. Transformation, synchronization, and gen-
eration is carried out over these instance models.

The surrounding, greyed out part of the diagram in Fig-
ure 7 represents where the various input for the trans-
formation is originating from. This applies to both the
metamodels and the instance models as explicated in the
following sections.

3.1 Meta models

eMoflon is based on the Eclipse Modelling Framework
(EMF, Steinberg, 2009) and needs metamodels specified
as ECore. ECore is an implementation of EMOF (Es-
sential MOF) which in turn is a reduced variant of MOF
(Meta-Object Facility), a metamodelling standard ar-
chitecture defined by the Object Management Group
(OMG) in order to describe the Unified Modelling Lan-
guage (UML, ISO 19505, 2012; Fowler, 2004). The
EMOF is a subset of the Complete Meta-Object Facil-
ity (CMOF). As such the EMF with ECore constitutes a

suitable framework for the implementation of metamod-
elling solutions aiming to be interoperable with UML.

There are various ways to define metamodels and
schemas which can serve as the origin for the ECore
models, besides direct specification of the ECore in an
Eclipse editor using some graphical user interface. These
options include tools supporting model driven engineer-
ing (MDE), for example Sparx System’s software Enter-
prise Architect (EA), or their predecessors, CASE tools,
as well as visual and textual modelling and schema lan-
guages such as UML or EXPRESS, the XML schema
definition (XSD), JSON schema, and in a wider sense the
Web Ontology Language (OWL). There is also a light-
weight domain-specific language called Emfatic2 to de-
scribe ECore models. In the following, we focus on those
two options that are used to specify IFC4 and CityGML
3 and to publish the respective standards documents.

Up to the current version 4, the IFC schemas have
traditionally been defined in EXPRESS (ISO 10303-11,
2004) with the *.exp files being published as machine-
readable and formal specification of the schema alongside
informal documentation and description of the informa-
tion model3. To derive ECore models from EXPRESS,
Jakob Beetz has developed an early conversion library
called buildingSMART library4 which is used in BIM-
Server (Beetz et al., 2010). For this project, we use a
new development, which is work in progress and based
on the same graph transformation approach as the con-
version from IFC to CityGML.

To understand the similarity, look again at Figure 7.
In the upper left we can identify a square struc-
ture labeled “EXP2EMF” (mainly greyed out), which
consists of four models, with two metamodels (EX-
PRESS.ECore and ECORE.ECore) on the left and two
instance models (IFC4.exp.emf and IFC4.ECore.emf)
on the right. This resembles the same structure as
the square “IFC2CityGML” in the bottom right (deep
black). In fact, we are using the same principles, meth-
ods, and tools for the integration of the IFC schema in
EXPRESS and ECore as we do for the integration of the
building data in IFC and CityGML. This is possible, be-
cause ECore models themselves are defined with ECore.
The details and application cases for this integration go
well beyond the scope of this paper and implementation
is in an early stage. Here, we use Xtext (Bettini, 2016)
to generate the ECore model for EXPRESS and a parser
for *.exp schema definition files. Parsing of IFC4.exp
will result in an instance of the EXPRESS ECore model
(IFC4.exp.emf). From the TGG, we currently only use
the forward transformation from EXPRESS to ECore.
The instance model (IFC4.ECore.emf) generated from
the EXP2EMF transformation is henceforth used as a
metamodel in the IFC2CityGML transformation.

The new version of CityGML version 3, upcoming for
adoption, is for the first time modelled with Enterprise
2 Emfatic. A textual syntax for EMF ECore (meta-)models:
https://www.eclipse.org/emfatic/

3 buildingSMART IFC Specifications Database with of-
ficial IFC releases: https://technical.buildingsmart.org/
standards/ifc/ifc-schema-specifications/

4 OpenSourceBIM buildingSMART library: https://github.
com/opensourceBIM/BuildingSMARTLibrary

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
153

https://www.eclipse.org/emfatic/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://github.com/opensourceBIM/BuildingSMARTLibrary
https://github.com/opensourceBIM/BuildingSMARTLibrary


IFC4
ecore.emf

model

CityGML
ecore

BldgModel
ifc.emf

BldgModel
citygml.emf

transform
generate
synchronize

instance

TGG

parse
serialize

IFC
2

CityGML

link

EXPRESS
ecore

EXPRESS
grammar

ECORE
ecore

IFC4
exp.emf

IFC4
exp

BldgModel
ifc (SPF)

