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ABSTRACT: 

 

Recently, driving behavior has been the focus of several researchers and scientists, they are attempting to identify and analyze 

driving behavior using different sources of data. The purpose of this research is to investigate data acquisition methods and tools 

related to driving behavior, in addition to the type of data acquired. Using a systematic literature review strategy, this study identified 

tools and techniques used to collect data related to driving behavior among 120 selected studies from 2010 to 2020 in several 

literature resources. It then measured the percentages of the most commonly used methods, as well as the type of data collected. In-

vehicle and IoT sensors was found to play the greatest role in data collection in approximately 67% of the documents selected 

studies; And concerning the type of data acquired, those relating to the vehicle are the most widely collected. Thus, this study 

definitively answers the question regarding the different data sources and data types used among researches. However, further 

studies are needed to give more attention to the driver's data and also to investigate the data from the three dimensions of driving 

(driver, vehicle, and environment) together as an integrated and interconnected system. 

 

 

1. INTRODUCTION 

Recent research indicates that driver error contributes to up to 

75% of all roadway crashes (Stanton and Salmon, 2009). 

Literally, human factors contribute in the manifestation of 95% 

of all accidents, according to study of 2041 traffic accidents 

conducted by (Sabey and Taylor, 1980).  Reducing those huge 

numbers and save people’s life become necessity, for that 

reason and in order to improve safety, security and comfort of 

the driver and other road’s users, many studies were dealing 

with the topic of driving behavior (DB) using different 

approaches and techniques. 

The common element in these studies, is represented by source 

of data according to (Elamrani Abou Elassad and Mousannif, 

2019). In fact, the majority of researches at the field of DB are 

using one of those three types of studies, Naturalistic Driving 

Studies (NDS) , Field Driving Studies (FDS) or Simulator 

Driving Studies (SDS) to collect data (Yang et al., 2018a). 

Which clearly allow us to realize the importance of the data 

acquisition process to analyze driving behavior.  

Moreover, (Andria et al., 2015) considered that the data 

acquisition in automotive environments is widely used in 

everyday applications. Actually, the recent computerizations of 

cars, together with the development of sensor technologies and 

car communication devices have transformed the cars into 

wealthy sources of information on the driver, the vehicle and 

environment (Bouhoute et al., 2019). In addition, the 

remarkable advancement of Internet of vehicles (IoV) 

technologies and big data technologies in recent years have 

offered new solutions to improve traffic safety and efficiency 

(Cen et al., 2017). 

While these precursor works offer helpful insights into DB 

evaluation from a data-based perspective, it is crucial to note 

that through data-collection examination for DB analysis is 

quite limited; to the authors’ knowledge minimal work has been 

directed to the investigation of the harnessed data characteristics 

in this domain. Therefore, this paper aims to present a short 

survey that reveals methods of data collection process and tools 

linked to Driving Behavior, in which we present the most 

techniques and measures used to collect and gather useful 

information to analyze driving behavior. Another aspect has 

also been covered in this work which concerns the three driver's 

dimensions data.  

The rest of the paper is organized as follows: Section II presents 

the methodology adopted to select some related existing works 

to data collection of driving behavior, and the process of 

extracting and synthesizing the data. In Section III, results 

obtained about techniques and technologies used to collect data, 

then the three dimensions of driving behavior related data. 

Finally, Section IV concludes the paper. 

 

2. METHODOLOGY 

In order to identify, analyze and interpret all available evidence 

related to “data collection in the area of driving behavior”, we 

planned, conducted and reported the review by following the 

systematic literature review SLR process (often referred to as a 

systematic review) suggested by (Kitchenham and Charters, 

2007).  

This process aims to present a fair evaluation of the topic 

mentioned above using a trustworthy, rigorous, and auditable 

methodology. 

Thus, this study adopted the three famous phases of SLR which 

are: planning the review, conducting the review and reporting 

the review (i.e. Figure 2).  

