
GEO-TAGGED IMAGE RETRIEVAL FROM MAPILLARY STREET IMAGES FOR A

TARGET BUILDING

Naime Çelik 1, Emre Sümer 1
1 Dept. of Computer Engineering, Baskent University, Ankara, Turkey - 21610281@mail.baskent.edu.tr, esumer@baskent.edu.tr

Commission VI, WG VI/4

KEY WORDS: Image Retrieval; Target Building; pre-trained Unet; Mapillary; street view images

ABSTRACT:

This study aims to investigate the possibility to automate the image selection process for the target building from Mapillary images

through a web application where the user only initiates one image of the target building as a query. Using the data provided with

Mapillary API and Overpass API, all images having full or partial coverage of the target building were selected. Then the images were

segmented by using a pre-trained U-Net model to discard any images having less than 20% building coverage. The experiments showed

promising results yielding 0.971 and 0.887 of overall accuracy after segmentation steps for two different target buildings.

1. INTRODUCTION

Recently Mapillary and OpenstreetCam have been providing

crowdsourced street-level images via volunteers. One can follow

sequences of connected georeferenced images and navigate

through images via these services. In the background, both

services are running computer vision algorithms as an incentive

for extracting information as commercial products (Leon &

Quinn, 2019). Mapillary allows users to download their

crowdsourced street-level images through their API (Mapillary,

2019). All of the EXIF information is lost upon downloading

images, although this API provides partial information of the

EXIF in JSON format to the users.

In this study, we have evaluated Mapillary’s image properties and

experimented to automate the image selection process of the

target building. A flask web application was developed to

retrieve public images from Mapillary API and also utilizing

Overpass API (2020) containing Open Street Map (OSM) data.

As a first goal, images having full and partial coverage of the

target building are selected, initially based on their location and

camera angle. Secondly, segmentation from the pre-trained U-

Net model is used to select images of the target building that have

sufficient coverage of the building within the image.

By providing one query image of the target, one can

automatically retrieve almost all images of the target with full or

partial coverage with the information of the relative location of

the target in the image (right, left, or direct). Images occluded by

other buildings can be detected and eliminated as well. An

exemplary use of a pre-trained U-Net model in this study

demonstrates promising results to further narrowing down image

selection to retrieve images with higher pixel content of the target

building.

As the use of crowdsourced street-level image platforms and the

number of images contributed by the volunteers to these platform

increases, and foreseen to be increased, the community should be

able to find a way of data retrieval for a specific target. This study

provides a method that can be implemented by other researchers

with publicly available data from Mapillary.

2. RELATED STUDIES

2.1 Image Selection for a Target

Araujo et al. (2015) used a query image of a building to identify

panoramic views of the interest from Google street view

panoramic sequences. The graph sequence of images was

searched with Breadth-First Search (BFS) strategy. Their

approach uses Affine-SIFT features to detect target building in

the panoramic images. 15 cases out of 30 were failed due to issues

such as incorrect feature matching, GPS coordinate errors, and

cases with images taken at night and obscured facades with trees.

Another study (Wolff et al., 2016) was detecting street images of

target building facade in oblique aerial images by matching

context information such as color, shape, and spatial similarity to

those in the street images. Cheng et al. (2018), implemented

target image selection in their study and used a structured

organized image dataset from Tencent Street Views Images as a

reference to geotag images from unidentified resources. The

crawled images were processed to exact SIFT features and to

establish an index. Each query image was compared with their

extracted features. The images with the best match were used to

generate 3D reconstruction with Structure from Motion (SfM) as

all images in the reference database taken with one fixed camera.

Their goal was to acquire accurate query image location and the

query image was geo-retagged with 69m accuracy by using

parameters acquired from 3D reconstruction results.

Krylov & Dahyot (2018) used Mapillary street images for

geolocating target objects (traffic lights) and the acquired images

within a specified field of view were enhanced with estimated

image bearings and camera positions by using OpenSFM. Their

pipeline includes semantic segmentation and monocular depth

estimation with Convolutional Neural Networks (CNN) on street

view images to detect target objects. Any images with no object

or no paired images were discarded and the target object location

was determined with triangulation.

