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ABSTRACT: 

In this paper, we propose a malware classification framework using transfer learning based on existing Deep Learning models that 

have been pre-trained on massive image datasets. In recent years there has been a significant increase in the number and variety of 

malwares, which amplifies the need to improve automatic detection and classification of the malwares. Nowadays, neural network 

methodology has reached a level that may exceed the limits of previous machine learning methods, such as Hidden Markov Models 

and Support Vector Machines (SVM). As a result, convolutional neural networks (CNNs) have shown superior performance 

compared to traditional learning techniques, specifically in tasks such as image classification. Motivated by this success, we propose 

a CNN-based architecture for malware classification. The malicious binary files are represented as grayscale images and a deep 

neural network is trained by freezing the pre-trained VGG16 layers on the ImageNet dataset and adapting the last fully connected 

layer to the malware family classification. Our evaluation results show that our approach is able to achieve an average of 98% 

accuracy for the MALIMG dataset. 

1. INTRODUCTION

Malware and associated computer security threats have become 

more and more developed, and also malware developers have 

become more creative and use increasingly complex escape 

techniques (obfuscation, packers, cryptor, protector, Advanced 

Evasion Techniques (AET) and Network evasion) (Sibi 

Chakkaravarthy, Sangeetha, and Vaidehi 2019). 

The latest Mcafe report indicates that the new PowerShell 

malwares increased by 689% in the 1st quarter of 2020 

compared to the previous quarter, and the number of new macro 

malwares has increased by 412% in the first quarter of 

2020.(McAfee Labs Threats Report, juillet 2020). 

Figure 1. Augmentation of the total number of malwares 

( McAfee Labs, 2020) 

This increase in the number of malware and the complexity of 

the escape techniques used, has led researchers to use detection 

and classification techniques based on machine learning, 

motivated by the success of this technique recently in the fields 

of computer vision and natural language processing. 

The use of machine learning has shown favorable results 

compared to traditional malware analysis techniques that often 

require a lot of time and resources in feature engineering. Also, 

recently the Convolutional Neural Network (CNN) has been 

used for malware classification and this architecture has been 

able to achieve more satisfactory results in terms of accuracy. 

The principle of these techniques is presented in Section 2.   

Based on the work of (Nataraj et al. 2011) who presented the 

malware presentation in grayscale images, we realize a malware 

classification system based on deep learning and we use transfer 

learning technique to train our CNN model based on VGG16 

(Simonyan and Zisserman 2015) pre-trained model on larger 

dataset. Also, we make a comparative study of the different 

used techniques for malware classification. 

We adapt VGG16 pre-trained model to make a malware 

classification and we make a comparative study of the obtained 

results with the literature, we prove that the transfer learning 

realizes a superior performance for malware classification then 

training our deep learning model from scratch. 

2. RELATED WORK

In this section, we present the progress of the research as well as 

the techniques used to detect and classify malwares. 
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2.1 Static and Dynamic analysis 

The objective of the malware analysis is to study the behavior 

and structure of malware, and there are two types: static 

analysis and dynamic analysis. 

 

• Static Analysis : 

The static analysis is performed without executing the malware, 

for Windows portable executable (PE) files we can proceed in 

two ways, either based on the binary file or on the disassembled 

malware program. This method of reverse engineering can be 

done on PE files executable by several tools the most used are: 

IDA Pro and Radare. 

 

• Dynamic Analysis : 

 The dynamic analysis is performed by executing the malware 

on a testing environment (Sandbox) where we can analyse its 

behavior and have all traces made by this malware. This 

analysis is usually used if we were not able to collect much 

information about the malware by static analysis due to the 

complex obfuscation used by the malware developer or can be 

used as a complementary analysis to extract more features. 

This scan should be performed on a completely isolated 

environment to avoid impacting our system, there are several 

environments to use, the most well-known is Cuckoo Sandbox.  

 

(Talukder 2020; Sibi Chakkaravarthy, Sangeetha, and Vaidehi 

2019) they summarize the tools used for each type of analysis 

and the extracted information. 