(XText)

IFC4
EA

CityGML
EA

BldgModel
gml

SPF
ecore

BldgModel
spf.emf

STEP SPF
grammar

(XText)

(EA bridge)

(EA bridge)

EXP
2

EMF

Figure 7. Work and data flow to integrate meta and instance models for IFC and CityGML integration

Architect and the respective EA project files (*.eap) are
published in the OGC Repository5. These files can be
converted to UML and further to ECore. For the first
step, we are using itemis’ YAKINDU EA bridge6 and for
the second step the Eclipse UML2 plugin7. This pro-
cess is potentially (and to a certain extend intentionally)
lossy. The UML is a visual modelling language, providing
diagrams to describe various aspects of software systems.
First, we are only interested in particular diagrams: class
and package diagrams. Second, we only need the ab-
stract syntax, not the visual diagram definitions. Third,
with ECore, we can directly handle only a subset of UML
(corresponding to the EMOF) and no extensions or pro-
files. The use of EA files through the EA bridge (or the
direct use of UML) can also serve as an alternative for
IFC metamodel input in upcoming IFC versions.

Both in the case of EXPRESS metamodel input and EA
or UML input we will encounter concepts that are not
directly covered by ECore. There is limited extensibility
of ECore through so-called annotations. In some cases
the EXPRESS construction can be replaced by an equi-
valent EMOF construction without loss. But since the
focus of this paper is on the integration and transform-
ation of building models, we must refer the reader to
future publications.

3.2 Instance models

The ECore instance models (BldgModel.ifc.emf and
BldgModel.citygml.emf in Figure 7) are expected as in-
put or to be generated depending on the operational
5 OGC CityGML 3 conceptual model repository: https://
github.com/opengeospatial/CityGML-3.0CMl

6 itemis YAKINDU EA-Bridge: https://www.itemis.com/en/
yakindu/ea-bridge/

7 Eclipse Model Development Tools (MDT) UML2: https://
www.eclipse.org/modeling/mdt/?project=uml2

transformation scenario. Accordingly they either need
to be parsed (if input) or serialized (if generated) to the
respective formats. In the diagram, the direction of the
parse/serialize arrow depends on the scenarios as follows:

• Forward transformation: parse IFC, serialize
CityGML (optionally link model)

• Backward transformation: parse CityGML, serialize
IFC (optionally link model)

• Linking: parse IFC and CityGML, serialize link
model

• Synchronization: parse everything, serialize
everything (as required)

EMF provides methods for persistence with the XMI
format (ISO 19509, 2014) and EMoflon supports these
out of the box consuming or producing XMI for the
source, target and correspondence model instance as well
as a protocol of the transformation. Listings 3 and 4
show the IFC and CityGML building model instances
as XMI: BldgModel.ifc.emf and BldgModel.citygml.emf
refering to the names of instance models in Figure 7.
However, in an operational engineering scenario we want
to use instance representations that are more commonly
used for data exchange in practice.

As serialization format on the IFC side we currently con-
sider only the STEP physical file (SPF, ISO 10303-21
(2016)) format, because it is the most compact so-called
implementation method for data following the Stand-
ard for the Exchange of Product Model Data (STEP,
ISO10303 series). An example is shown in Listing 1.
To populate the IFC building model, we develop an
Xtext-based parser. Xtext creates again an ECore model
from the SPF grammar (SPF.ecore) which is used as
the metamodel to be instantiated during parsing (List-
ing 2, BldgModel.spf.emf in Figure 7). In addition,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
154

https://github.com/opengeospatial/CityGML-3.0CMl
https://github.com/opengeospatial/CityGML-3.0CMl
https://www.itemis.com/en/yakindu/ea-bridge/
https://www.itemis.com/en/yakindu/ea-bridge/
https://www.eclipse.org/modeling/mdt/?project=uml2
https://www.eclipse.org/modeling/mdt/?project=uml2


the grammar imports and links against the IFC4 Ecore
(IFC4.ecore.emf). The schema model should be dynam-
ically imported in the future (not yet implemented). An
additional transformation step is done to actually instan-
tiate/bind the IFC model (bound instance model: Listing
3, BldgModel.ifc.emf). This is currently implemented in
one direction only, using the Xtend language.