When images are uploaded by a user into Mapillary app,

Mapillary runs SfM algorithm onto images and computes new

latitudes and longitudes, aligns images based on outputs,

Mapillary JavaScript library provides functions to get computed

new positions and much accurate bearing angles (Lorenzon,

2019). The computed new bearing angles are more accurate than

those in the provided EXIF information and in this study, the

computed locations and computed camera angles are requested

from Mapillary API. Although, the calculated position and

directions by Mapillary also have errors as they are indicated in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

151

the discussion section and the image retrieval errors caused by

erroneous directions need to be mitigated as a future study.

2.2 Eliminating Occluded Images

Another issue is to eliminate images with possible occlusions

such as trees, other buildings, or cars or with low visibility of the

target. To find ideal images, further image processing, and testing

are necessary on the usability of the image.

CNN based image segmentation has been widely studied to

understand scene content with methods differ in feature

extraction as VGG16, Resnet18, MobileNet, and ShuffleNet and

in decoding as, U-Net and Dilation (Siam et al., 2018).

U-Net model may provide 85% accuracy on buildings in the

Cityscapes dataset. There are also ResNet based CNN

implemented by Mapillary which provides 90% accuracy on

buildings of the same dataset (Bulò et al., 2017), also Porzi et. al

(2019) provides PyTorch implemented ResNet-50 with a Feature

Pyramid Network (FPN) model and made it available on GitHub.

Image segmentation with CNNs has been already presented by

Mapillary and object detection within an image is available with

a commercial license, allowing the user to request images based

on their pixel label. Similarly, the percentage of building pixel

coverage was taken into consideration to discard images in this

study.

3. MATERIAL & METHODS

3.1 Data

Crowdsourcing images from Mapillary has been used in this

study. The data on this platform was collected through cell

phones and other cameras with GPS.

https://a.mapillary.com/v3/images?client_id=<client_id>

&closeto=<Lon>,<.Lat>&computed_coordinates=&includes=cca
 (a)

(b)

Figure 1. A query URL for Mapillary API (a) and downloaded

JSON format response from Mapillary of one of the image (b)

Mapillary API (2019) allows a user to access and download

image data through HTTP endpoints. The API also provides

partial EXIF information in JSON format. (Detail regarding

EXIF format can be found at

https://exiftool.org/TagNames/EXIF.html) Each image located

in https://images.mapillary.com/{key}/thumb-2048.jpg URL and

available with CC BY-SA license allowing individual and

educational use.

Figure 2. Sample query for Overpass API returns building data

within specified coordinates (the extent of the map in the web

application)

Figure 3. The basic user interface of the flask web application

Overpass API was also used for acquiring vector format OSM

buildings to identify possible target buildings. The query

landmark was specified as “building” (Figure 2) and the area of

query was restricted with the map corner coordinates of the user’s

map view of the developed flask web application. Figure 3 shows

a sample retrieved buildings from Overpass API.

3.2 Method

The developed Flask web application running in the Docker-

based architecture consumes Overpass API and Mapillary API

allowing the user to select a street view image on Mapillary-JS

(MapillaryJS, 2020) image sequence. Based on the selected

image location, all images with the Mapillary default limit (200

images) are downloaded, renamed with their key name inside the

folder that named with its sequence_key. The EXIF information

of images are also modified with the information provided in

JSON data from Mapillary API during this process. Computed

camera angle (cca) is included, and the location of computed

longitude and latitude values are used to modify image EXIF

location parameters (GPSLongitude, GPSLatitude).

PostGIS database in a docker container is used to store overpass

vector data containing buildings within the map area. The user

selected image location and downloaded image locations are also

stored in the same database. Once the images are processed by

the application, the selected images are returned to the user with

HTTP endpoints.

