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ABSTRACT: 
 
The visualization of large-sized 3D geospatial models is a graphics intensive task. With ever increasing size and complexity, more 
computing resources are needed to attain speed and visual quality. Exploiting the parallelism and the multi-core performance of the 
Graphics Processing Unit (GPU), a cross-platform 3D viewer is developed based on the Vulkan API and modern C++. The proposed 
prototype aims at the visualization of a textured 3D mesh of the Cultural Heritage by enabling a multi-threaded rendering pipeline. 
The rendering workload is distributed across many CPU threads by recording multiple command buffers in parallel and coordinating 
the host and the GPU rendering phases. To ensure efficient multi-threading behavior and a minimum overhead, synchronization 
primitives are exploiting for ordering the execution of queues and command buffers. Furthermore, push-constants are used to send 
uniform data to the GPU and render passes to adapt to the tile-based rendering of the mobile devices. The proposed methodology and 
technical solution are designed, implemented and tested for Windows, MacOS and Android on Vulkan-compatible GPU hardware by 
compiling the same codebase. The benchmarking on multiple hardware, architectures and platforms explores the performance 
improvement for the different approaches compared to one-thread and showcase the potential of the 3D viewer to handle large 
datasets at no expense of visual quality and geometric fidelity in the absence of high-end technological resources. 
 
 
 

1. INTRODUCTION 

In the fields of photogrammetry and topographic surveying, fast 
surface modelling techniques, range sensors and computer 
vision algorithms ensure the geometric fidelity and accuracy of 
their final products. The growth of multi-source and high-
dimensional 3D spatial data availability intensifies demands for 
a dissemination strategy that clearly specifies their potential. 
Specific-domain knowledge such as diagnosis and restoration of 
Cultural Heritage, buildings and infrastructure plan and design 
of Building Information Modeling (BIM) or landscape and 
properties recording of 3D cadastral and GIS, can be easily 
diffused and interpreted through a dedicated 3D viewer. 
Therefore, the 3D visualization in a consistent and custom-
oriented way, regardless of the operating system and hardware 
used, is becoming of the interest of cases where geospatial 
referencing is encountered as a crucial factor. Although the 
options for local rendering are numerous there is a little 
availability of software that handles portability, explicit control 
and high-performance at the same time. Furthermore, institutes, 
communities and research groups often lack of dedicated 
hardware and high-end processing units that provide 
responsiveness and a seamless visualization experience.  
 
A solution for such visual applications derives from the low-
level access to the GPU’s architecture. Compared to the CPU, 
the GPU is equipped with more execution and memory units 
and specialized fixed-function chips that optimize its computing 
and memory capabilities (Wu et al, 2015). Over the last decade, 
its programmable functionality to compute and rendering 
operations has increasingly been supported by the majority of 
manufacturers. Graphics APIs expose this programmability on 
an abstraction level, transfer data and commands and ease the 
processes in all stages of computer graphics generation. Unlike 

traditional APIs like OpenGL, Vulkan API represents a closer 
mapping to the way GPUs are currently built. It uses an 
asynchronous rendering model in which, CPU and GPU 
synchronization, scheduling tasks order and device memory 
management are delegated to the application and defined by the 
developer. In order to attain Vulkan’s performance boost, there 
is an obvious trade-off between flexibility in application 
structure and upfront development work on a more granular 
level. Despite its apparent complexity, Vulkan is widely 
supported due to extra benefits like precompiling shaders in 
SPIR-V format and multi-threading capabilities (Blackert, 
2016). Prior research focuses mostly on General Purpose 
computing on the GPU (GPGPU) applications and scientific 
simulations (Gunadi and Yugopuspito, 2018; Thoman et al, 
2020). The deployment of Vulkan and its multithreading 
capabilities to 3D visualization frameworks optimized for large-
scale and complex geometry is less consistent. 
 
Addressing this important deficiency, a cross-platform 3D 
model viewer with multithreading support is developed based 
on modern C++ and Vulkan API. It is suited to Windows, 
MacOS and Android and to every graphics hardware that offers 
Vulkan’s driver support. The prototype application renders a 3D 
scene with a high-resolution textured mesh into an interactive 
User Interface (UI). The 3D mesh can be transformed with 
scaling, rotation and translation by the binding of mouse and 
touch screen events. The feature set includes Multi-Sampled 
Anti-Aliasing (MSAA) that alleviates geometrical aliasing, 
making geometrical edges look smoother and more temporarily 
stable. Key aspect of the development is the optimization of 
GPU and CPU performance, implementing the following 
methods: 

• Multi-threaded command buffer generation with 
synchronization primitives 
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• Using of push-constants to send uniform data to the 
GPU 

• Render passes for mobile GPU’s tiled-rendering. 
 