Among the mandatory stages in the SLR is to confirm and to 

identify the need for such a review. In fact, defining the 
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research questions and producing a review protocol are the most 

important pre-review activities. 

The first two phases are described by (Wen et al., 2012) through 

their development of the review protocol that mainly includes 

six stages (Figure 1): research questions definition, search 

strategy design, study selection criteria and procedures, quality 

assessment, data extraction and data synthesis. 

The figure illustrates the whole process followed on this study. 

The first stage in this process involves raising a set of research 

questions (RQs) based on the main objective of the study. 

 

2.1 Research questions 

The aim of this paper is to summarize and describe the majority 

of techniques of data collection in the area of driving behavior 

including all its dimensions. Towards this aim some RQs were 

addressed. The table (Table 1) illustrate them: 

ID Research questions 

RQ1 Which techniques are used to collect data in the 

area of driving behavior? 

RQ2 which is/are the most important element (s) in 

driving behavior? is it drivers, vehicle, or 

environment's data?? 

Table 1. Research questions 

 

2.2 Search strategy 

Once the RQs have been identified, a research strategy must be 

followed it. It consists of selecting the search key terms 

(keywords), resources (libraries or others with relevant 

experience) and search process. 

 

2.3 Search terms 

The search terms used in this paper were constructed using the 

following strategy (Wen et al., 2012), (Kitchenham et al., 2007):  

a) Derive major terms from the questions; 

b) Identify alternative spellings and synonyms for 

major terms;  

c) Check the keywords in any relevant papers we 

already have;  

d) Use the Boolean OR to incorporate alternative 

spellings and synonyms;  

e) Use the Boolean AND to link the major terms 

from population, intervention, and outcome. 

 

 

 

The result of analyzing RQs of topic “Toward flexible data 

collection of driving behavior” mentioned above brought us to 

extract the following keywords: 

 

Data collection - Driving behavior  

   

After that, we tried to find new words, synonyms and 

alternatives spellings of the keywords already found and the 

results are: 

• Data collection: acquisition, assembling,  

• Driving behavior: driving style, driving pattern, 
driving profile. 

Once we identified the most keywords and their 
synonyms, we adopt the basic rule to establish the search 
string: for each separated word, we found its synonyms 
and concatenated them with the OR connector. After the 
definition of the groups of words with their synonyms, we 
concatenated them with AND to end the string. And search 
string extracted from are: 

(“Data collection” OR “data acquisition”) AND (“driving 
behavior” OR “driving style” OR “driving pattern” OR “driving 
profile”) 

Figure 2. The stages of Systematic Literature Review 

 

Figure 1 Stages of 
review protocol 
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Figure 4. Example of word cloud generated from tow 

document 

Figure 3. Process of selecting articles 

(1) Visual representation of the most used keywords  

(2) Remove duplicated articles using Mendeley software. 

(3) This strategy was applicated on the title and abstract of 

each article. 

2.4 Resources 

In this study, we used four electronic databases as the 

literature resources to search for primary studies (IEEE Xplore, 

ScienceDirect, Web of Science and Google Scholar). Since the 

search engines of different databases use different syntax of 

search strings, our search string constructed previously was 

adjusted to accommodate different databases and used to search 

for journal papers in those electronic databases published 

between 2010 and 2020. 

2.5 Search process 

This research has been conducted on the four electronic 

databases separately, then export the CSV file of the returned 

papers and gather the results together to form a set of candidate 

papers (Figure 3).A script of python was applicated to this set of 

papers to generate world cloud of the title and the abstract of 

each article. This script is free available on GitHub1.  

Then, the set of articles selected has been scanned so as to 

remove duplicated documents. Some reading strategies has been 

used and described on next subsection ‘study selection criteria’ 

to identify 120 relevant articles which were then used for data 

extraction and data synthesis. 