Figure 4. General workflow for the web application

3.2.1 Identifying the Target Building: The process for

selecting images of the target building starts with a query image

selected by the user. The closest building along the ± 90 cca

direction is selected as the target building in the query image.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

152

3.2.2 Calculating Minimum and Maximum Azimuth for

Each Image: The azimuth angle is calculated between simplified

target exterior points and image location. The points providing

the maximum and minimum azimuth angles are selected. If the

image cca value is within these angles, the image is accepted for

further processing. Cheng et al. (2018) also used similar azimuth

angle methodology in their study for image selection. Original

locations and camera angles are much more prone to errors due

to incorrect GPS or compass measurements in the volunteer’s

devices. Therefore, requested cca and computed image locations

are used for each image from Mapillary API.

Figure 5 shows the process flow for finding the direct case

images where cca values within the target minimum and

maximum azimuth angles. For each image, the calculated

minimum and maximum azimuth of the target exterior points are

evaluated and checked for their coverage of image cca value

provided by Mapillary API. Figure 6 also illustrates a sample

image with its cca value that is not between the minimum and

maximum azimuth of the target and the map showing the location

of the image, relative to the buildings.

Figure 5. Process flow for checking the minimum and

maximum azimuth of an image

As the distance from the target to the image location increases,

the angle difference between the minimum and maximum

azimuth decreases. If the target is not directly located along the

image direction, the image will be discarded. Figure 6 shows an

example of this situation. An angle tolerance is necessary to

avoid this problem and detect images that may contain the target

on the right or left part of the image.

Figure 6. The map of image location relative to the target

building

3.2.3 Utilization of Angle Tolerance: Images may contain

the target building that is not directly along the cca direction as

the sample image in Figure 6. To detect any images as not a direct

case, the cca direction should be flexed with an angle tolerance.

The line projected from image location with cca value can be

used to calculate two angles (β1 and β2) in Figure 7. Most

cameras with a focal length of 24 mm to 70 mm have less than

90-100° view angle (Panasonic, 2020). If the target is located in

the left or the right side of the image, by restricting (β1 and β2)

with an angle such as 45° or 50°, the tolerance angle necessary

for each image can be calculated.

In the additional process flow for calculating angle tolerance

(Figure 8), the relative location of the building can also be

calculated with one side buffer by using a buffer area with the

largest distance to the exterior points. If all exterior points are

placed within the left buffer area, the target will be located on the

left side of the image, else on the right.

Figure 7. Tolerance angle necessary for each image can be

found restricting by β1 and β2

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

153

Figure 8. Additional process flow for calculating necessary

tolerance angle for the images

3.2.4 Discarding Images with Buildings that Occludes

Target Building: To check if any other building is obscuring the

image from viewing the target building, the exterior points of the

target building are used. If both lines from points providing the

minimum and maximum azimuth of the target intersect with any

building other than the target itself, then that image is rejected as

an obscured image. Figure 9 shows a case of an occluded image.

Figure 9. The image 146 obscured by building id: 42, as the

minimum and maximum azimuth lines of the target building id:

5 intersect this building, Images of 37, 54 and 10 are not

intersecting. (Illustration with only 4 images, the process flow

takes all images into consideration)

Figure 10. Process flow for checking if the images obscured by

another building

3.2.5 Discard Images with Insufficient building coverage

using Unet CNN: As the target may be concealed by an object

such as trees, cars, or people, to eliminate images that have

insufficient coverage of the building, pre-trained Keras U-Net

(Humbarwadi, 2020) model previously trained with Mapillary

Vistas Dataset is used. The model was trained for 150k iterations

with a learning rate of 0.004 with 256x256 images with 64 filter

and 66 classes. The model encodes an image with 3x3

convolutional kernel with two 2d convolution operation in each

convolution block and apply 2x2 max pooling operation to

reduce to the size of the feature map thus, downsamples the

image. Transposed convolution in deconvolution block

upsamples image with the corresponding convolutional layer to

acquire an increased resolution on the final output. Although

PyTorch implementation was provided by Mapillary (Porzi et al.,

2019), due to the usage of CPU based platform with no CUDA

in our experiment, TensorFlow Keras implementation was

preferred in the current study. The repository of the pre-trained

model was missing the necessary config.json file containing 66

object segmentation labeling and it was obtained via Mapillary

Vistas Research Dataset (Neuhold et al., 2017) requested

through Mapillary web page.

