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ABSTRACT: 

This study aims to investigate the possibility to automate the image selection process for the target building from Mapillary images 

through a web application where the user only initiates one image of the target building as a query. Using the data provided with 

Mapillary API and Overpass API, all images having full or partial coverage of the target building were selected. Then the images were 

segmented by using a pre-trained U-Net model to discard any images having less than 20% building coverage. The experiments showed 

promising results yielding 0.971 and 0.887 of overall accuracy after segmentation steps for two different target buildings. 

  

 

1. INTRODUCTION 

Recently Mapillary and OpenstreetCam have been providing 

crowdsourced street-level images via volunteers. One can follow 

sequences of connected georeferenced images and navigate 

through images via these services. In the background, both 

services are running computer vision algorithms as an incentive 

for extracting information as commercial products (Leon & 

Quinn, 2019). Mapillary allows users to download their 

crowdsourced street-level images through their API (Mapillary, 

2019). All of the EXIF information is lost upon downloading 

images, although this API provides partial information of the 

EXIF in JSON format to the users.  

 

In this study, we have evaluated Mapillary’s image properties and 

experimented to automate the image selection process of the 

target building.  A flask web application was developed to 

retrieve public images from Mapillary API and also utilizing 

Overpass API (2020) containing Open Street Map (OSM) data. 

As a first goal, images having full and partial coverage of the 

target building are selected, initially based on their location and 

camera angle. Secondly, segmentation from the pre-trained U-

Net model is used to select images of the target building that have 

sufficient coverage of the building within the image.  

 

By providing one query image of the target, one can 

automatically retrieve almost all images of the target with full or 

partial coverage with the information of the relative location of 

the target in the image (right, left, or direct). Images occluded by 

other buildings can be detected and eliminated as well. An 

exemplary use of a pre-trained U-Net model in this study 

demonstrates promising results to further narrowing down image 

selection to retrieve images with higher pixel content of the target 

building. 

 

As the use of crowdsourced street-level image platforms and the 

number of images contributed by the volunteers to these platform 

increases, and foreseen to be increased, the community should be 

able to find a way of data retrieval for a specific target. This study 

provides a method that can be implemented by other researchers 

with publicly available data from Mapillary. 

 

2. RELATED STUDIES 

2.1 Image Selection for a Target 

Araujo et al. (2015) used a query image of a building to identify 

panoramic views of the interest from Google street view 

panoramic sequences. The graph sequence of images was 

searched with Breadth-First Search (BFS) strategy. Their 

approach uses Affine-SIFT features to detect target building in 

the panoramic images. 15 cases out of 30 were failed due to issues 

such as incorrect feature matching, GPS coordinate errors, and 

cases with images taken at night and obscured facades with trees. 

Another study (Wolff et al., 2016) was detecting street images of 

target building facade in oblique aerial images by matching 

context information such as color, shape, and spatial similarity to 

those in the street images. Cheng et al. (2018), implemented 

target image selection in their study and used a structured 

organized image dataset from Tencent Street Views Images as a 

reference to geotag images from unidentified resources. The 

crawled images were processed to exact SIFT features and to 

establish an index. Each query image was compared with their 

extracted features. The images with the best match were used to 

generate 3D reconstruction with Structure from Motion (SfM) as 

all images in the reference database taken with one fixed camera. 

Their goal was to acquire accurate query image location and the 

query image was geo-retagged with 69m accuracy by using 

parameters acquired from 3D reconstruction results. 

Krylov & Dahyot (2018) used Mapillary street images for 

geolocating target objects (traffic lights) and the acquired images 

within a specified field of view were enhanced with estimated 

image bearings and camera positions by using OpenSFM. Their 

pipeline includes semantic segmentation and monocular depth 

estimation with Convolutional Neural Networks (CNN) on street 

view images to detect target objects. Any images with no object 

or no paired images were discarded and the target object location 

was determined with triangulation.  

When images are uploaded by a user into Mapillary app, 

Mapillary runs SfM algorithm onto images and computes new 

latitudes and longitudes, aligns images based on outputs, 

Mapillary JavaScript library provides functions to get computed 

new positions and much accurate bearing angles (Lorenzon, 

2019). The computed new bearing angles are more accurate than 

those in the provided EXIF information and in this study, the 

computed locations and computed camera angles are requested 

from Mapillary API. Although, the calculated position and 

directions by Mapillary also have errors as they are indicated in 
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the discussion section and the image retrieval errors caused by 

erroneous directions need to be mitigated as a future study. 