On the CityGML side we consider the usual XML-based
serialization, but have not implemented anything yet.

Likewise, serialization of the correspondence instance
model is not yet covered apart from the default XMI
serialization. Viable formats would be, for example, the
multi model container according to Fuchs (2015) as de-
veloped in the German mefisto project8 (see also Fuchs
and Scherer, 2017; Fuchs et al., 2011) or the Information
Container for Data Drop (ICDD), ISO 215970 (2018).

The following listings illustrate the transformations from
IFC-SPF as input through a forward transformation
with excerpts from the serializations, only excluding the
CityGML serialization, which would be the final deriv-
ative. Figures 8 and 9 show the PlantUML generated
diagrams of these instances.

Listing 1. IFC-SPF of the spatial structure sample
(BldgModel.ifc), input to the forward transformation
#1= IFCSITE(’0 KMpiAlnb52RgQuM1CwVfd ’,$,’Gelaende ’,

’Ebenes Gelaende ’,’LandUse ’,$,$,$,. ELEMENT.,
(49 ,6 ,1 ,566000) ,(8 ,26 ,11 ,540400) ,110. ,$,$);

#2= IFCRELAGGREGATES (’1GO86 ...G9dnQ ’,$,$,$ ,#3 ,(#1));
#3= IFCPROJECT (’0 lY6P5Ur90TAQnnnI6wtnb ’,$,

’Projekt -FZK -Haus ’,$,$,$,$,$,$);
#4= IFCRELAGGREGATES (’0FWMH ...icROM ’,$,$,$,#1 ,(#5));
#5= IFCBUILDING (’2 hQBAVPOr5VxhS3Jl0O47h ’,$,

’FZK -Haus ’,$,$,$,$,. ELEMENT.,$,$,$);
#6= IFCRELAGGREGATES (’1Y0uy ...blObD ’,$,$,$,#5 ,(#7 ,#8));
#7= IFCBUILDINGSTOREY (’2 eyxpyOx95m90jmsXLOuR0 ’,$,

’Erdgeschoss ’,$,$,$,$,$,. ELEMENT .,0.);
#8= IFCBUILDINGSTOREY (’273 g3wqLzDtfYIl7qqkgcO ’,$,

’Dachgeschoss ’,$,$,$,$,$,. ELEMENT . ,2.7);

Listing 2. SPF-XMI of the spatial structure sample
(BldgModel.spf.emf), parsed SPF linked to the

schema, but not bound
<entities name="#6">

<type href="IFC4.ecore #// IfcRelAggregates"/>
<parameters >

<values v="1Y0uyqfGvXQyvJl5QblObD"/>
<values v="$"/>
<values v="$"/>
<values v="$"/>
<values e="// @data/@entities .6"/>
<values xsi:type="step:ParameterList">

<values e="// @data/@entities .15"/>
<values e="// @data/@entities .16"/>

</values >
</parameters >

</entities >
<entities name="#7">

<type href="IFC4.ecore #// IfcBuildingStorey"/>
<parameters >

<values v="2eyxpyOx95m90jmsXLOuR0"/>
<values v="$"/>
<values v="Erdgeschoss"/>

8 Mefisto – Management, Leadership, Information and Simula-
tion in Construction: http://mefisto-bau.de

<!-- more values -->
<values v=".ELEMENT."/>
<values v="0.0"/>

</parameters >
</entities >
<entities name="#8">

<type href="IFC4.ecore #// IfcBuildingStorey"/>
<parameters >

<values v="273 g3wqLzDtfYIl7qqkgcO"/>
<values v="\$"/>
<values v="Dachgeschoss"/>
<!-- more values -->
<values v=".ELEMENT."/>
<values v="2.7"/>

</parameters >
</entities >

Listing 3. IFC-XMI of the spatial structure sample
(BldgModel.ifc.emf), bound to the schema (after

instantiation)
<xmi:XMI ... xmlns="http://IFC4.ecore">

<IfcSite Name="Gelaende"/>
<IfcRelAggregates RelatingObject="/7"

RelatedObjects="/0"/>
<IfcRelAggregates RelatingObject="/0"

RelatedObjects="/6"/>
<IfcRelAggregates RelatingObject="/6"