Pixels labeled as building are masked and the pixel ratio of the

connected components in the masked image is calculated as

coverage ratio. Figure 11 shows an image of a direct case, where

the calculation of the building coverage ratio takes all connected

pixels into account and results in 0.49. Figure 12 shows an image

where the relative target location (right, left, or direct) identified

as right. The calculation takes into the only right side of the image

and the building coverage ratio results as 0.0 since the target is

behind a tree.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

154

Figure 11. An image (image key:

32pUYPVcaPCp0TMWdg_SVA) with building coverage ratio

0.49

Figure 12. An image (image key: 2FZgFFC3jVJnxolqrdUv-Q),

the relative target location was detected as right, provides only

pixels on the right side of the image on coverage ratio

calculation, thus results coverage ratio 0.0

3.3 Reference Data

Two target buildings were selected in a public area (Dede Korkut

Park, Eskisehir), shown in Figure 9 with building ids 5 and 42.

Various images of the targets were collected and uploaded

through Mapillary App with two different mobile phones. The

images of the targets were requested with the default image

request size of 200 through developed flask web application. The

downloaded images were uploaded by the authors and also other

unknown volunteers. The images were evaluated and requested

on May 24, 2020. The images uploaded or modified later of this

date in Mapillary were not considered in the evaluation.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

TP + TN + FP + FN
 (4)

Each image was evaluated manually on their content and marked

as True Positive (TP) if image contains the target fully or partially

within image view and accepted, False Positive (FP) if image

does not contains the target within the image view but accepted,

True Negative (TN) if image does not contain the target and

rejected, False Negative (FN) if image contains the target fully or

partially but rejected. Additionally, the metrics; Precision,

Recall, F-score and Accuracy were also computed given in the

following equations (1) to (4).

4. RESULT AND DISCUSSION

TB:5

Th:None

TB:5

Th:50°

TB:5

Th:45°

TB:5

Th:40°

TB:5

Th:50° Unet

Precision 1.000 0.957 0.984 0.984 0.913

Recall 0.406 0.957 0.899 0.884 1.000

F score 0.577 0.957 0.939 0.931 0.955

Accuracy 0.777 0.967 0.957 0.951 0.971

TP 28 66 62 61 21

FP 0 3 1 1 2

TN 115 112 114 114 46

FN 41 3 7 8 0

Total 184* 184* 184* 184* 69
TB:42

Th:None

TB:42

Th:50°

TB:42

Th 45°

TB:42

Th:40°

TB:42

Th:50° Unet

Precision 0.903 0.758 0.807 0.833 0.857

Recall 0.549 0.904 0.902 0.882 0.818

F score 0.683 0.825 0.852 0.857 0.837

Accuracy 0.857 0.890 0.912 0.918 0.887

TP 28 47 46 45 18

FP 3 15 11 9 3

TN 128 115 120 122 37

FN 23 5 5 6 4

Total 182* 182* 182* 182* 62

Table 1. Evaluation for Target Building 5 and Target Building

42 with different camera view angle thresholds and final unet

segmentation with Threshold 50° (* The images with wrong cca

values excluded from the calculation to evaluate model accuracy. The

necessary mitigation is aimed to be a future study for images with

wrong cca values.)

Figure 13. Box plots of absolute angle difference from cca, ca

and approximated angles for 237 images obtained via Mapillary

API of the two targets (some images were common for targets)

The requested cca values also had outliers. For images used in

this study, approximated angles were inferred via digital

protractor on web map and compared to ca and cca values. The

angle difference between ca and cca shows a large discrepancy

in absolute minimum angle difference. The cca values acquired

from Mapillary API improves the accuracy of the camera angles,

although 25 out of 237 images were incorrectly calculated on

15.92° outlier cut-off (Figure 13).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

155

Accepted image keys with more
than 30° error in their cca

cca ca

A
p

p
ro

x
.

