
VISUALIZATION OF POINT CLOUD MODELS IN MOBILE AUGMENTED REALITY
USING CONTINUOUS LEVEL OF DETAIL METHOD

L. Zhang1,∗, P. van Oosterom1, H. Liu1

1 Faculty of Architecture and The Built Environment, TU Delft, the Netherlands - (L.Zhang-13, P.J.M.vanOosterom, H. Liu-6)@tudelft.nl

Commission IV

KEY WORDS: Point Cloud, Augmented Reality, Continuous Level of Detail

ABSTRACT:

Point clouds have become one of the most popular sources of data in geospatial fields due to their availability and flexibility.
However, because of the large amount of data and the limited resources of mobile devices, the use of point clouds in mobile
Augmented Reality applications is still quite limited. Many current mobile AR applications of point clouds lack fluent interactions
with users. In our paper, a cLoD (continuous level-of-detail) method is introduced to filter the number of points to be rendered
considerably, together with an adaptive point size rendering strategy, thus improve the rendering performance and remove visual
artifacts of mobile AR point cloud applications. Our method uses a cLoD model that has an ideal distribution over LoDs, with
which can remove unnecessary points without sudden changes in density as present in the commonly used discrete level-of-detail
approaches. Besides, camera position, orientation and distance from the camera to point cloud model is taken into consideration as
well. With our method, good interactive visualization of point clouds can be realized in the mobile AR environment, with both nice
visual quality and proper resource consumption.

1. INTRODUCTION

Visualizing the point clouds is an integral part of processing
point cloud data, which enables users to explore point clouds
more intuitively. However, most of the current point cloud ren-
derers are developed for non-immersive environments. In the
last few years, virtual reality (VR), Augmented Reality(AR)
and Mixed Reality(MR) come into public view. These new
technologies introduce some new ways of presenting 3D con-
tent. Different from MR and VR, AR applications can be used
on mobile devices without specific equipment like helmet and
handles. Therefore, there are already many mature applications
for mobile AR, such as architecture, industrial design, navig-
ation, advertisement, medicine, gaming, and so on. Neverthe-
less, the use of point clouds in the mobile AR application is
still waiting to be explored. In our paper, we will try to realize
the interactive visualization of point clouds in the mobile AR
environment.

To develop mobile AR applications, there are two mainstream
SDKs. One is ARKit by Apple, focusing on the IOS platform.
Another is ARCore by Google, which develops AR applica-
tions on the Android platform. In our paper, we will develop
our mobile AR point cloud applications with ARCore SDK.
AR is a quite complex technique, which involves sophisticated
mathematics, physics, and computer science knowledge. For-
tunately, ARCore provides plenty of built-in functions which
realize most of the basic operations needed by AR applications,
such as motion tracking, lightning, feature detection, etc. To-
gether with the Unity game engine and OpenGL, we can de-
velop a good-quality point cloud renderer in mobile AR.

Similar to rendering point clouds on other platforms, the biggest
problem of showing point clouds in mobile AR is the large
quantity of point cloud datasets. In mobile AR applications, the
frame rate needs to reach 30 fps with the limited CPU and GPU
∗ Corresponding author

resources. In order to reach the relatively high visual quality
and performance requirements, a cLoD (continuous level-of-
detail) method is introduced to realize the required interactive
visualization of point clouds in the mobile AR environment.

2. METHODOLOGY

2.1 Continuous LoD calculation

In our thesis, a method (Van Oosterom, 2019) will be taken to
generate cLoDs. This cLoD model is developed based on the
idea of refining ideal discrete level-of-detail and making them
be a continuous function. Compared with state-of-art dLoD
(discrete level-of-detail) methods, our cLoD model has an ideal
distribution over LoDs, which means we can realize a smooth
transition in density, avoid density shocks as present in dLoD
approaches and keep the desired relative point density as much
as possible.

Figure 1. blue bars: refined discrete level-of-detail, red curve:
continuous function (Van Oosterom, 2019)

In the following equations, L is the max level, l is a level
between 0 and L+1, and n is the number of dimensions. For

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

 
167



nD point clouds, there is an ideal continuous distribution func-
tion over levels.

f(l, n) =
2(n−1)l(n− 1) ln 2

2(n−1)(L+1) − 1
(1)

This function has Cumulative Distribution Function (CDF):

F (l, n) =
2(n−1)l − 1

2(n−1)(L+1) − 1
(2)

In our algorithm, random generator U (uniform between 0 and
1) is used to assign cLoD dimension l (value between 0 and
L+1) for the next point in nD space:

l = F−1(U) =
ln (2(n−1)(L+1) − 1)U + 1

(n− 1) ln 2
(3)

Thus, we can get continuous levels of detail model which ac-
cords with an ideal probability distribution.

2.2 Adaptive Point Size

Typically, when showing point clouds, the points will be shown
at the same size. However, there are some issues with this tra-
ditional rendering strategy.