RelatedObjects="/15␣/16"/>
<!-- skipping 2 objects -->
<IfcBuilding Name="FZK -Haus"/>
<IfcProject Name="Projekt -FZK -Haus"/>
<!-- skipping 7 objects -->
<IfcBuildingStorey Name="Erdgeschoss"

Elevation="0.0"/>
<IfcBuildingStorey Name="Dachgeschoss"

Elevation="2.7"/>
</xmi:XMI >

Listing 4. CityGML-XMI of the spatial structure
sample (BldgModel.citygml.emf), after

transformation
<Model.CityGML.Core:CityModel >

<cityModelMember cityObjectMember="/1"/>
</Model.CityGML.Core:CityModel >
<Model.CityGML.Building:Building buildingSubdivision="/2␣/3"/>
<Model.CityGML.Building:Storey name="Erdgeschoss">

<elevation elevation="/4"/>
</Model.CityGML.Building:Storey >
<Model.CityGML.Building:Storey name="Dachgeschoss">

<elevation elevation="/5"/>
</Model.CityGML.Building:Storey >
<Model.CityGML.Construction:Elevation />
<Model.CityGML.Construction:Elevation />

4. OPERATIONAL CASES DERIVED

To test the operational transformation systems derived
by eMoflon, we use very simple use cases restricted to
the spatial structure of project, buildings, storeys and
spaces. We limit our explanations here to buildings and
storeys. We have developed the respective provisional
generic TGG ruleset in Section 2 and use the IFC-STEP
import from Section 3.2.

As IFC input, where needed, we use a stripped-down ver-
sions of the KIT sample data9, mainly the FZK house.
9 KIT IFC samples: http://www.ifcwiki.org/index.php?title=
KIT_IFC_Examples

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
155

http://mefisto-bau.de
http://www.ifcwiki.org/index.php?title=KIT_IFC_Examples
http://www.ifcwiki.org/index.php?title=KIT_IFC_Examples


root_0_1 : IfcRelAggregates

Name = $

root_0_0 : IfcSite

Name = Gelaende

root_0_2 : IfcRelAggregates

Name = $

root_0_3 : IfcRelAggregates

Name = $

root_0_7 : IfcProject

Name = Projekt-FZK-Haus

root_0_15 : IfcBuildingStorey

Name = Erdgeschoss
Elevation = 0.0

root_0_16 : IfcBuildingStorey

Name = Dachgeschoss
Elevation = 2.7

root_0_6 : IfcBuilding

Name = FZK-Haus

RelatedObjects RelatingObjectRelatingObject RelatedObjects RelatedObjects RelatedObjectsRelatingObject

Figure 8. IFC instance of the spatial building structure

name = Projekt-FZK-Haus

name = Erdgeschossname = Dachgeschoss

cityModelMember_0_0_0 : CityModelMember

root_0_3 : Storey

root_0_0 : CityModel

root_0_1 : Building

elevation_0_3_0 : Elevation elevation_0_2_0 : Elevation

root_0_2 : Storey

buildingSubdivision

elevation

cityModelMember

elevation

cityObjectMember

buildingSubdivision

Figure 9. CityGML instance of the spatial building
structure

The original IFC files are filtered for the required entit-
ies of types IfcProject, IfcSpatialStructureElement,
IfcRelAggregates using the Opensource BIMserver
with respective queries.

We derive and test the following operational transforma-
tion systems, all of which are covered by the incremental
model transformation in eMoflon.

4.1 Sample data generation

This operational system generates triples of IFC and
CityGML with consistent correspondence according to
the given grammar. This can be useful to generate syn-
thetic sample data for the evaluation of new methods in
construction and urban planning as well as management
and communication in these processes (e.g. simulation,
data exchange, code checking).

The triple graph structure to be generated can be lim-
ited through the maximum number of applications for
a particular rule in eMoflon. The generated attributes
are controlled through operational attribute constraints.
EMoflon supports random value generation for common
data types out of the box. For enumerations, we have
implemented a new custom operational attribute con-
straint. One problem with sample data generation is that

the generated instance models might not have a reason-
able interpretation, for example if storey elevations and
heights are randomly assigned.