Diff Appx.
and CCA

8RQ34MT_AxBWJdgbBNWavQ 39.189 0.000 332 67.189

JpyBYW_nwiU7a3WXJI2JGg 267.939 0.000 300 32.061

KKRHwUVTpDr1cuaSy5UnRw 300.742 0.000 335 34.258

MqYNnx16T7-aWNx9GxE83w 307.279 266.345 255 52.279

OAjnSWcOtz71yRU5IzG1xQ 211.666 99.236 300 88.334

OrPaa_JxwiiMUV-Pk6fctg 313.544 265.908 255 58.544

pCrYRJzY_iX_hr7bNmxuuA 303.589 274.291 255 48.589

SRMi20SAj9J9WZM80HLoGQ 195.861 303.043 320 124.139

5bwl3xppiWj0-rW5p8tdUA 330.649 301.955 290 40.649

emtqR3jkSBeiY68H-gR5hA 195.440 211.526 315 119.560

ovRJMaDBswbZONzHC5dqpw 327.744 281.249 255 72.744

Ozk6BRZboELAaaL7KFejfg 324.686 268.313 255 69.686

r6cnsDko560Flwt9SE79pg 315.282 268.097 255 60.282

Soz_uFvmwMGSmpMDRh5xnQ 341.551 263.469 255 86.551

yGsOdMu06-221mDQ8pQO3Q 320.488 262.600 255 65.488

YUi-3eJYplbGnsQzWKdqpg 195.100 212.327 315 119.900

Table 2. Image keys revealed with more than 30° angle

difference for TB:5 and TB:42

18 images of those outliers (in Figure 13), revealed with more

than 30° angle difference, were not included in the result

evaluation to measure the performance of the model. Table 2

indicates the angle difference of 16 of those images affected the

selection results for TB:5. The mitigation of those outliers will be

discussed as a future study.

The first selection of images was based on their cca directions,

whether the calculated target minimum and maximum azimuth

angle values encompass the image cca directions directly. For the

first target building TB:5, with no tolerance, only images directly

seeing the target were retrieved with high precision but very low

recall and f-score, 0.406 and 0.577 respectively. Figure 14 shows

directly selected images for TB:5. Similarly, the recall and f-

score for TB:42 were also low without flexing angles, which are

0.549, and 0.683 respectively.

Figure 14. Images selected for target building 5 with no angle

view threshold

For TB: 42, three images were false positive and the precision is

less than the precision of the other target building. These three

images (blue points) of TB:42 were not fully blocked and

maximum azimuth lines were not intersecting with another

building (the thicker red and green lines in Figure 15). The

occlusion algorithm does not discard the image if only one of the

lines is intersecting. However, these images were classified as

“no target” on the reference data since no part of the target

building is visible due to modification with an additional tarp

next to the building (enclosed by yellow rectangle).

Figure 15. A misclassified reference data as “no target” (Image

Id: 7VbGR_XLStmSbXDtUA4llQ) due to tarp

Figure 16. Images selected for target building 5 with 50 °camera

view angle threshold, images enclosed with red color are those

selected due to wrong cca values indicated in Table 2.

Flexing minimum and maximum angle with a camera view angle

threshold increased f-score for both target buildings. After testing

with different thresholds for TB:5, 50° threshold was providing

f-score of 0.95, 3 images were labelled as false positive, not

seeing the TB:5 and also 3 images were missed (orange borders

shows the part of the target in the Figure 17).

The lower camera view angle threshold increases the false

negative that is the number of missed images. Figure 16 shows

all selected TB:5 Th:50, red border images are those indicated in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

156

Table 2 negatively affecting the image selection results due to

wrong cca values.

With 50° view angle threshold for TB:42, the false positive

images are much higher compared to TB:5 due to tarp next to the

mentioned building. Additional 7 images have the same issue

mentioned above (thinner lines in Figure 15), resulted in false

positive case. For the other 5 images, the target cannot be seen

with this threshold and lower view angles thresholds are more

suitable. As the angle threshold decreases, some of the 7 images

(with tarp) were not retrieved thus lead to the lower false positive

for TB: 42 with thresholds 45° and 40°.

