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ABSTRACT: 

 

Remote sensing offers spatially explicit and temporally continuous observational data of various land surface parameters such as 

vegetation index, land surface temperature, soil moisture, leaf area index, and evapotranspiration, which can be widely leveraged for 

various applications at different scales and contexts. One of the main applications is agricultural monitoring, where a smart system 

based on precision agriculture requires a set of satellite images with a high resolution, both in time and space to capture the 

phenological stages and fine spatial details, especially in landscapes with various spatial heterogeneity and temporal variation. These 

requirements sometimes cannot be provided by a single sensor due to the trade-off required between spatial and temporal resolutions 

and/or the influence of cloud cover. The data availability of new generation multispectral sensors of Landsat-8 (L8) and Sentinel-2 

(S2) satellites offers unprecedented options for such applications. Given this, the current study aims to display how the synergistic 

use of these optical sensors can efficiently support such an application. Herein, this study proposes a deep learning spatiotemporal 

data fusion method to fill the need for predicting a dense time series of vegetation index with fine spatial resolution. The results show 

that the developed method creates more accurate fused NDVI time-series data that were able to derive phenological stages and 

characteristics in single-crop fields, while keeps more spatial details in such a heterogeneous landscape. 
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1. INTRODUCTION 

 

One of the methods that scientists and decision-makers rely on 

for effective tracking and monitoring of agricultural landscapes 

is detailed spatial information about crop growth (DeFries et al. 

2005). Currently, remote sensing satellite systems offer great 

potential to monitor and analyse agricultural crops at various 

spatial and temporal scales owing to its synoptic coverage and 

repetitive measurements (Benabdelouahab et al., 2019; Htitiou 

et al., 2020; Lebrini et al., 2020, 2019). A wide range of 

observation satellites can be used to produce vegetation indices 

such as the normalized difference vegetation index (NDVI) for 

monitoring crops, vegetation photosynthetic activities and 

biophysical properties by taking advantage of its high 

correlation with the leaf area index and leaf chlorophyll 

concentrations.  

 

Nevertheless, this kind of application seems to be a challenging 

issue particularly in regions where high levels of both spatial 

and temporal vegetation heterogeneity are present and which 

constitute significant constraints that limit the efficiency of any 

vegetation studies. 

 

 For this reason, only the availability of NDVI time-series data 

with both high spatial and high temporal resolution could 

constitute a major asset for such application. However, these 

requirements cannot be fulfilled in most practical settings by a 

single sensor due to the trade-off between spatial and temporal 

resolutions. Moreover, cloud contaminations and poor 

atmospheric conditions can further increase the discontinuity 

and the fragmentation of satellite observations data and make 

their use seriously limited.  

 

In response to these limitations, spatiotemporal fusion models 

are emerging as a powerful way to obtain an image that 

mitigates the individual limitations of input datasets and 

therefore produces a simultaneously high temporal and spatial 

resolutions product. So far, various spatiotemporal fusion 

models have been developed to blend remote sensing images 

such as the spatial and temporal adaptive reflectance fusion 

model (STARFM) (Gao et al. 2006) and its variants (Zhu et al. 

2010). 

 

 However, these classical spatiotemporal methods are not 

always the preferred tool due to their main use in monitoring 

surface dynamics and phenological changes in areas without 

significant changes(Watts et al. 2011); while their prediction 

accuracies experience problems with surface heterogeneity and 

abrupt changes in land cover types and, therefore, cause 

vegetation studies errors (Emelyanova et al. 2013). Besides that, 

many fusion algorithms require plenty of parameters which are 

difficult to tune and carry a direct impact on prediction result 

(Zhu et al. 2010). Thus, there is an urgent need for the 

development of novel fusion methods that can achieve high 

prediction accuracy regardless of the change type, land-cover 

change, or phenological change. 
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 In this context, the numerous recent breakthroughs in deep-

learning has emerged as an ideal tool for addressing and 

improving spatiotemporal fusion multi-sensors data, over 

existing algorithms (Ao, Sun y Xin 2020; Tan et al. 2018). 

Specifically, the convolution neural network (CNN), which is a 

type of deep learning technology that can automatically extract 

spatial features from source images, and has been shown to be 

successful for remote sensing image applications, such as image 

super-resolution and enhancement. 