4.2 Bi-directional synchronization

This includes forward and backward transformation
(where only one of the two instance graphs, IFC or
CityGML, exists a priori) as well as updates of corres-
ponding models where either side has changed. The lat-
ter case is useful for example for updating an existing
city model with new building models derived from the
planning process or building application submissions.

We test forward (IFC2CityGLM) transformation with
the IFC-SPF input. For backward transformation we use
the forward transformation results and manually edited
ECore instance model. To test the update case, change
storey elevation, add another storey and additional prop-
erties (not handled by the rule set) on either side.

4.3 Consistency checking

This includes the case of an existing correspondence
model, where the whole triple is validated against the
TGG ruleset as well as the case of establishing a corres-
pondence model to complete a consistent triple according
to the grammar. The latter of these two is more interest-
ing for current use cases in BIM-GIS integration, where
data needs to be connected instead of converted.

To test this case, we use the variations generated during
bi-directional synchronization.

5. DISCUSSION

5.1 Summary

We have shown how eMoflon supports and simplifies rule
authoring as compared to our old implementation (Sec-
tion 2), how arbitrary domain models, schemas and seri-
alizations can be integrated, where our previous imple-
mentation was limited to IFC and CityGML (Section 3)
and how various operational transformations can be de-
rived from one general ruleset, where the previous imple-
mentation only supported forward transformation (Sec-
tion 4).

We have achieved the goal of demonstrating a first min-
imal End-to-end (except CityGML serialization) integ-
ration. In this process, manual adjustments where still
needed (e.g. ECore, XMI editing) to shortcut the de-
velopment process, but we are working towards a fully
automatic solution. Also, we have made deferments with
regard of complete implementation which are listed in
the following section.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
156



5.2 Limitations of our work

5.2.1 EXPRESS parser. The EXPRESS parser
implements most of the grammar, with the exception of
expressions, functions, procedures, rules. It would be in-
teresting, but not first priority, to evaluate whether, to
which extent and how constraint integration is useful and
feasible for the IFC-CityGML case.

5.2.2 EXPRESS-ECore ruleset. The ruleset for
metamodel integration (EXPRESS2EMF) is restricted to
the minimal useful ruleset: All named types are handled,
but no internals for declared, enumeration and select
types. Typed attributes and simple attributes are not
yet implemented. Further we did not cover inverse at-
tributes yet, since contrary to our earlier implementation
they are not necessarily needed.

5.2.3 STEP parser. The STEP parser does cur-
rently not handle escaped quotation marks, high code-
points and empty aggregations. Input files have to be
preprocessed to get rid of such constructs if existing.
Enumerations are ignored. Import of IFC Ecore model
on SPF parsing is still static, but dynamic import would
be preferable.

5.2.4 CityGML EMF ECore does not allow over-
riding of attributes ("redefining" in UML termino-
logy). For example, the Core.AbstractSpace.boundary
is redefined for the AbstractSpace subtype Build-
ing.Room.boundary. As a workaround we have renamed
the base feature, but a better solution is needed. Some
manual work is needed to handle names which are al-
lowed in UML, but not in Ecore, such as arithmetic op-
erations (*,+,-,/,. . . ). The EMF does a great job with
validation of ECore and display of errors. Apart from the
ones mentioned above, there are issues in the ISOTC211
subpackage, which we have not yet resolved. Subpack-
ages in general seem not to be handled well in emoflon,
which needs further investigation. Also data types did
not come through the YAKINDU EA bridge conversion
from EA. Further investigation of these issues is a lar-
ger amount of work, since CityGML 3 does pull in a
lot of dependencies resulting in a huge model. For now,
we rebuild a small portion as needed for conversion with
emfatic.

5.2.5 IFC2CityGML ruleset The IFC2CityGML
ruleset is far from completeness due to the goal of an
end-to-end demonstration of the integration. On a more
general level, the handling of optional attributes is not
implemented and needs to be investigated for the TGG
rules, but also for the metamodels.

5.3 Future work

Going forward from this first end-to-end proof of concept
implementation, completion of the various parts with
their limitations outlined in the previous section forms
the immediate agenda.

On the level of metamodels, EXPRESS-EMF integra-
tion and EA/UML-EMF integration are larger interest-
ing subjects of research and development also for other
use cases rather than IFC2CityGML integration.