Figure 17. Two out of three missed images for TB:5 with Th:50

°, the target can be seen very slightly (Image ids:

xfUfnxDjtAYXpEmytJ8FhA and tKo5Yr0hn0zTRv5j5YGRmA

respectively)

Figure 18. Final coverage accepted images with 20% coverage

threshold and locations of coverage accepted images relative to

target building 5

Another evaluation was made based on the U-Net segmentation

result. The images containing building less than 20% building

coverage discarded to be able to find images with higher content

of the target building (Figure 18). UNET model is able to refine

images with 0.971 accuracy for the target building 5.

The accuracy of the image location can affect the result,

especially for images close to the buildings. The difference

between calculated and original coordinates provided by

Mapillary API has a difference up to 10m (Figure 19). Since it is

not possible in our study to measure the exact coordinates for

each image location, the computed coordinates are relied on

finding the images of the target buildings. However, some of the

image locations reside in overpass polygon data, especially those

taken in the corner of the building. Although, it could be also due

to the accuracy of OSM data that can vary 5 to 10 meters

(Calazans Campelo et al., 2017).

Figure 19. A box plots of distance difference from computed

and original image location of 237 images obtained via

Mapillary API.

In addition to image location accuracy, the camera angle

provided by Mapillary also affected the final result from U-Net

segmentation. As the large angle errors affect the correct image

selection, smaller camera angle errors can change coverage ratio

from segmentation. The image in Figure 20 has cca of 281.22°,

ca of 266.12° and approximated angle of 255°.

Figure 20. Calculation of incorrect coverage ratio of 0.15

instead of 0. (Image key: 91-rwnEDj3ZQGJlh3pwFPw)

The large camera angle error in cca values also can lead to wrong

target selection since the target selection process flow takes only

the buildings along with the ± 90° cca value of the query image

into the account. In some cases, original camera angles were

correct but computed camera angle were incorrectly provided

(Table 2) by Mapillary API.

The large camera angle errors in cca should be mitigated in future

studies. The images with incorrect cca can have a large

discrepancy between ca and cca. Such images can be processed

after selecting other images. The histogram matching or other

methods can also be used for quick image comparison. Another

option, all images can be compared to the closest images within

its sequence. If camera angles do not vary with the large value

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

157

among the image sequence, the interpolation of the camera angle

can be used. This may not work if the sequence is not in order.

Tilted images and images are taken upside down can have

incorrect results in the calculation of building coverage ratio as

the relative target location in the image (right or left) will be

incorrect.

5. CONCLUSION AND FURTHER STUDIES

In this study, it is aimed to automate the image selection process

for a target building from Mapillary images though a web

application where the user only initiates one image of the target

building as a query. Mapillary API and Overpass API were

employed to automate selecting street view images from a query

image that contains the target building. The developed flask web

application runs with the Docker architecture containing a

PostGIS database to store tables and to process. Once the user

selects a query image from street sequences, the system selects

all images visible to the target building of the query image. The

first evaluation is based on the image location and camera angle

properties, then, the system filters all candidate images seeing the

target building partially or fully. Lastly, the pre-trained U-NET

model segments the candidate images based on their content, and

the building coverage ratio is calculated to select images with

higher pixel content of the target building.

In some cases, the camera view angle threshold was too large,

and false positive images were returned. Decreasing this

threshold was also increased false negative images, therefore

finding an optimum threshold based on camera make properties

should be investigated. The camera view angle thresholds should

be determined differently based on camera type. As a future

study, the model will be tested with adjacent buildings in an area

with higher building density. The large camera angle errors in cca

will be mitigated in future studies, as well.

With the correct camera angle and coordinates, the applied

method can successfully retrieve images of the target. For the

method to deliver correct images of the target to the user, those

images with incorrect camera angles should be identified. The

images with incorrect cca can have a large discrepancy between

ca and cca. Such images can be processed after selecting other

images. The histogram matching or other methods can also be

used for quick image comparison. Another option, all images can

be compared to the closest images within its sequence. If camera

angles do not vary with the large value among the image

sequence, the interpolation of the camera angle can be used. This

may not work if the sequence is not in order. All mentioned

possible options for mitigating wrong cca values will be

investigated.