 

2.6 Study selection criteria 

Search criteria for a first stage resulted in 1224 candidate papers 
(see Figure 3). Due to the fact that many of the candidate 
documents do not provide any useful information to answer the 
research questions raised by this paper, further filtering is needed 
to identify the relevant papers. Knowing that both the title and 
the abstract are generally written correctly, accurately, carefully, 
and meticulously, i.e. they confirm whether the document is 
strongly pertinent for the mean topic of the study or not. 
Moreover, the 'word cloud' technique reveals the essential from 

an extract of text, fast and engaging. It was applied to the title 
and the abstract of every documents, it is used to represent the 
words that compose the title and the abstract in different sizes 
according to the frequency of their use, as illustrated in (Figure 
4).  

 
1 https://github.com/AMEKSA/ResearchMethodology 

Analyzing the results obtained and keeping those in which the 

following words, ‘data, behavior, driving, collecting and 

acquisition’. If one of the above-mentioned terms appeared 

widely and broadly, we select the article. As a result, we have 

selected 244 articles. 

We have used the Skimming2 and scanning3 reading's techniques 

for the purpose of removing the duplicated articles and to get a 

general overview of the relevant article. During this stage, we try 

to preserve scientific documents that contain valuable insights 

about the data collection, thus permitting us to highlight 120 

relevant articles. 

 

2.7 Study quality assessment 

On the one hand, the quality assessment QA of the selected 

studies is initially used as the basis for weighting the quantitative 

data extracted in the meta-analysis according to (Julian PT 

Higgins, 2009). And since we are interested in this first work by 

the percentage of data sources used and the percentage of 

driving's dimension data on the other hand, we do not specify a 

dedicated QA to this paper. Instead, we just verified whether the 

articles involved provide relevant information regarding of all 

these aspects. 

 

2.8 Data extraction forms: 

This subsection aims to clarify the process of extraction the data 

followed in this paper. We exploited the selected studies to 

collect the data that contribute to addressing the research 

questions concerned in this work. In fact, the data extraction 

process is designed to answer the following questions: 

▪ what is the data acquisition tool used to acquire the 
data? 

▪ Which of the three dimensions of driving is covered? 
driver, vehicle, or environment? 

While trying to find answers to these questions, some data could 

not be extracted directly from the selected studies. Nevertheless, 

we were able to obtain them indirectly by  

processing the available data in an appropriate form. For 

example, there are some studies that use databases offered by 

other previous works, in this case we try to see sources of data in 

the original work if available, otherwise we conclude based on 

the rest of the article. (Figure 5) illustrates some extracted data. 

As shown, the figure composed of three headings. These rubrics 

 
2 reading a text quickly to get a general idea of meaning. 
3 reading in order to find specific information, e.g. figures or 

names. 
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are in a way a reformulation of the previous questions. The data 

extraction process consists of giving "1" or "0" (green icon or 

reed icon) according to the presence or absence respectively of 

each item in the article, the comprehensive list of the relevant 

articles selected to this paper and extraction results are given in 

the appendix. 

 

2.9 Data synthesis methods 

Data synthesis aims to gather all previous results, 

interpret results, shed light on the interests of most researchers 

and reveal some future areas of research. Actually, the purpose 

of data synthesis is to aggregate evidence from the selected 

studies for answering the research questions. Therefore, by 

summing up the scores obtained through results of data 

extraction process and using some visualization tools, including 

pie chart to present the percentages pertaining to the source of 

data used and DVE's data among all the selected articles, we can 

move to the next section which will be dedicated to results and 

discussion. 

 

3. RESULTS AND DISCUSSION  

This section presents and discusses the findings of this short 

review. First, we introduce the data collection topic and the 

statistics of most commonly methods used to gather information 

related to driving behavior. Then, we present the instruments 

and measurements techniques used to collect data according to 

the selected studies one by one in the separate subsections. 

Second, we reported statistics of researchers' attention to 

driver's dimensions. 