We aim to extend the first proof-of-concept ruleset to
substantial coverage of the IFC-CityGML correspond-
ence, such that we can than test operational transforma-
tions with realistic IFC and CityGML data sets. This can
be achieved by reimplementation of the full existing IFC-
to-CityGML forward transformation. Even though this
ruleset provides a good base, the conversion to generic
TGG rules for eMoflon will require substantial work to
factor out some of the shortcuts in the forward transform-
ation where correspondence is currently not expressed as
declarative graph transformation rule but in an imperat-
ive way with so-called “converters”.

A more extensive implementation will allow us to com-
pare our previous implementation and the eMoflon im-
plementation with regard to criteria such as performance
and expressiveness.

EMoflon supports various pattern matching engines to
be used during rule interpretation. Currently, we are
using the Democles pattern matcher. We will also try
the newer parallel matcher HiPE and compare the two
pattern matchers in the context of the IFC2CityGML use
case. This will be interesting once we work with larger
datasets and rulesets.

6. CONCLUSION

This paper shows for the first time a proof-of-concept
for the application of a generic triple graph grammar
to the integration of BIM and GIS in general and IFC
and CityGML in particular. We describe workflows for
the generation of IFC and CityGML ECore and the
workflow for the creation of integration rules, such that
the approach can be applied to future standards ver-
sions or schema extensions. A basic (but self-contained)
IFC-CityGML ruleset is being developed and operational
transformation systems demonstrated and tested. We fi-
nally assess aspects of usability, expressiveness and per-
formance of the approach as compared to our earlier
forward-only implementation.

This work is in progress, under active development and
in an early stage. We document the development state,
progress, source code and usage notes in the Github re-
pository at http://github.com/hlg/EMF2EXPRESS.
We hope the development of the generic TGG ruleset can
foster a community discussion about BIM-GIS integra-
tion, in particular the details of the mapping between
IFC and CityGML. With the generic nature of the rules
and their independence of specific operational dataflow
requirements, they are suited to provide a technical base
for discussions about a canonical mapping between IFC
and CityGML and to facilitate the involvement of do-
main experts into the process. In our opinion, this
fits well with ongoing efforts to standardize BIM-GIS
integration such as the efforts of the IDBE working
group to identify use cases, semantic overlaps and in-
compatibilities across the BIM and GIS domains or the
joint ISO/TC 59/211 working group on GIS–BIM in-
teroperability (ISO/CD TR 23262). The approach can
also be transferred to other data formats, schemas and
metamodels such as GAEB or gbXML on the building
model and CityJSON or IndoorGML on the city model
side.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
157

http://github.com/hlg/EMF2EXPRESS


ACKNOWLEDGEMENTS

The author would like to thank Ordnance Sur-
vey GB (www.ordnancesurvey.co.uk) and 1Spatial
(www.1spatial.com/) for sponsoring the publication of
this paper.

REFERENCES

Beetz, J., van Berlo, L., de Laat, R., van den Helm, P.,
2010. BIMserver.org: An open source IFC model server.
Proceedings of the CIB W78 2010: 27th International
Conference. Cairo, Egypt.

Bettini, L., 2016. Implementing domain-specific lan-
guages with Xtext and Xtend: Learn how to implement
a DSL with Xtext and Xtend using easy-to-understand
examples and best practices. Community experience dis-
tilled. Packt Publishing, Birmingham, UK, 2nd edition
edition.

Daum, S., Borrmann, A., Kolbe, T., 2017. A Spatio-
Semantic Query Language for the Integrated Analysis of
City Models and Building Information Models, Springer
International Publishing, Cham, 79–93. doi:10.1007/
978-3-319-25691-7_5.

Donkers, S., Ledoux, H., Zhao, J., Stoter, J., 2016. Auto-
matic conversion of IFC datasets to geometrically and
semantically correct CityGML LOD3 buildings. Trans-
actions in GIS, 20(4), 547–569. doi:10.1111/tgis.12162.

Fowler, M., 2004. UML distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley,
Safari, Boston, MA, 3rd ed. edition.

Fuchs, S., 2015. Erschließung domäneübergreifender In-
formationsräume mit Multimodellen. Ph.D. thesis, TU
Dresden.

Fuchs, S., Kadolsky, M., Scherer, R.J., 2011. Formal
description of a generic multi-model. WETICE - 20th
International Conference on Collaboration Technologies
and Infrastructures. Paris, France.