 

2.2 Eliminating Occluded Images  

Another issue is to eliminate images with possible occlusions 

such as trees, other buildings, or cars or with low visibility of the 

target. To find ideal images, further image processing, and testing 

are necessary on the usability of the image.  

 

CNN based image segmentation has been widely studied to 

understand scene content with methods differ in feature 

extraction as VGG16, Resnet18, MobileNet, and ShuffleNet and 

in decoding as, U-Net and Dilation (Siam et al., 2018). 

 

U-Net model may provide 85% accuracy on buildings in the 

Cityscapes dataset. There are also ResNet based CNN 

implemented by Mapillary which provides 90% accuracy on 

buildings of the same dataset (Bulò et al., 2017), also Porzi et. al 

(2019) provides PyTorch implemented ResNet-50 with a Feature 

Pyramid Network (FPN) model and made it available on GitHub. 

Image segmentation with CNNs has been already presented by 

Mapillary and object detection within an image is available with 

a commercial license, allowing the user to request images based 

on their pixel label. Similarly, the percentage of building pixel 

coverage was taken into consideration to discard images in this 

study. 

 

3. MATERIAL & METHODS 

3.1 Data 

Crowdsourcing images from Mapillary has been used in this 

study. The data on this platform was collected through cell 

phones and other cameras with GPS.  

 

https://a.mapillary.com/v3/images?client_id=<client_id> 

&closeto=<Lon>,<.Lat>&computed_coordinates=&includes=cca 
 (a) 

 

 

(b) 

Figure 1. A query URL for Mapillary API (a) and downloaded 

JSON format response from Mapillary of one of the image (b) 

 

Mapillary API (2019)  allows a user to access and download 

image data through HTTP endpoints. The API also provides 

partial EXIF information in JSON format. (Detail regarding 

EXIF format can be found at 

https://exiftool.org/TagNames/EXIF.html) Each image located 

in https://images.mapillary.com/{key}/thumb-2048.jpg URL and 

available with CC BY-SA license allowing individual and 

educational use. 

 

Figure 2. Sample query for Overpass API returns building data 

within specified coordinates (the extent of the map in the web 

application)  

 

 

Figure 3. The basic user interface of the flask web application 

 

Overpass API was also used for acquiring vector format OSM 

buildings to identify possible target buildings. The query 

landmark was specified as “building” (Figure 2) and the area of 

query was restricted with the map corner coordinates of the user’s 

map view of the developed flask web application. Figure 3 shows 

a sample retrieved buildings from Overpass API.  

 

3.2 Method 

The developed Flask web application running in the Docker-

based architecture consumes Overpass API and Mapillary API 

allowing the user to select a street view image on Mapillary-JS 

(MapillaryJS, 2020) image sequence. Based on the selected 

image location, all images with the Mapillary default limit (200 

images) are downloaded, renamed with their key name inside the 

folder that named with its sequence_key. The EXIF information 

of images are also modified with the information provided in 

JSON data from Mapillary API during this process. Computed 

camera angle (cca) is included, and the location of computed 

longitude and latitude values are used to modify image EXIF 

location parameters (GPSLongitude, GPSLatitude).   

PostGIS database in a docker container is used to store overpass 

vector data containing buildings within the map area. The user 

selected image location and downloaded image locations are also 

stored in the same database. Once the images are processed by 

the application, the selected images are returned to the user with 

HTTP endpoints. 

 

Figure 4.  General workflow for the web application 

 

3.2.1 Identifying the Target Building: The process for 

selecting images of the target building starts with a query image 

selected by the user. The closest building along the ± 90 cca 

direction is selected as the target building in the query image. 
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3.2.2 Calculating Minimum and Maximum Azimuth for 

Each Image: The azimuth angle is calculated between simplified 

target exterior points and image location. The points providing 

the maximum and minimum azimuth angles are selected. If the 

image cca value is within these angles, the image is accepted for 

further processing. Cheng et al. (2018) also used similar azimuth 

angle methodology in their study for image selection. Original 

locations and camera angles are much more prone to errors due 

to incorrect GPS or compass measurements in the volunteer’s 

devices. Therefore, requested cca and computed image locations 

are used for each image from Mapillary API.  