 

To date, there have only been a few studies that have 

investigated the use of CNN algorithms for the spatiotemporal 

fusion of earth-observing satellites data, particularly for the new 

ones such as Sentinel-2 and Landsat-8, and still lacks standard 

terminology on how they combined in detailed and frequent 

spatial and temporal resolution will improve the agricultural 

application and mainly crop monitoring. Therefore, the 

overarching goal of our study is to evaluate the composition of 

Landsat-8 and Sentinel-2 NDVI data to provide temporally 

dense synthetic NDVI in near real-time for improved 

agricultural management and monitoring all by using a deep 

learning model for spatiotemporal fusion. 

 

 

2. STUDY AREA, SATELLITE DATA, AND 

SYNTHETIC DATA SETS  

2.1 Study area 

The irrigated perimeter of Tadla, with an area of 97 000 ha, is 

situated in the center of Morocco (Figure1), between the 

Atlantic coast in the north-west and the Atlas Mountains in the 

south-east (32°23' north latitude, 6°31' west longitude, 445 m 

above sea level). The area is marked by an arid to semi-arid 

climate that is characterized by a dry season (April to 

September) and a rainy season (October to March). The mean 

annual temperature is about 19 °C, and the mean annual 

precipitation is approximately 300mm. 

 

2.2 Sentinel-2 and Landsat 8 data 

The Sentinel-2A MSI (S2) and Landsat 8 OLI (L8) images 

covering the study area data were used in this process for 

further use. The L8 OLI provides 9 spectral bands at 30m 

spatial resolution, except the panchromatic band, which has a 

spatial resolution of 15 m (Irons, Dwyer y Barsi 2012). While, 

the S2 /MSI used in this study has spectral response functions 

quite different compared to its predecessor with thirteen spectral 

bands at 10 m, 20 m and 60 m spatial resolution (Drusch et al. 

2012). In this work, a time series of 26 suitable images with less 

than 20% cloud cover from each sensor (L8 and S2) were 

acquired respectively via the United States Geological Survey 

(USGS) on-demand interface (ESPA) (https://espa.cr.usgs.gov), 

and the Theia land data center from Jun 2016 to August 2017 

(Table 1). The L8 and S2 images were already processed (level 

2A) by the Landsat Surface Reflectance Code (LaSRC) 

algorithm and the MAJA processor respectively. For each of the 

Sentinel-2 and Landsat 8 scenes, the NDVI layers were 

generated using red and near-infrared spectral bands according 

to the following equation (Tucker, 1979). 

 

NDVI= (NIR-RED)/(NIR+RED)       (1) 

 

 

Figure 1. Location of the study area and a corresponding 

Sentinel-2 image (False Color Combination: NIR, red, green 

band as RGB).  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020 
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-249-2020 | © Authors 2020. CC BY 4.0 License.

 
250



 

 

  

3. METHODOLOY 

 

3.1 Convolutional Neural Networks (CNNs) 

With the rapid development of deep learning techniques in 

recent years, various deep learning-based methods have been 

proposed to deal with complex tasks in several applications. 

Among these architectures, convolutional neural networks 

(CNN) are drawing considerable attention and popularity due to 

their simple structure, as well as the applicability and efficiency 

in various fields of image processing (Dong et al., 2016; Jiao et 

al., 2017; Masi et al., 2016). Generally, a CNN is a multilayer 

feed-forward neural network that mainly consisted of one input 

layer, convolution layers, pooling layers, reLU (Rectified Linear 

Unit) layers, fully connected layers and one output layer. 

Additional layers can be optionally added to the network 

depending on the requirement of more complex problems. 

 

3.2 Super-resolution convolutional neural network 

(SRCNN) for spatiotemporal image fusion 

Although, CNN has been initially proposed for the prediction of 

categorical variables such as class labels; it has recently been 

modified to produce continuous output values (Dong et al. 

2016). This has opened the door for a wide CNN-based image 

restoration super-resolution and fusion. In this context, (Dong et 

al. 2016) proposed the milestone Super Resolution CNN 

(SRCNN) with three layers of neural networks to downscale the 

coarse images to high spatial resolution. In our experiment, we 

employ SRCNN as a remote sensing image spatiotemporal 

fusion method itself. Its network architecture is shown in Figure 

2. The SRCNN architecture comprises three-layer, where the 

filter sizes of each layer are 64 × 1 × 9 × 9, 32 × 64 × 5 × 5 and 

1 × 32 × 5 × 5. After each convolution filter in every layer, an 

activation function, rectified linear unit (RELU), is applied 

except last layer. Last layers of the network are again 

convolutional layers, which provide the final learned mapping 

from an input low-resolution image patch to a high-resolution 

image pixel value. Hence, the high-resolution image is 

constructed at the output of the CNN network.  