Fuchs, S., Scherer, R.J., 2017. Multimodels: Instant nD-
modeling using original data. Automation in Construc-
tion, 75, 22–32.

ISO 10303-11, 2004. Industrial automation systems and
integration. product data representation and exchange.
part 11: Description methods: The express language ref-
erence manual. Technical Report 10303-11, International
Organization for Standardization, Geneva, Switzerland.

ISO 10303-21, 2016. Industrial automation systems and
integration. product data representation and exchange.
part 21: Implementation methods: Clear text encoding
of the exchange structure. Technical Report 10303-21,
International Organization for Standardization, Geneva,
Switzerland.

ISO 16739, 2013. Industry Foundation Classes (IFC) for
data sharing in the construction and facility management
industries. Technical Report 16739, International Organ-
ization for Standardization, Geneva, Switzerland.

ISO 19505, 2012. Information technology. object man-
agement group unified modeling lanuage (OMG UML).
part 2: Superstructure. Technical Report 19505-2, In-
ternational Organization for Standardization, Geneva,
Switzerland.

ISO 19509, 2014. Information technology. object man-
agement group XML metadata interchange (XMI).
Technical Report 19509, International Organization for
Standardization, Geneva, Switzerland.

ISO 215970, 2018. Information container for data drop.
exchange specification. part 1: Container. Technical Re-
port 21597-1, International Organization for Standardiz-
ation, Geneva, Switzerland.

Kutzner, T., Chaturvedi, K., Kolbe, T.H., 2020.
CityGML 3.0: New functions open up new applications.
Journal of Photogrammetry, Remote Sensing and Geoin-
formation Science (PGF), 88(1), 43–61. doi:10.1007/
s41064-020-00095-z.

Leblebici, E., Anjorin, A., Schürr, A., 2014. Devel-
oping eMoflon with eMoflon. D.D. Ruscio, D. Varró
(eds.), International Conference on Theory and Prac-
tice of Model Transformations (ICMT). Springer In-
ternational Publishing, Cham, 138–145. doi:10.1007/
978-3-319-08789-4_10.

Lim, J., Tauscher, H., Biljecki, F., 2019. Graph
transformation rules for IFC-to-CityGML at-
tribute conversion. Proceedings of the 14th 3D
GeoInfo Conference. Singapore, 83–90. doi:
10.5194/isprs-annals-IV-4-W8-83-2019.

Salheb, N., 2019. Automatic Conversion of CityGML to
IFC. Master’s thesis, TU Delft.

Schürr, A., 1995. Specification of graph translators with
triple graph grammars. E.W. Mayr, G. Schmidt, G. Tin-
hofer (eds.), Proc. of the 20th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG
’94), Springer, Berlin, Heidelberg, 151–163.

Steinberg, D., 2009. EMF: Eclipse modeling framework.
The eclipse series. Addison-Wesley, Boston, 2nd edition,
revised and updated edition.

Stouffs, R., Tauscher, H., Biljecki, F., 2018. Achiev-
ing complete and near-lossless conversion from IFC to
CityGML. International Journal of Geo-Information
(IJGI), 7(9), 355. doi:10.3390/ijgi7090355.

Tauscher, H., 2019. Creating and maintaining IFC–
CityGML conversion rules. Proceedings of the 14th 3D
GeoInfo Conference. Singapore, 115–122. doi:10.5194/
isprs-annals-IV-4-W8-115-2019.

Tauscher, H., Stouffs, R., 2019. Extracting different
spatio-semantic structures from IFC using a triple graph
grammar. Intelligent and informed: 24th Annual Confer-
ence of the Association for Computer-Aided Architectural
Design Research in Asia (CAADRIA 2019). Wellington,
New Zealand, 605–614.

Revised August 2020

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
158


	Introduction
	From forward transformation to a generic TGG
	Work and data flow to derive eCore and instance models
	Meta models
	Instance models

	Operational cases derived
	Sample data generation
	Bi-directional synchronization
	Consistency checking

	Discussion
	Summary
	Limitations of our work
	EXPRESS parser.
	EXPRESS-ECore ruleset.
	STEP parser.
	CityGML EMF
	IFC2CityGML ruleset

	Future work

	Conclusion