 

Figure 5 shows the process flow for finding the direct case 

images where cca values within the target minimum and 

maximum azimuth angles. For each image, the calculated 

minimum and maximum azimuth of the target exterior points are 

evaluated and checked for their coverage of image cca value 

provided by Mapillary API. Figure 6 also illustrates a sample 

image with its cca value that is not between the minimum and 

maximum azimuth of the target and the map showing the location 

of the image, relative to the buildings.   

 

 

 

Figure 5. Process flow for checking the minimum and 

maximum azimuth of an image 

As the distance from the target to the image location increases, 

the angle difference between the minimum and maximum 

azimuth decreases. If the target is not directly located along the 

image direction, the image will be discarded. Figure 6 shows an 

example of this situation. An angle tolerance is necessary to 

avoid this problem and detect images that may contain the target 

on the right or left part of the image. 

 

 

 

Figure 6. The map of image location relative to the target 

building 

 

3.2.3 Utilization of Angle Tolerance:  Images may contain 

the target building that is not directly along the cca direction as 

the sample image in Figure 6. To detect any images as not a direct 

case, the cca direction should be flexed with an angle tolerance. 

The line projected from image location with cca value can be 

used to calculate two angles (β1 and β2) in Figure 7. Most 

cameras with a focal length of 24 mm to 70 mm have less than 

90-100° view angle (Panasonic, 2020). If the target is located in 

the left or the right side of the image, by restricting (β1 and β2) 

with an angle such as 45° or 50°, the tolerance angle necessary 

for each image can be calculated. 

 

In the additional process flow for calculating angle tolerance 

(Figure 8), the relative location of the building can also be 

calculated with one side buffer by using a buffer area with the 

largest distance to the exterior points. If all exterior points are 

placed within the left buffer area, the target will be located on the 

left side of the image, else on the right. 

 

 

Figure 7. Tolerance angle necessary for each image can be 

found restricting by β1 and β2 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020 
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

 
153



 

 

Figure 8. Additional process flow for calculating necessary 

tolerance angle for the images 

 

3.2.4 Discarding Images with Buildings that Occludes 

Target Building: To check if any other building is obscuring the 

image from viewing the target building, the exterior points of the 

target building are used. If both lines from points providing the 

minimum and maximum azimuth of the target intersect with any 

building other than the target itself, then that image is rejected as 

an obscured image. Figure 9 shows a case of an occluded image. 

 

 

Figure 9. The image 146 obscured by building id: 42, as the 

minimum and maximum azimuth lines of the target building id: 

5 intersect this building, Images of 37, 54 and 10 are not 

intersecting. (Illustration with only 4 images, the process flow 

takes all images into consideration) 

 

Figure 10. Process flow for checking if the images obscured by 

another building 

 

3.2.5 Discard Images with Insufficient building coverage 

using Unet CNN: As the target may be concealed by an object 

such as trees, cars, or people, to eliminate images that have 

insufficient coverage of the building, pre-trained Keras U-Net 

(Humbarwadi, 2020) model previously trained with Mapillary 

Vistas Dataset is used. The model was trained for 150k iterations 

with a learning rate of 0.004 with 256x256 images with 64 filter 

and 66 classes. The model encodes an image with 3x3 

convolutional kernel with two 2d convolution operation in each 

convolution block and apply 2x2 max pooling operation to 

reduce to the size of the feature map thus, downsamples the 

image. Transposed convolution in deconvolution block 

upsamples image with the corresponding convolutional layer to 

acquire an increased resolution on the final output. Although 

PyTorch implementation was provided by Mapillary (Porzi et al., 

2019), due to the usage of CPU based platform with no CUDA 

in our experiment, TensorFlow Keras implementation was 

preferred in the current study. The repository of the pre-trained 

model was missing the necessary config.json file containing 66 

object segmentation labeling and it was obtained via Mapillary 

Vistas Research Dataset (Neuhold et al., 2017)  requested 

through Mapillary web page.  