 

 

 

2.2 Methods based on Machine Learning 

The classification and detection of malware using Machine 

Learning (ML) is based on the following steps: 

1- Features extraction. 

2- Features selection. 

3- Classification algorithm. 

The work of (Ahmadi et al. 2016) is focused on extracting and 

selecting a new set of features from binary files and 

disassembled files to effectively represent malware samples. 

Once the features are extracted and selected, they will be used 

to train the malware classification model or malware detection 

in case of binary classification (malicious or benign file) using a 

dataset of benign file features.(Ranveer and Hiray 2015) 

There are several works that have performed the malware 

classification based on machine learning (ML) method such as: 

(Nataraj et al. 2011) after presenting binary malware files as 

grayscale images, they performed a classification of the images 

based on GIST as features and they used machine learning 

algorithm k-nearest neighbors with Euclidean distance for 

malware classification. 

(Kong and Yan 2013) based on the features (function call 

graphs) extracted from the malware they calculate the similarity 

of the two malwares using SVM, KNN. 

(Abou-Assaleh et al. 2004) in this work, they used text 

classification techniques based on n-grams (is a subsequence of 

n elements built from a sequence of text), extracted from the 

signatures of malware, and they performed the KNN algorithm 

to perform the classification. 

 

2.3 Methods based on Deep Learning 

The malware visualization has successfully introduces deep 

convolutional neural networks into malware classification 

problems. 

(Xiao et al. 2020) After they displayed the binary malware as 

entropy graphs they used deep learning to do feature extraction 

automatically and then used SVM to classify the malware based 

on the extracted features. 

(Gibert et al. 2019) Based on the presentation of malware as an 

image, the following work presents a convolutional neural 

network (CNN) composed of three convolution layers followed 

by a fully-connected layer used for the classification of 

malware. They made a comparative study to prove that CNN 

has better results than KNN. 

 

To resume, the methods based on traditional machine learning 

use a high computational cost because they often have to define 

and extract in advance a group of features and are not adapted 

for processing massive data. On the other hand the Deep 

learning automates the feature extracting and selecting, avoids 

the high computational cost. However, the literature has proved 

that the Deep Learning methods are more performant than the 

Machine Learning methods in term of accuracy. 

 

 

3. METHODOLOGY 

In this section we discuss the dataset and implementation details 

of our proposed models. 

 

3.1 Visualizing Malware as an Image 

Our work is based on the visualization of malware as an image, 

this approach initiated by (Nataraj et al. 2011) allowing to read 

a given malware binary as a vector of 8 bit unsigned integers 

and then organized into a 2D array. Finally this can be 

visualized as a gray scale image in the range [0,255] (0: black, 

255: white).   

 

 
Figure 2. Visualizing malware as a grayscale image process 

 

This presentation allows us to visualize malware belonging to 

the same family with a very similar image.  

However, this malware visualization is based on the binary 

code, so if a malware developer is going to create a new 

malware by modifying the code of an old malware, with this 

approach the new malware will be visualised with a very similar 

image. Then we can use our classification model (CNN) 

presented later to easily classify it into the same family. 

 

 

3.2 Dataset 

The MalImg dataset was provided by (Nataraj et al. 2011) 

contains 9435 grayscale images of malwares packed with UPX, 

collected from 25 families: 
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Family Family Name Number of 

samples 

Worm Allaple.L 1591 

Worm Allaple.A 2949 

Worm Yuner.A 800 

PWS Lolyda.AA 1 213 

PWS Lolyda.AA 2 184 

PWS Lolyda.AA 3 123 

Trojan C2Lop.P 146 

Trojan C2Lop.gen!G 200 

Dialer Instantaccess 431 

Trojan Downloader Swizzor.gen!I 132 

Trojan Downloader Swizzor.gen!E 128 

Worm VB.AT 408 

Rogue Fakerean 381 

Trojan Alueron.gen!J 198 

Trojan Malex.gen!J 136 

PWS Lolyda.AT 159 

Dialer Adialer.C 125 

Trojan Downloader Wintrim.BX 97 

Dialer Dialplatform.B 177 

Trojan Downloader Dontovo.A 162 

Trojan Downloader Obfuscator.AD 142 

Backdoor Agent.FYI 116 

Worm:AutoIT Autorun.K 106 

Backdoor Rbot!gen 158 

Trojan Skintrim.N 80 

Table 1. MalImg: Distribution of Samples 

 

After analysing the number of samples of this dataset, we can 

notice that the MALIMG datatest is quite unbalanced: more 

than 30% of the images belong to class: Allaple.A and 17% to 

class : Allaple.L! 