 

 

 

 

 

The proposed SRCNN framework needs three inputs: a coarse- 

and fine-resolution NDVI images from different satellite 

sensors observed at the same date (t1) and one coarse-resolution 

image acquired on the prediction date (t2). The output is the 

high-resolution image on the prediction date. The proposed 

framework is summarized in the flowchart of Figure 2.  

The proposed fusion SRCNN model is divided into training 

phase and testing phase. In the training phase, we used the two 

pairs of Landsat–Sentinel data that were imaged on 11 

September 2016 and 18 February 2017 (base dates), 

respectively (as indicated by Table 2). On the other hand, in the 

testing phase, the Landsat NDVI data acquired on 09 May 2017 

(prediction date) is used for prediction of Sentinel-like NDVI 

data. 

 

Acquisition date  Landsat 8 Sentinel-2A 

11 September 2016 
Model input (start 

date) 

Model input (start 

date) 

18 February 2017 
Model input (end 

date) 

Model input (end 

date) 

09 May 2017 
Model input (for 

prediction date) 

For model 

validation 

Table 2. The acquisition dates of every image used for the 

downscaling process and their function 

 

3.3 Qualitative and quantitative assessment of the fusion 

results 

The results were compared to the actual S2 image on May 09, 

2017, using both qualitative and quantitative assessments to 

check the fused NDVI products and summarize their 

performance differences. The qualitative assessment is 

performed based on visual analysis of observed (actual) and 

predicted (synthetic) NDVI in terms of change in reflectance 

and spatial pattern. On the other hand, a quantitative assessment 

is performed two main statistical metrics, such as root mean 

square error (RMSE), and the correlation coefficient (r). It is 

noted that a smaller RMSE indicates better prediction, and an r 

close to 1 indicates a high similarity between the compared 

images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor Jan Feb Mar Apr May Jun Jul Aug Sep      Oct Nov Dec Year 

Sentinel-2A - - - - - 2 2 1 2 - 2 2 2016 

Landsat 8 - - - - - 2 2 2 2 2 2 1 2016 

Sentinel-2A 2 2 - 2 3 3 3 - - - - - 2017 

Landsat 8 2 2 2 2 1 1 2 1 - - - - 2017 

Figure 2. The architecture of the proposed deep convolutional spatiotemporal fusion network method. 

 

 

 

Table 1. Acquisition dates (2016 and 2017) of Sentinel-2 and Landsat 8 satellite imagery used in this analysis. 
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4. RESULTS AND DISCUSSIONS 

4.1 Assessment of the fusion performance 

As was mentioned earlier, the pairs of Sentinel-2 and Landsat 8 

NDVI images of the base dates were fused with a Landsat 

NDVI image of the prediction date to generate synthetic 

Sentinel-like NDVI on May 9, 2017. Figure 3 demonstrates the 

visual comparison of the predicted NDVI result obtained from 

the developed method and its corresponding reference Landsat 

and Sentinel NDVI images for two sub-areas of A and B that 

represent farmland sites with great heterogeneity, noticeable and 

rapid phenological change. 

 

 
 

Figure 3. Visual comparisons between the actual and the 

predicted Sentinel-like NDVI with the corresponding Landsat 

NDVI on May 09, 2017. Note that the sub-areas A and B are 

selected and cropped from the study site 

 

In generally, it is observed that the proposed method produces 

accurate and satisfactory results regarding the fact that the 

actual and predicted images are comparable and exhibit spatial 

and spectral similarities. 

 

To further confirm the performance and great potential of our 

method, we randomly selected pixels as samples from four sites 

in the study area and compared (as shown in Figure 4) their 

NDVI values of the predicted Sentinel-like image against that of 

the true image for the prediction date on 09 May 2017 using 

scatter and residuals plots, which will provide an intuitive 

comparison in explaining the approximate extent of the 

distribution between the fusion and the actual NDVI. 

 

From these results, we can observe that scatter and residuals 

plots also confirmed that the proposed SRCNN method yielded 

revolutionary results and good performance for downscaling 

Landsat-8 NDVI to a higher spatial resolution. Figure 4a 

indicates a high agreement between the actual Sentinel-2 NDVI 

and synthetic Sentinel-2 NDVI from the proposed method. This 

is explained by the fact that all the points of predicted data were 

scattered along the 1:1 line and correlated well with the 

referenced data for the four sites. Figure 4b shows also that the 

residuals are non-randomly and more closely distributed around 

the zero line which means a perfect fit and good linear 

relationship between predicted and actual images. From a 

statistical point of view it is evident that SRCNN method can 

produce fused images that more closely resemble the real 

Sentinel-2 NDVI even in areas experiencing land use and land 

cover changes through the season as confirmed by a lower 

RMSE (0.109) and a higher correlation r (0.918) for the whole 

synthetic NDVI image. 