 

Pixels labeled as building are masked and the pixel ratio of the 

connected components in the masked image is calculated as 

coverage ratio. Figure 11 shows an image of a direct case, where 

the calculation of the building coverage ratio takes all connected 

pixels into account and results in 0.49. Figure 12 shows an image 

where the relative target location (right, left, or direct) identified 

as right. The calculation takes into the only right side of the image 

and the building coverage ratio results as 0.0 since the target is 

behind a tree.  
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Figure 11. An image (image key: 

32pUYPVcaPCp0TMWdg_SVA) with building coverage ratio 

0.49 

 

Figure 12. An image (image key: 2FZgFFC3jVJnxolqrdUv-Q), 

the relative target location was detected as right, provides only 

pixels on the right side of the image on coverage ratio 

calculation, thus results coverage ratio 0.0 

 

3.3 Reference Data 

Two target buildings were selected in a public area (Dede Korkut 

Park, Eskisehir), shown in Figure 9 with building ids 5 and 42. 

Various images of the targets were collected and uploaded 

through Mapillary App with two different mobile phones. The 

images of the targets were requested with the default image 

request size of 200 through developed flask web application. The 

downloaded images were uploaded by the authors and also other 

unknown volunteers. The images were evaluated and requested 

on May 24, 2020. The images uploaded or modified later of this 

date in Mapillary were not considered in the evaluation.    

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                    (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                         (2) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
        (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

TP + TN + FP + FN
              (4) 

 

 

  

 

     

Each image was evaluated manually on their content and marked 

as True Positive (TP) if image contains the target fully or partially 

within image view and accepted, False Positive (FP) if image 

does not contains the target within the image view but accepted, 

True Negative (TN) if image does not contain the target and 

rejected, False Negative (FN) if image contains the target fully or 

partially but rejected. Additionally, the metrics; Precision, 

Recall, F-score and Accuracy were also computed given in the 

following equations (1) to (4). 

 

4. RESULT AND DISCUSSION 

 
TB:5 

Th:None 

TB:5  

Th:50° 

TB:5  

Th:45° 

TB:5  

Th:40° 

TB:5  

Th:50° Unet   

Precision 1.000 0.957 0.984 0.984 0.913 

Recall 0.406 0.957 0.899 0.884 1.000 

F score 0.577 0.957 0.939 0.931 0.955 

Accuracy 0.777 0.967 0.957 0.951 0.971 

TP 28 66 62 61 21 

FP 0 3 1 1 2 

TN 115 112 114 114 46 

FN 41 3 7 8 0 

Total 184* 184* 184* 184* 69  
TB:42 

Th:None 

TB:42 

Th:50° 

TB:42 

Th 45° 

TB:42 

Th:40° 

TB:42 

Th:50° Unet 

Precision 0.903 0.758 0.807 0.833 0.857 

Recall 0.549 0.904 0.902 0.882 0.818 

F score 0.683 0.825 0.852 0.857 0.837 

Accuracy 0.857 0.890 0.912 0.918 0.887 

TP 28 47 46 45 18 

FP 3 15 11 9 3 

TN 128 115 120 122 37 

FN 23 5 5 6 4 

Total 182* 182* 182* 182* 62 

Table 1. Evaluation for Target Building 5 and Target Building 

42 with different camera view angle thresholds and final unet 

segmentation with Threshold 50° (* The images with wrong cca 

values excluded from the calculation to evaluate model accuracy. The 

necessary mitigation is aimed to be a future study for images with 

wrong cca values.) 

 

  

Figure 13. Box plots of absolute angle difference from cca, ca 

and approximated angles for 237 images obtained via Mapillary 

API of the two targets (some images were common for targets) 

 

The requested cca values also had outliers. For images used in 

this study, approximated angles were inferred via digital 

protractor on web map and compared to ca and cca values. The 

angle difference between ca and cca shows a large discrepancy 

in absolute minimum angle difference. The cca values acquired 

from Mapillary API improves the accuracy of the camera angles, 

although 25 out of 237 images were incorrectly calculated on 

15.92° outlier cut-off (Figure 13). 
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Accepted image keys with more 
than 30° error in their cca 

cca ca 

A
p

p
ro

x
. 