3.1 Data collection 

This section aims to shed light upon the data collection process 

and the most techniques used in the literature research related 

with the field of driving behavior. Before citing methods of data 

collection, it appears necessarily to define what is the data 

acquisition first? 

According to Cambridge Dictionary (Cambridge), data 

collection activity means collecting information that can be used 

to find out about a particular subject. This activity enables a 

person or organization to understand the relevance topic, answer 

its linked questions, evaluate outcomes, and make predictions 

about future probabilities and trends. So, in order to understand 

driving behavior and a major factor for road traffic safety, 

assembling and gathering its associated data is a mandatory 

stage. Nevertheless, the varieties on the sources of data cause a 

difference in understanding driving behavior among 

researchers. In fact, the studies on driving behavior assessment 

have not settled on a common framework due to this diversity 

(Zhu et al., 2017).  

As mentioned above, it is assumed that the rest of this section 

will describe techniques used in data collection. Some driving 

style-related studies used self-report and driving behavior 

questionnaires to collect information, other several studies have 

taken advantage of new technologies and benefit from the 

incredible development of automotive sensors such as In-

Vehicle Data Recorders, smartphones, IoT sensors and traffic 

surveillance technologies to sense and collect contributions 

attributes of DB.  

 In short, according to (Carvalho et al., 2017), the data collected 

from the action of driving can be carried out by several kinds of 

sensors, from those of a general kind in smartphones to 

dedicated devices such as monitoring cameras, telematics 

boxes4 and OBD5 (On-Board Diagnostic) adapter. (Figure 6) 

illustrates the statistics and the percentages of techniques and 

methods used to collect data for driving behavior study 

according to scientific researches selected for this work.  

A brief description of these techniques is detailed in (Hata! 

Başvuru kaynağı bulunamadı.) as shown below.  

As can be seen in (Figure 6), the most dominant data source for 

driving behavior among the 120 articles used in this paper is the 

integrated sensors “In-vehicle sensors”, at the rate of 40%. Then 

IoT device and other sensors with a percentage of 26%. The 

smartphone has also demonstrated a strong capacity of data 

collection at the rate of 12%, followed by the use of Self-report 

technique by 10% and other databases with 8%. Finally, the use 

of the traffic surveillance's tools by 4%.  

 
4 A telematics box or black box is a measurement probe 

installed inside the vehicle. It may be equipped with its own 

sensors or be connected to the vehicle’s internal sensors via 

the CAN-bus. 
5 OBD is a system that enables current vehicles to carry out a 

self-diagnosis and provide real time data (e.g., speed) via a 

standard communications port. 

Figure 5. Example of extracted data 

 

Figure 6. Collecting data sources used on literature studies 
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Therefore, the type of sensors embedded in the vehicle remains 

the best source to gather data according to the literature used for 

this study. 

 

3.1.1 In-vehicle and other sensors: Driving behavior 

related data can be acquired usually by on-board devices. In 

Vehicle Data Recorders (IVDRs) are one of the tools widely 

used for on-board data collection. They are devices installed on 

vehicles that monitor and record continuously the vehicle 

parameters (Bouhoute et al., 2019). In reality, car sensors can 

produce about 1.3 gigabytes of data every hour and an estimated 

312 million gigabytes every year for 4 hours of daily driving 

according to IBM (Kimberly Madia, 2014), which provides a 

valuable opportunity for researchers in the area of Driving 

Behavior. Based on those sensors, (Boquete et al., 2010), (Xie 

et al., 2019), among other researchers, present a various 

platforms as the acquisition system. However, the major 

limitation of this approach is the availability of OBUs. It is 

likely that such an advanced technology is only available to a 

biased subset of vehicles. 