The proposed approach to the display of 3D geometry adapts to 
the implicit tile-based rendering of mobile GPUs, scaling from 
low-power mobile devices to high-end workstations.  It is 
technologically innovative in terms of Vulkan API utilization, 
cross-vendor portability and performance. Many components 
can be re-used and the code can serve the needs of geospatial 
visualizations as a basis for a higher-level programming 
framework. The paper is structured as follows: Section 2 
presents the literature review and how the proposed project 
progresses beyond the state-of-the-art, Section 3 analyzes the 
overall methodological approach of each objective presented in 
the Introduction and Section 4 describes the case study and their 
practical implementation until the formation of the technical 
solution. In Section 5, a performance evaluation is presented 
and finally, in Section 6, conclusions are drawn and an outlook 
of future research perspectives is provided.  
 
 

2. RELATED WORK 

GPUs have transformed to powerful graphics platforms coupled 
with a high parallel computing ability. The graphics APIs that 
determine the interaction of the application with their 
specialized code are evolving in accordance with the new 
standards. From the early days of computer graphics and the 
OpenGL API by Khronos to the lowest-level DirectX 12 by 
Microsoft, Vulkan by Khronos and Metal by Apple, their logic 
is converging to the structure and function of the modern GPUs. 
DirectX 12 runs solely on Windows and Xbox systems while 
Metal on Apple hardware and iOS. Therefore, for vendor- and 
platform-independency, graphics programming aligns towards 
OpenGL and Vulkan API. Ray-tracing integration, 
programmable rendering pipeline and shaders and multi-
threading support constitute some of the recent hardware 
updates. The latter feature has been evolved over the past 20 
years (Feinbube et al., 2011). Several techniques have been 
introduced to optimize multi-threading for highly intensive 
workloads like scheduling as a case management system 
(Rogers et al., 2014; Mittal, 2014) and memory transfer 
overhead reducing (Cho et al., 2019). The majority orients to 
computing operations performed by CUDA or OpenCL with 
GPGPU programming while the literature on multi-threading 
entirely for visual processes and 3D rendering is less consistent.  
 
Over the past few years, a growing community has successfully 
mapped their specific domain applications onto the GPUs to 
exploit their parallel computation for graphics and non-graphics 
tasks (Owens et al., 2008). In the first case, the majority of the 
implementations concerns game engines (Grigg and Hexel, 
2017; (Redlarski et al., 2018) and scientific simulations. 
Focusing on a subset of work conducted for geospatial data and 
geoinformation, both desktop and mobile applications will be 
presented. High resolution radar data were collected, converted 
and visualized at runtime on a GPU accelerated system with the 
support of OpenGL (Pezhgorski and Lazarova, 2017). A Level 
of Detail (LOD) method that explores the balance between 
visual quality and performance was proposed for Android 
devices exploiting the OpenGL API (Piao et al., 2014). On the 
same platform, the Vulkan API was used for 2D rendering of 
animations and effects and important performance gains were 
indicated concerning overhead and memory consumption 
(Gambhir et al., 2018). Fluid animation based on the SPH 
algorithm was simulated in GLSL compute shader in SPIR-V 

format in both Vulkan and OpenGL. The Vulkan 
implementation performed better compared to the OpenGL’s 
one in the case of a high number of rendered particles (Gunandi 
and Yugopuspito, 2018). A rendering system for a large 3D 
model of the Berlin city has been developed with Vulkan API 
integrating a technique for streaming textures subsequently in 
order to reduce texture memory and optimize the overall 
performance (Zhang et al, 2018). A Vulkan abstraction layer 
that eases the implicit rendering configuration was developed 
tailored to large data is introduced by (Lavric et al, 2018) The 
higher-level interface that manages the object instances enables 
the remote visualization of large-sized data on lightweight client 
devices. The same codebase was compared with the equivalent 
CPU and OpenCL implementations and Vulkan was about 9 % 
faster. Regarding GIS and natural hazard risk assessment, a 
GPU-accelerated rendering pipeline was used to perform 
geospatial analysis methods to Big Data and visualize the 
results rather to web or mobile GIS applications (Heitzler et al., 
2017). Finally, a Cultural Heritage information system that 
efficiently organizes and manages large-sized models in 
thematic layers was proposed leveraging GPUs parallel 
programming (López et al., 2020). 
 