Diff Appx. 
and  CCA 

8RQ34MT_AxBWJdgbBNWavQ 39.189 0.000 332 67.189 

JpyBYW_nwiU7a3WXJI2JGg 267.939 0.000 300 32.061 

KKRHwUVTpDr1cuaSy5UnRw 300.742 0.000 335 34.258 

MqYNnx16T7-aWNx9GxE83w 307.279 266.345 255 52.279 

OAjnSWcOtz71yRU5IzG1xQ 211.666 99.236 300 88.334 

OrPaa_JxwiiMUV-Pk6fctg 313.544 265.908 255 58.544 

pCrYRJzY_iX_hr7bNmxuuA 303.589 274.291 255 48.589 

SRMi20SAj9J9WZM80HLoGQ 195.861 303.043 320 124.139 

5bwl3xppiWj0-rW5p8tdUA 330.649 301.955 290 40.649 

emtqR3jkSBeiY68H-gR5hA 195.440 211.526 315 119.560 

ovRJMaDBswbZONzHC5dqpw 327.744 281.249 255 72.744 

Ozk6BRZboELAaaL7KFejfg 324.686 268.313 255 69.686 

r6cnsDko560Flwt9SE79pg 315.282 268.097 255 60.282 

Soz_uFvmwMGSmpMDRh5xnQ 341.551 263.469 255 86.551 

yGsOdMu06-221mDQ8pQO3Q 320.488 262.600 255 65.488 

YUi-3eJYplbGnsQzWKdqpg 195.100 212.327 315 119.900 

Table 2. Image keys revealed with more than 30° angle 

difference for TB:5 and TB:42 

 

18 images of those outliers (in Figure 13), revealed with more 

than 30° angle difference, were not included in the result 

evaluation to measure the performance of the model. Table 2 

indicates the angle difference of 16 of those images affected the 

selection results for TB:5. The mitigation of those outliers will be 

discussed as a future study.  

The first selection of images was based on their cca directions, 

whether the calculated target minimum and maximum azimuth 

angle values encompass the image cca directions directly. For the 

first target building TB:5, with no tolerance, only images directly 

seeing the target were retrieved with high precision but very low 

recall and f-score, 0.406 and 0.577 respectively. Figure 14 shows 

directly selected images for TB:5. Similarly, the recall and f-

score for TB:42 were also low without flexing angles, which are 

0.549, and 0.683 respectively. 

Figure 14. Images selected for target building 5 with no angle 

view threshold 

 

For TB: 42, three images were false positive and the precision is 

less than the precision of the other target building. These three 

images (blue points) of TB:42 were not fully blocked and 

maximum azimuth lines were not intersecting with another 

building (the thicker red and green lines in Figure 15). The 

occlusion algorithm does not discard the image if only one of the 

lines is intersecting. However, these images were classified as 

“no target” on the reference data since no part of the target 

building is visible due to modification with an additional tarp 

next to the building (enclosed by yellow rectangle). 

 

Figure 15. A misclassified reference data as “no target” (Image 

Id: 7VbGR_XLStmSbXDtUA4llQ) due to tarp 

 

 

Figure 16.  Images selected for target building 5 with 50 °camera 

view angle threshold, images enclosed with red color are those 

selected due to wrong cca values indicated in Table 2.  

 

Flexing minimum and maximum angle with a camera view angle 

threshold increased f-score for both target buildings. After testing 

with different thresholds for TB:5, 50° threshold was providing 

f-score of 0.95, 3 images were labelled as false positive, not 

seeing the TB:5 and also 3 images were missed (orange borders 

shows the part of the target in the Figure 17).  

 

The lower camera view angle threshold increases the false 

negative that is the number of missed images. Figure 16 shows 

all selected TB:5 Th:50, red border images are those indicated in 
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Table 2 negatively affecting the image selection results due to 

wrong cca values. 

 

With 50° view angle threshold for TB:42, the false positive 

images are much higher compared to TB:5 due to tarp next to the 

mentioned building. Additional 7 images have the same issue 

mentioned above (thinner lines in Figure 15), resulted in false 

positive case. For the other 5 images, the target cannot be seen 

with this threshold and lower view angles thresholds are more 

suitable. As the angle threshold decreases, some of the 7 images 

(with tarp) were not retrieved thus lead to the lower false positive 

for TB: 42 with thresholds 45° and 40°. 

 

  

 

Figure 17. Two out of three missed images for TB:5 with Th:50 

°, the target can be seen very slightly (Image ids: 

xfUfnxDjtAYXpEmytJ8FhA and tKo5Yr0hn0zTRv5j5YGRmA 

respectively) 

 

 

Figure 18. Final coverage accepted images with 20% coverage 

threshold and locations of coverage accepted images relative to 

target building 5 

 

Another evaluation was made based on the U-Net segmentation 

result. The images containing building less than 20% building 

coverage discarded to be able to find images with higher content 

of the target building (Figure 18). UNET model is able to refine 

images with 0.971 accuracy for the target building 5. 