All accepted and rejected images for TB:5 with Th:50° with U-

NET can be accessed with their partial EXIF data in the GitHub

repository at https://github.com/celikn/SCA_2020.git

REFERENCES

Araujo, A. A., Sampaio, J. C., Evangelista, R. S., Mantuan, A.

B., & Fernandes, L. A. F. (2015). Accurate Location of Façades

of Interest in Street View Panoramic Sequences. 2015 28th

SIBGRAPI Conference on Graphics, Patterns and Images, 281–

288. https://doi.org/10.1109/SIBGRAPI.2015.32

Bulò, S. R., Neuhold, G., & Kontschieder, P. (2017). Loss Max-

Pooling for Semantic Image Segmentation. 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 7082–7091. https://doi.org/10.1109/CVPR.2017.749

Calazans Campelo, C. E., Bertolotto, M., & Corcoran, P. (2017).

Volunteered geographic information and the future of geospatial

data. IGI Global.

Cheng, L., Yuan, Y., Xia, N., Chen, S., Chen, Y., Yang, K., Ma,

L., & Li, M. (2018). Crowd-sourced pictures geo-localization

method based on street view images and 3D reconstruction.

ISPRS Journal of Photogrammetry and Remote Sensing, 141,

72–85. https://doi.org/10.1016/j.isprsjprs.2018.04.006

Humbarwadi, S. (2020). srihari-humbarwadi/Keras-Unet: Keras

Unet model trained on Mapillary Vistas. Keras-Unet, GitHub

Repository. https://github.com/srihari-humbarwadi/Keras-Unet

Krylov, V. A., & Dahyot, R. (2018). Object geolocation from

crowdsourced street level imagery. Joint European Conference

on Machine Learning and Knowledge Discovery in Databases,

79–83.

Leon, L. F. A., & Quinn, S. (2019). The value of crowdsourced

street-level imagery: Examining the shifting property regimes of

OpenStreetCam and Mapillary. GeoJournal, 84(2), 395–414.

Lorenzon, O. (2019). LatLon, computedLatLon and

originalLatLon explained.

https://bl.ocks.org/oscarlorentzon/16946cb9eedfad2a64669cb11

21e6c75

Mapillary. (2019). Mapillary API Documentation.

https://www.mapillary.com/developer/api-documentation/

MapillaryJS. (2020). MapillaryJS Documentation.

https://mapillary.github.io/mapillary-js/

Neuhold, G., Ollmann, T., Bulo, S. R., & Kontschieder, P.

(2017). The Mapillary Vistas Dataset for Semantic

Understanding of Street Scenes. 2017 IEEE International

Conference on Computer Vision (ICCV), 5000–5009.

https://doi.org/10.1109/ICCV.2017.534

Overpass API. (2020). Overpass API User’s Manual.

https://dev.overpass-api.de/overpass-doc/en/

Panasonic. (2020). How Focal Length Affects Viewing Angle |

Digital Camera Know-Hows | Digital Camera | Digital AV |

Support | Panasonic Global.

https://av.jpn.support.panasonic.com/support/global/cs/dsc/kno

whow/knowhow12.html

Porzi, L., Bulo, S. R., Colovic, A., & Kontschieder, P. (2019).

Seamless Scene Segmentation. 8277–8286.

https://openaccess.thecvf.com/content_CVPR_2019/html/Porzi

_Seamless_Scene_Segmentation_CVPR_2019_paper.html

Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., &

Jagersand, M. (2018). RTSeg: Real-Time Semantic

Segmentation Comparative Study. 2018 25th IEEE International

Conference on Image Processing (ICIP), 1603–1607.

https://doi.org/10.1109/ICIP.2018.8451495

Wolff, M., Collins, R. T., & Liu, Y. (2016). Regularity-driven

facade matching between aerial and street views. Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 1591–1600.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-151-2020 | © Authors 2020. CC BY 4.0 License.

158