Our approach exploits Vulkan’s multi-threading capabilities to 
visualize large 3D models of OBJ format with UV mapped 
texture coordinates which remains briefly addressed be previous 
research. It aims at being reliably deployed across the operating 
systems, architectures and hardware that are compatible with its 
integrated components and support its minimum computational 
requirements. For this purpose, techniques for resources 
allocation, scheduling and adaptation to low-power mobile 
graphics have been developed and tested.  
  
 

3. METHODOLOGY 

3.1 Rendering pipeline 

The execution order of the developed graphics application is 
presented as follows: The physical and logical devices, the 
queue families needed to access the inner operations of the API 
as well as the window surface where the visualization occurs are 
described on initialization. Then, the image views and the 
corresponding framebuffers are pre-defined in order to be 
instantly selected at draw time. The most important part is the 
graphics pipeline, in which the stages of shaders creation are 
declared explicitly. It comprises a series of steps required to 
render objects to the screen where the output of one stage is fed 
to the input of the next one. The process of transforming the 
primitives of the 3D mesh to pixels is accelerated on the GPUs 
which implement functional parallelism to distribute the 
rendering workload among thousands of computational units.  
After the description of vertices and indices, clipping and 
transformations are applied to map the scene to the window 
viewport. All 3D mesh primitives are converted to fragments 
and texture coordinates are interpolated from the relative 
coordinated of the vertices. Depth and stencil tests operate to 
the rendered pixels of each fragment for post-processing. 
Finally, the push constants that correspond to a type of small 
and fast-access uniform buffer memory, send uniform data to 
the shader. Their functionality serves the need of changing 
dynamically properties during the drawing phase and in 
particular, the position and scale of the 3D model when user 
interacts with it. The state of the pipeline’s operations is 
configured by specific parameters such as the data transfer 
method, the memory pattern and the reference of the render 
passes of the desired render target. Each operation is submitted 
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to a queue and recorded to command buffers. They enable the 
execution of the drawing commands and allow resources to be 
dispatched to GPU’s exclusive memory.  The operations of 
loading the data structures, updating their state and selecting the 
image views from the command buffer to be presented to the 
viewport continues to iterate until the application is closed and 
all data structures and handles are destroyed.  
 
3.2 Synchronization and thread management 

The aforementioned operations are executed asynchronously 
and their submission to the queue needs to be set in order to 
resolve both scheduling and synchronization. If they do not 
synchronize, the results can change depending on how events 
happen to occur. The application’s synchronization relies on a 
Vulkan primitive, the semaphore. Its role is twofold; access of 
shared resources and control of submission order. They 
synchronize operations solely on the GPU side and it must be 
ensured that their state is well defined when it gets signalled 
from the host device. In the proposed methodology, timeline 
semaphores are integrated to the algorithms of the queue 
operations. Such a case is the signal that an image view is 
acquired from the swap chain in order to be rendered. When the 
rendering has finished and the presentation can happen relative 
semaphores are signalled directly from the host. In case of 
multi-threading, where a single semaphore has to be signalled 
for multiple threads, the execution of operations is prioritized 
based on the sequence of host and device queues signal 
operations. Thus, semaphore programming reduces the 
synchronization complexity by determining a standard 
communication protocol and improves the overall’s application 
responsiveness.  
 
The modern CPUs are not anymore single-core. The fact that 
they are equipped with more than one processing units can be 
exploited in order to distribute the recording of the drawing 
commands. The multi-threading scenario of the application 
resolves the concurrent recording of command buffers, which is 
a time-consuming operation for the processor. To efficiently 
record multiple command buffers in parallel, memory access 
and resources usage are managed per frame and per thread. 
Prerequisite is the usage of a separate command pool for each 
thread that allocates a specific command buffer. The preparation 
of command buffers to render the 3D object is implemented 
through three stages. The drawing commands for the current 
frame are incorporating in the main thread through the 
rendering pipeline while the commands to the secondary 
command buffer are recorded in a worker CPU’s thread. When 
each process is finished, it is reported to the main thread and 
specifically, to the primary command buffer. The last operation 
ends the render pass for current command buffer, reports to the 
window surface that the frame is ready and the rendering state is 
updating.  
 