Figure 2. Points with adaptive size(left) and with same
size(right)

First, as shown in Figure 2, if the size is too small, then there
will be obvious holes between points, which will be more no-
ticeable when zooming in. Second, if the size is too big, the
neighboring points will overlap a lot and cause a loss of in-
formation. Therefore, in order to get better visual quality, the
point size of each point is set as different values in our paper.

Based on the perspective projection matrix, we derive a formula
to calculate ideal point sizes at different depth in the viewing
z-axis direction. The ideal point sizes are determined by the
shape and size of the view frustum, the height of the screen,

Figure 3. Principle of Perspective Projection
(Scratchapixel, 2014)

and the distance from a point to the viewpoint in viewing z-axis
direction. As shown in Figure 3, ’r’ in the formula is the right
coordinate of the near clipping plane, and ’n’ is the distance
from the viewpoint to the center of the near clipping plane. With
this formula, points close to the camera will be larger, while
points far away from the camera will be smaller.

size =
−0.5 ∗ n ∗ r ∗ screenHeight

zeye ∗ tan(0.5 ∗ fov)
(4)

where r = right coordinate of near clipping plane
n = near clipping plane distance
fov = field of view
screenHeight = height of device screen
zeye = point depth in local space

These ideal point sizes are not only used while rendering the
points, but they will also be used in the next chapter to choose
the proper value for parameters of formulas used in the selective
query step.

2.3 Selective Query

The biggest issue of conventional dLoD methods is that there
will be a sudden change of density at the splice of different
levels. Our cLoD method can avoid this kind of artifact since
we filter the data in point-wise instead of taking points of the
same level as a whole. As we can see in Figure 4, the transition
between different levels is more gradual in the cLoD model.

Figure 4. dLoD(left) and cLoD(right)

In our paper, the main idea of filtering the points is to reach
an ideal point cloud density. Because of the limited CPU re-
sources of mobile devices, the computation in point-wise, like

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

 
168



distance or spacing between points, is too expensive and will
cause an extremely low frame rate. Thus we choose to use a
simple threshold over cLoD levels to filter the points. First, we
want the Cumulative Density (CD) at a certain level. The Cu-
mulative Density (CD) at continuous level l for nD case can be
computed from the Cumulative Distribution Function:

CD(l, n) =
F (l, n)N

En
=

(2(n−1)l − 1)N

(2(n−1)(L+1) − 1)En
(5)

where l = continuous level
N = total number of points in the dataset
n = number of dimensions
En = size of spatial domain in nD case

Then we can calculate the particular level l with which we can
reach the ideal density. This level l can be derived from the
Cumulative Density formula and the wanted ideal density, us-
ing the following formula. The value of ideal density is chosen
based on the ideal point sizes we computed before. After ex-
periments, we get the recommended value of the ideal dens-
ity D, which is 100,000 to 200,000 points/m2. We choose dif-
ferent ideal density value for different datasets is because that
our method performs well when working with evenly distrib-
uted point clouds. However, when working with point clouds
that are not evenly distributed, the value of ideal density needs
to be smaller so that we can sufficiently reduce the number of
points in the scene. What’s more, considering the effect of dis-
tance, a logarithm of distance from the center of the point cloud
model to the camera is set as the denominator. So that we can
get higher density when the model is nearby, and lower density
when the model is far away.

CD(l, n) =
D

ln
√

((x− u)2 + (y − v)2 + (z − w)2) + 1
(6)

where l = continuous level
D = ideal density
x, y, z = coordinates of point cloud center in world space
u, v, w = camera coordinates in world space

Thus we can get a certain level l from the formula above. By
only showing points with levels less than l, we can reach the
ideal density required by the user. All these selected points will
be stored in the vertex buffer and wait to be rendered.

3. IMPLEMENTATION

In order to realize interactive visualization of point clouds in
the mobile AR environment, all the methods in our paper are
developed on ARCore (version 1.17.0) together with the Unity
game engine (version 2018.4.21). The Unity scripts are writ-
ten using C# and the shader programs are written using HLSL
(High-Level Shading Language). The table below shows cur-
rently supported functions in our rendering system.

3.1 Point Cloud Input and Storage

Point cloud files can be divided into non-binary files and binary
files. Compared to non-binary files with ’.xyz’ and ’.txt’ exten-
sions, binary files like LAS files have more advantages while

#Number Functionality
1 Load Points
2 Rendering Points
3 Transform Objects
4 Show Point Count and fps
5 UI to specify settings (point size, lower density, etc)

processing: they are more compact in size; they can carry more
standardized information; reading binary files are much quicker
than reading non-binary files. Thus, in our point cloud renderer,
we take a kind of binary files, LAS files as input. In our tests,
compared to reading text files, the speed of reading LAS files is
at least two times quicker.