 

 

 
 

Figure 4. Correlation analysis between the actual and synthetic 

Sentinel-2 NDVI on May 09, 2017 in four sites over the study 

area 

 

4.2 Phenological Analysis 

 

Agricultural monitoring was selected as a relevant remote 

sensing application to demonstrate the potential of the proposed 

data fusion approach. Based on the above analysis of the 

SRCNN fusion scheme, we decided to extend the developed 

method for each time-series L8 image during the growing 

season and served as predicted images. As a result, a total of 26 

Sentinel-like NDVI scenes were predicted and were added to 26 

existing Sentinel-2 NDVI observations to generate a very dense 

time series. 

 

However, noise (clouds etc.) usually makes it difficult to 

generate reliable time series of vegetation indices. For that 

reason, Savitzky-Golay filter (Chen et al., 2004) is applied to 

reconstruct continuous dense time series by eliminating the 

remaining noises in the time-series besides that preserving the 

trend of the original NDVI data fairly well; in a way that better 

depicted the seasonal variation in vegetation characteristics; it, 

therefore, provides reliable data for the extraction of 

phenological information. 

 

Figure 5 shows the phenological growth profiles of the average 

NDVI generated by the SRCNN method of two fields of wheat 

and alfalfa, respectively in the study area during the 2016/2017 

cropping season. The average NDVI extracted from the original 

Landsat-8 NDVI time series images and Sentinel-2 NDVI 

images were also presented. 
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Figure 5. Comparison of NDVI temporal profiles obtained from 

Landsat, Sentinel-2, and their combined use by SRCNN 

spatiotemporal fusion method over an a) alfalfa and b) wheat 

field 

In general, the smoothed phenological profiles of NDVI show a 

unique and well-defined phenological characteristic for each 

crop type. However, significant differences in crop growth 

status can be observed for each density of the NDVI time series. 

It is clear that combining S2 and L8 data made it possible to 

monitor perfectly and continuously the crop development 

during the season and help further to capture accurate temporal 

changes while preserving fine-spatial-resolution details, which 

was previously not achievable by the only use of L8 or S2 data 

as observed in Figure 5 and consistent with previous studies 

(Htitiou et al., 2019). This becomes clearer when a sudden 

change (wheat harvest, or alfalfa cut) in the temporal NDVI 

profile takes place since it cannot be estimated properly using 

only the Landsat or sentinel-2 time series. On the other hand, it 

can be perfectly satisfactory when it uses the fused L8/S2 NDVI 

time series.  

 

This result in addition to previous findings about the quality 

assessment and consistency of the derived NDVI suggests that 

our spatiotemporal method is suitable to construct time-series 

images for continuous monitoring of vegetation change over 

areas that contrasting spatial and temporal heterogeneity. And it 

can perfectly estimate subfield-scale crop phenology and further 

provides new opportunities to increase the knowledge about 

environmental changes and to support many operational 

applications that require monitoring rapidly-varying phenomena 

and high spatial resolution, such as precision agriculture, 

irrigation advisory services, and near real-time change 

detection. 

 

5. CONCLUSIONS 

Precision agriculture requires detailed crop status information at 

high spatial and temporal resolutions. Remote sensing can 

provide such information, but single sensor observations are 

often incapable of meeting all data requirements. In recent 

years, many spatial and temporal satellite image fusion (STIF) 

methods have been developed to solve the problems of trade-off 

between spatial and temporal resolution of satellite sensors. In 

this study, we investigate the capacity of a deep learning-based 

approach to map NDVI at 10 m spatial resolution and at a high 

temporal resolution in an experimental site in the middle of 

Morocco. The obtained results indicate that even in a 

challenging study area with heterogeneous landscapes, the 

combined use of images from S2 and L8 satellites by our 

method can provide very useful information regarding spatial 

and temporal patterns of crops during their growing stages. 

Despite the promising results of the proposed fused approach in 

this study, some issues need to be studied further. The recent 

launch of the European Sentinel-2B sensor that will bring some 

improvement to our approach by providing global observations 

on average once every 2.9 days, which could make a very dense 

time series for each season and further better monitoring of the 

vegetation dynamics and temporal variations. 
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