3.3 Tile-based rendering for mobile GPU 

The multi-threaded submission in mobile devices is also 
implemented by command buffers. The optimal approach is the 
recording of drawing commands in secondary command buffers 
so as the submission is done to the same render pass. The render 
passes adapt to the mobile GPU’s tiled-rendering that describes 
the beginning and end of rendering to a framebuffer. Leveraging 
the tile-local memory, the proposed methodology uses multi-
pass render passes for faster tile cache memory on mobile 
devices. Usually, each pixel is rendered in a subpass and it 
accesses the results of the previous subpass at the same pixel 
location. However, in the application, some render passes are 

merged on the same chip memory like texture mapping and 
pixels correspondences.  
 
 

4. IMPLEMENTATION 

4.1 Case Study 

The input wavefront (OBJ) 3D mesh is part of the geometric 
documentation of the Archaeological/Holy Site of Meteora, a 
UNESCO Cultural Heritage site in Greece. The represented 
landmark is the rock of St. Modestos – Modi on top of which 
ruins of an old monastery exist. Data were collected using 
image-based photogrammetric techniques and they were 
processed with computer vision algorithms, constituting a high-
resolution geomatics product. The vertical and oblique aerial 
images as well as the terrestrial images were oriented through 
the Structure from Motion (SfM) algorithm and then, a mesh 
was generated by the sparse point cloud with the Mult-View 
Stereo (MVS) technique. The process of 3D modelling was 
undertaken by Agisoft Metashape and Geomagic software. The 
final 3D model has 4 million vertices, a size of 938 MB, 
material definitions and a corresponding texture image. 
 
4.2 Multi-threading programming 

The prototype integrates third-party libraries like GLFW and 
Open Asset Import library (assimp). GLFW is an open-source C 
library, essential for creating a Vulkan surface on initialization 
and receiving events from windows. Assimp loads, parses and 
stores 3D model formats in the program-specific format. Once 
objects are loaded, they are placed in the data structures 
m_Mesh and m_TextureImage accordingly, that are handed to 
Vulkan. Multi-threading enables multiple threads in memory at 
a given time and switches amongst them in order to provide a 
pseudo parallelism, assuming that all the threads are executing 
at the same time. Application’s multi-threading technique 
parallelizes rendering across four CPU threads and two levels of 
command buffers. The primary command buffer records the 
work to be conducted by the GPU with big state changes while 
the secondary command buffer aims solely at building and 
dispatching draw calls within a render pass. The latest drawing 
phase starts with uniform buffer generation for each swapchain 
image, render pass creation and binding of the graphics pipeline 
object and its resources, including vertex buffers and descriptor 
sets. In case of window resizing, swap chain’s buffer size and 
number of buffers change accordingly. Figure 1 illustrates the 
function that records all of these commands on the secondary 
command buffer. The drawing objects, namely the 3D model 
and the texture, are submitted in the primary buffer by reusing 
and executing repeatedly the created drawing calls across the 
four CPU threads. For texture sampling in the shader, a shader 
resource binding is created while 3D model’s material lighting 
is already baked into the texture, so there is no need for specular 
or diffuse lighting utilization. While it is important to record 
multiple command buffers on multiple threads for efficiency, 
synchronization primitives are needed to order their execution. 
Timeline semaphores insert dependencies between queue 
operations to ensure that display will only take place after the 
command buffer has finished processing. The draw command 
waits on a semaphore that determines when rendering can start 
and signals another semaphore that triggers the display of the 
finished frame. The 3D viewer’s window with the final 3D 
scene in Visual Studio’s IDE (Windows 10 OS) is presented in 
Figure 2a. The 3D model is visualized with high-fidelity and 
only a minor visual quality loss in texture mapping is observed.  
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4.3 Multi-platform support 

Using a single codebase, the prototype is not tied to a single 
operating system, GPU vendor or architecture. To illustrate 
portability, the 3D viewer is also built for MacOS and Android. 
Vulkan is not supported by Apple devices but the MoltenVK 
runtime library is used to convert SPIR-V shader code to Metal 
Shading Language (MSL) and run the developed application 
across macOS platforms. The library maps Vulkan’s 
functionality to Apple’s Metal graphics framework and the 3D 
viewer runs from Xcode IDE (Figure 2b). Finally, most Android 
devices use tile-based rendering. The prototype adapts the 
multi-threading model to this logic by setting the load/store 
operations of the render passes explicitly and parallelizing 
recording of draws in a pass. On most mobile GPU 
architectures, beginning and ending a render is an expensive 
operation. The configuration is done in the low-latency memory 
on the GPU to reduce this computational cost. The native source 
code is wrapped into a library and the rest of the development is 
handled by Android Studio IDE and JNI framework (Figure 2c). 
In the 3D mobile viewer, a multitouch gesture interface is 
created to let users inspect every part of the 3D model.  
 