Furthermore, the need of data from the driver's interaction with 

the vehicle requires more sensors to be added to the vehicle. For 

this reason, several demonstration tools have been developed to 

access the available telemetry data, (Ding et al., 2019) Used 

electroencephalography (EEG) and steering behavior in a 

simulated driving experiment to test the correlation between 

some patterns of driving behavior, cognitive states and 

personalities. Since driving is a social act which human factor 

has the most important role in it. Some researchers are 

interested in the study of the human contribution. (Yang et al., 

2018b) used an electrode cap connected to Curry 7 software to 

collect EEG signals. 

3.1.2 Self-report and questionnaires: Studies in 

transportation psychology have traditionally employed self-

report measures to examine personality, motivations, 

cognitions, and perceptions on the one hand, and driving 

behavior, driving styles and skills and involvement in traffic 

violations and crashes on the other. Nevertheless, the usefulness 

and validity of such instruments is often questioned particularly 

when the aim is to capture risky driving behavior (Boufous et 

al., 2010). Generally, there is widespread use of self-report 

measures of driving behavior in the traffic psychology 

literature. Moreover, Most prevailing studies have used 

subjective questionnaire data and objective driving data to 

classify driving behavior whereas few studies have used 

physiological signals such as electroencephalography (EEG) to 

gather data (Yang et al., 2018b). One of the studies adopted 

self-report technique is conducted by (Useche et al., 2019) to 

collect data for their research that was composed of three core 

sections: The first part of the questionnaire asked about 

individual and demographic variables, job-related features and 

job type and road safety indicators.  

Although surveys and self-reports represent a powerful and 

inexpensive tool for studying various topics in traffic behavior 

in addition to much of the knowledge in transportation 

psychology that has been gained by this technique, there is still 

a dispute regarding the usefulness and validity of such 

instruments, leading to less than ideal and trustworthy reports 

on one’s own driving behavior and some serious limitations that 

must be taken into account when using these methods. 

 

3.1.3 Smartphone: The emergence of affordable sensing 

and computing platforms has a real impact on the appearance of 

new fields related to driving behavior. One of them is the 

analysis of driving performance through the use of mobile 

technology, a field also known as  Smartphone Driving 

Analytics (Carlos et al., 2019). Recently, smartphones have a 

rich set of on-board sensors such as accelerometers, gyroscopes, 

GPS, and cameras. These sensors provide valuable information 

when investigating users’ needs and behavioral patterns. Several 

researchers are currently using mobile phones to collect and 

gather driving related data. As reported by (Warren et al., 2019) 

data collection using un-obtrusive technology such as 

smartphone provides a valuable alternative to study-based data 

collection. The percentage of 52% (11 out of 21 studies) related 

to studies that used the mobile phone to acquire data is based 

only on the use of a cell phone. However, even smartphones are 

shown to have great potential in data collection.  They are 

largely regarded as dangerous because of its potential to cause 

distracted driving and crashes. 

 

Source  Description 

In-vehicle 

sensors 

Devices which can transform physical 

quantities such as pressure or acceleration 

into output signals (usually electrical). And 

always embedded on the vehicle. 

Self-report 

questionnaires 

A research instrument consists of a series of 

questions to gather information and data 

about the driver.  

Other sensors sensors that are not integrated into the car, 

including sensors of IoT like Arduino and 

Raspberry Pi, … 

smartphone high-resolution and high-speed (CMOS) 

image sensor, global positioning system 

(GPS) sensor, accelerometer, gyroscope, 

ambient light sensor, and microphone, …. 

Traffic 

surveillances  

Observation from a distance, using some 

techniques such as closed-circuit television 

(CCTV), or interception of electronically 

transmitted information such as internet 

traffic. 

Dataset International driving-dataset projects. 