 

The accuracy of the image location can affect the result, 

especially for images close to the buildings. The difference 

between calculated and original coordinates provided by 

Mapillary API has a difference up to 10m (Figure 19). Since it is 

not possible in our study to measure the exact coordinates for 

each image location, the computed coordinates are relied on 

finding the images of the target buildings. However, some of the 

image locations reside in overpass polygon data, especially those 

taken in the corner of the building. Although, it could be also due 

to the accuracy of OSM data that can vary 5 to 10 meters 

(Calazans Campelo et al., 2017). 

 

Figure 19. A box plots of distance difference from computed 

and original image location of 237 images obtained via 

Mapillary API. 

 

In addition to image location accuracy, the camera angle 

provided by Mapillary also affected the final result from U-Net 

segmentation. As the large angle errors affect the correct image 

selection, smaller camera angle errors can change coverage ratio 

from segmentation. The image in Figure 20 has cca of 281.22°, 

ca of 266.12° and approximated angle of 255°. 

 

Figure 20. Calculation of incorrect coverage ratio of 0.15 

instead of 0. (Image key: 91-rwnEDj3ZQGJlh3pwFPw) 

 

The large camera angle error in cca values also can lead to wrong 

target selection since the target selection process flow takes only 

the buildings along with the ± 90° cca value of the query image 

into the account.   In some cases, original camera angles were 

correct but computed camera angle were incorrectly provided 

(Table 2) by Mapillary API. 

The large camera angle errors in cca should be mitigated in future 

studies. The images with incorrect cca can have a large 

discrepancy between ca and cca. Such images can be processed 

after selecting other images. The histogram matching or other 

methods can also be used for quick image comparison. Another 

option, all images can be compared to the closest images within 

its sequence. If camera angles do not vary with the large value 
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among the image sequence, the interpolation of the camera angle 

can be used. This may not work if the sequence is not in order.  

Tilted images and images are taken upside down can have 

incorrect results in the calculation of building coverage ratio as 

the relative target location in the image (right or left) will be 

incorrect.  

5. CONCLUSION AND FURTHER STUDIES 

 

In this study, it is aimed to automate the image selection process 

for a target building from Mapillary images though a web 

application where the user only initiates one image of the target 

building as a query. Mapillary API and Overpass API were 

employed to automate selecting street view images from a query 

image that contains the target building. The developed flask web 

application runs with the Docker architecture containing a 

PostGIS database to store tables and to process. Once the user 

selects a query image from street sequences, the system selects 

all images visible to the target building of the query image. The 

first evaluation is based on the image location and camera angle 

properties, then, the system filters all candidate images seeing the 

target building partially or fully. Lastly, the pre-trained U-NET 

model segments the candidate images based on their content, and 

the building coverage ratio is calculated to select images with 

higher pixel content of the target building. 

In some cases, the camera view angle threshold was too large, 

and false positive images were returned. Decreasing this 

threshold was also increased false negative images, therefore 

finding an optimum threshold based on camera make properties 

should be investigated. The camera view angle thresholds should 

be determined differently based on camera type. As a future 

study, the model will be tested with adjacent buildings in an area 

with higher building density. The large camera angle errors in cca 

will be mitigated in future studies, as well. 

With the correct camera angle and coordinates, the applied 

method can successfully retrieve images of the target. For the 

method to deliver correct images of the target to the user, those 

images with incorrect camera angles should be identified. The 

images with incorrect cca can have a large discrepancy between 

ca and cca. Such images can be processed after selecting other 

images. The histogram matching or other methods can also be 

used for quick image comparison. Another option, all images can 

be compared to the closest images within its sequence. If camera 

angles do not vary with the large value among the image 

sequence, the interpolation of the camera angle can be used. This 

may not work if the sequence is not in order. All mentioned 

possible options for mitigating wrong cca values will be 

investigated. 

All accepted and rejected images for TB:5 with Th:50° with U-

NET can be accessed with their partial EXIF data in the GitHub 

repository at https://github.com/celikn/SCA_2020.git 
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