5. EVALUATION 

A performance evaluation is conducted by testing the three 
different implementations of the same codebase on the 
following operating systems: Windows 10, MacOS 10.15.14 
and Android 9. It aims at examining the efficacy of the 
developed rendering techniques and synchronization strategies 
rather than providing a comparative analysis between the 
various platforms.  Incorrect usage of multithreading may result 
in high CPU usages or increased CPU cycles which could 
drastically reduce application’s performance. Benchmarking is 
conducted by the diagnostic tools of each platform’s IDE. The  

 
 
 
tests run for 170 seconds and the recorded performance metrics 
are reported as average frames per second (FPS) and diagrams 
with CPU and GPU activity. One of the key metrics, exported 
from the diagrams, is the total CPU usage of the 4 threads. The 
average number of FPS is calculated once the visualization is 
completed. The multi-threaded rendering times are affected by 
the hardware’s host system as well as the size of OBJ and 
texture files. The experimental setup and the test results are 
presented in Table 1. Additional benchmarking concerns the 
workload division across multiple CPU threads and examines 
the impact of the Windows’s implementation in case of a 
specific number is activated. The time spend to render the entire 
scene is measured and presented in Table 2.  
 

 
 Hardware specifications Test Results 

 GPU 
Type/Memory CPU FPS 

Total 
CPU 
usage 

Windows 
10 

NVIDIA 
GeForce RTX 

2070, 8 GB 
GDDR6 

3.60 GHz, 
8-Core 145 22,57 

MacOS 
10.15.4 

AMD Radeon 
Pro 555X, 4 
GB GDDR5 

2.2 GHz, 
6-Core 117 29,88 

Android 9 Qualcomm 
Adreno 610 

2.0 GHz 
Kryo 260, 

8- Core 
52 33,42 

Table 1. Experimental setup and part of the performance results 
for each operating system and device's hardware 

 

Figure 1. Initialization of render pass commands in the secondary command buffer where the drawing objects 
(m_Mesh and m_TextureImage) are defined. 
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Figure 2. Visual output of the Vulkan-based 3D rendering on (a) 

Windows 10, (b) MacOS 10.15.14 and (c) Android 9. 
 
 

Number of Threads Time (ms) 
Single-threaded 454.07 

Two 233.85 
Three 173.52 
Fours 125,22 

Table 2. Number of threads enabled and total rendering time 
until the 3D mesh is visualized. 

 
The performance evaluation varies greatly depending on which 
hardware is tested and what drawing objects are used. As it is 
expected, running the prototype on a more powerful graphics 
card results in a higher number of FPS. Even if the MacOS and 
Android CPUs are less powerful, frame rates are high. This 
indicates that utilizing multiple threads for command buffer 
generation significantly increases the performance of a program 
that is CPU limited. The total CPU usage is low while the GPU 
undertakes the biggest part of the graphics workflow. 
Performance improves approximately linearly with the number 

of cores in the system. Results of Table 2 indicate that the 
workload is divided well across the four threads without 
incurring much additional processing costs. In case the user’s 
CPU is equipped with four cores, the performance benefit is 
significant.  
 

6. CONCLUSIONS 

The developed 3D viewer demonstrates great portability to a 
multitude of devices and platforms and high degree of 
performance stability. It adapts to the implicit tile-based 
rendering of mobile GPUs, scaling from low-power mobile 
devices to high-end workstations. The compatibility with non-
dedicated hardware, the ability to handle large datasets and the 
visual quality will compensate for the lack of high-end 
technological resources of institutes, communities and research 
groups. Prioritizing performance over ease of use, the 
application can serve visualization cases with high-
computational demands, like cultural heritage monuments or 
sites, 3D cadastral and urban planning datasets, LiDAR data, 3D 
scanning products, etc. Rendering, shading, lighting or even 
memory and resources allocation can be defined explicitly for 
customized appearance and adaptation to the researcher’s 
specific needs. The 3D viewer currently supports OBJ files 
loading with a single texture image but with the integration of 
assimp library multiple 3D data formats will be supported in the 
future. The GPU acceleration and multi-threading technique are 
fast-growing areas that generate a lot of interest from 
researchers and scientists that develop computationally 
intensive applications. Therefore, the proposed synchronization 
and workload distribution techniques be used as building blocks 
for any visual application on Vulkan API. Future work includes 
the integration of the ray-tracing option for photorealistic 
textures and advanced postprocessing effects. The application 
will be able to alternate between rasterization and ray tracing 
rendering depending on the task and current graphics card 
capabilities.  
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