Table 2. Description of measurement techniques used to collect 

data 
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3.1.4 Traffic surveillances: Road infrastructure 

development has received widespread attention of many 

countries in recent years, as well as trying to equip the road with 

the latest technology. As a result, traffic surveillances 

instruments have brought new opportunities for researches in 

terms of gathering data of driving to investigate different DB's 

facets. Among researchers who have already taken advantage of 

this source of data (Zhou et al., 2011) built a framework to 

define driver behavior patterns by extracting vehicle 

information from traffic video sequences. Moreover, urban 

traffic surveillance data at both intersections and road segments 

were used by (Hongxin et al., 2016) to investigate the driver's 

involvement in the accident. In addition to a few other 

researchers addressed the topic of DB using traffic surveillance 

data, it remains limited use of this source of data. 

3.1.5 Datasets: the present time, data is becoming the key 

for a majority of challenges. Indeed, one-of them is the driving 

behavior. For many years several researches gathering data 

related to driving and generating datasets to better 

understanding the behavior of the driver. (Figure 8) shows some 

examples of several projects around the world that have 

collected on-road driving-data according to (Miyajima and 

Takeda, 2016). 

As illustrated previously, the percentage of studies selected for 

this work that have used pre-collected data sets is 8%.  The 

database of 100-Car Study conducted by the Virginia Tech 

Transportation Institute was used to modelling of driver Car-

Following behavior (Sangster et al., 2013). While (Hamzeie, 

2016) investigates how speed limits affect driver speed selection 

using both data collected on real-time with a Roadway 

Information Database. (Hallmark et al., 2015) and (Lv et al., 

2019) among others several researchers take advantage of the 

rich Second Strategic Highway Research Program 2 Naturalistic 

Driving Study (SHRP 2 NDS) datasets to investigate and study 

assertive approaches of the driving. Furthermore, (Li et al., 

2019) used the data set of the electric vehicles to identify the 

driving patterns.  

 

3.2 Driver Vehicle Environment’s Data 

Driving is a driver-vehicle-road environment system and all the 

three elements affect each other and the whole system. One 

driver behavior error or vehicle fault or road environment 

anomaly may lead to another and a chain of reactions within the 

whole driving system (Mao et al., 2019). 

Thus, researches have been interested in these three dimensions 

of driving behavior for a long time; in order to clearly 

distinguish the relationship between the different dimensions of 

the DB and the DVE model and also to better extract the 

driving's dimension addressed in each article, we have been 

based principally on theoretical framework proposed by 

(Elamrani Abou Elassad et al., 2020). 

According to the statistics of the studies selected for this paper 

(Figure 7), it is clear that researchers are more interested in 

vehicle-related data collection than in driver-related data or  the 

surrounding environment at rates of 52%, 29% and 19% 

respectively. 

Vehicle related data includes several kinematics such as speed 

and acceleration/deceleration are the most common 

measurements in the scientific literature because of its direct 

impact on the driving behavior and also the opportunity to 

easily getting them. 

 

The driver’s profile and state, namely the physiological and 

psychological conditions provide in its turn relevant and 

essential information for understanding the driving behavior. In 

fact, due to the direct contribution of the human being in the 

driving process, his/her own data have a very strong influence 

on predicting and detecting of driving events. However, 

collecting such data usually needs more equipment and sensors. 

Finally, surrounding environment data including road geometry, 

road condition, road type, traffic and the weather condition 

often requires remote access to the data. 

 

4. CONCLUSIONS 

The present survey, in particular the last two sections on data 

collection and types of data collected, provides a few good 

insights indicating the need of high-resolution driver's data. On 

the basis of this, we got the following results: 

▪ Most researchers are interested in the use of in-vehicle 
sensors to acquire information related to driving 
behavior. Also, vehicle data have been the primary 
focus of data collection. 

▪ The percentage of the studies that cover driver's 
dimension remains very limited, knowing that the 
driver plays both the role of the controller and the 
major evaluator of the vehicle quality and the path-
following. 

Figure 8. Examples of on-road driving-data corpora 

Figure 7. Driver, Vehicle and Environment related data 
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This study cannot claim to be complete although we believe that 

it will be a valuable resource for anyone interested in research 

on driving behavior in general and data acquisition in particular. 
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