After loading point cloud from the file, we first apply some
simple transformation to the point cloud model. First, the point
cloud model is translated according to its centroid coordinates
so that the referenced origin is located at the center of the point
cloud. Second, the point cloud is scaled based on the size of its
bounding box.

The transformed point cloud model is stored as Unity’s mesh
game object. Using mesh game objects is the mainstream
method to store and visualize the point clouds in Unity. The
parameter called MeshTopology is set as Points when working
with point clouds. It can handle a large number of points and
improve the visual quality by changing the materials, shaders,
lightning, and shadows used to visualize point clouds. When
visualizing large scale point clouds, multiple mesh objects
might be used to create blocks for point clouds.

3.2 Put Point Cloud in the Scene

When the users move around with their mobile devices, AR-
Core will use the camera to detect vertical or horizontal sur-
faces, such as the floor and tables. These detected surfaces are
called detected planes, which can be used to anchor virtual ob-
jects to the scene. In our paper, point cloud models are put in
the scene by hitting on the detected planes.

In order to put 3D virtual objects on 2D planes, ARCore per-
forms a raycast against detected planes. A raycast is a ray that
gets sent out from a position in 3D or 2D space and moves in
a specific direction. In this case, the direction of the raycast is
determined by the touch position on the screen and the cam-
era position. The position where the raycast hits the detected
plane will be recorded, and the point cloud model will be trans-
formed based on the hit pose. After the transformation, anchors
will be created to store a fixed location and orientation in the
real world. With anchors, point cloud models appear to stay in
one place in the scene, no matter how the device moves.

3.3 Point Cloud Real-time Update

After putting point cloud models in the scene, the point cloud
model will be updated in real-time. The vertex buffer will be
updated by doing the selective query. In order to stay at a rel-
atively high frame rate, the selective query step will be imple-
mented once per 10 frames. Meanwhile, point sizes will be
recalculated based on the latest position of the camera in the
shader program as well.

What’s more, ARCore’s manipulation system is activated to en-
able basic interactions, like scaling, rotating, and translating
point cloud models. The interactions are realized by the ges-
ture detection together with manipulation system.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

 
169



4. INITIAL RESULTS

With our methods, the number of points to be rendered is signi-
ficantly reduced without loss of visual quality due to our cLoD
selection from a too large point cloud for basic display. We
put the point cloud models into the scene and move the devices
from 0.2m to 2m away to the models, and see the changes in the
number of points rendered in the scene. As shown in Figure 5,
which are results with a dataset of 1498092 points. The num-
ber of points is reduced to less than 10% of the original number
but still has good visual quality together with the adaptive point
size rendering strategy.

Figure 5. Result with 58,397 points(left) and 70641 points(right)

5. APPLICATIONS AND FUTURE WORK

5.1 Applications

The greatest strength of this method is that we can directly get
use of the easily obtained point clouds in the mobile AR envir-
onment, without any pre-processing steps like turning them into
meshes. There are some potential applications of this efficient
interactive visualization of point clouds.

For indoor applications, first, we can put some dense point
cloud models of smaller objects, such as tables and chairs,
which will be useful for home renovation. Second, large scale
point clouds are useful as well. For instance, putting the
scanned point clouds of an entire room to simulate different en-
vironments, or putting scaled point clouds of an entire building
for real estate sales.

As for outdoor applications, our method can be widely used in
architecture and industrial design fields. Users can put point
cloud models of roads, bridges, or other giant objects into the
real world with our method before construction to simulate the
final result without spending a lot of time and energy estab-
lishing 3D models. Change detection can also be added to our
method so that we can highlight the changes between two point
clouds in the AR environment.

5.2 Future Work

First, we’ll test our method with more datasets and different
devices to see its applicability. Second, we only test our method

in the indoor environment. In the future, we’ll explore more
outdoor applications. Third, we will explore the potential of
our method to visualize larger point clouds like city or nation
wide point clouds, which needs server and caching strategy or
information transfer between SSD and CPU. Finally, more in-
teractions will be applied to our methods, like measuring the
objects, changing colors of points, and so on.

Work is ongoing, at the time of 3D GeoInfo Conference, the
App will be made public together with source code in GitHub.

6. ACKNOWLEDGMENTS

The authors would like to thank Ordnance Survey GB
(https://www.ordnancesurvey.co.uk) and 1Spatial (ht-
tps://1spatial.com/) for sponsoring the publication of this
paper.

REFERENCES

Scratchapixel, 2014. The perspective and orthographic
projection matrix. https://www.scratchapixel.com/lessons/3d-
basic-rendering/perspective-and-orthographic-projection-
matrix/opengl-perspective-projection-matrix.

Van Oosterom, P., 2019. From discrete to continuous levels of
detail for managing nd-pointclouds. Keynote presentation at IS-
PRS Geospatial Week.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W1-2020, 2020 
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, 7–11 September 2020, London, UK

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-167-2020 | © Authors 2020. CC BY 4.0 License.

 
170