 

Figure 3. MalImg: Unbalanced dataset 

 

 

 

 

Figure 4. shows the representation of the malware samples, 

belonging to twenty-five different families as gray-scale images. 

It can be observed that the images of malware belonging to the 

same family are very similar, and they are different from other 

families. 

 

3.3 Transfer Learning for Malware Classification 

The general structure of a CNN is the combination of two 

components: The feature extractor in the first stage and the 

classifier:  

 

 
Figure 5. CNN Architecture 

 

The transfer learning is to replace the Classifier component of 

the pre-trained model, VGG16 in our case, from VGG family 

(Visual Geometry Group at University of Oxford) with a 

customized classifier to resolve our classification problem. 

 

In practice we replace the last layer of the VGG16 (Figure 6), 

which takes a probability for each of the 1000 classes in the 

ImageNet (Krizhevsky, Sutskever, and Hinton 2012) and 

replaces it with a Fully Connected layer that takes 25 

probabilities corresponding to 25 families of malwares. This 

way, we use all the knowledge that VGG16 has trained on the 

ImageNet dataset and apply it to our malware classification 

problem. 
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Figure 6. VGG16 Architecture (Simonyan and Zisserman 2015) 

 

The VGG16 network architecture (Simonyan and Zisserman 

2015) is shown in figure 6.  

 

The input layer is an RGB image of fixed size 224 × 224, then 

the image is passed through a stack of convolutional layers, 

where the size of the filters used is 3 x 3 with a stride 1, and it 

always uses the same padding and maxpool layer of 2x2 filter of 

stride 2.  

 

Finally for classification, it has 2 fully connected layers 

followed by a softmax for output. 

  

The 16 in VGG16 refers to it has 16 layers in total: 

- 5 convolutional layers,  

- 5 max pooling layers,  

- 3 fully-connected layers  

- output layer (softmax) 

 

3.4 Our proposed models 

As explained above, we propose a CNN model for malware 

classification based on the pre-trained model VGG16, using 

transfer learning (Figure 8). And we make a performance 

comparison with a second CNN model (Figure 7) trained from 

scratch. 

 

The input of our network is a malicious program represented as 

a grayscale image, and the output is the predicted class of the 

malware sample. 

 

 

 

 
 

Figure 7. Our proposed CNN model for classification of 

malware represented as grayscale images. 

 

For our first proposed architecture (Figure 7), we used three 

convolutional layers where the size of the filters used is 3x3 that 

scans the whole images and create a feature map to predict the 

class probabilities for each feature.  

After each convolution layer we used a max pooling layer of 

2x2 filters to scales down the amount of information generated 

for each feature and maintains only the most essential 

information. 

 

At the end, the generated feature maps are flattened and 

combined to be used as input of the following fully connected 

layer composed of 256 neurons. Lastly, the output of the fully 

connected layer passes to a Softmax layer to classify the binary 

malware into its corresponding family. 

 

To prevent overfitting during the training phase, we employed 

one dropout layer (Srivastava et al. 2014) to ignoring units of 

certain set of neurons which is chosen at random. 

 

 

Figure 8. Our proposed CNN model for classification of 

malware represented as grayscale images using VGG16 as 

features extractor connected with optimised classifier for 25 

families of malwares. 

 

In this second model we customize the VGG16 architecture to 

our classification problem by adding a fully-connected layer 

containing 25 neurones corresponding to 25 malware families, 

instead of final fully connected layer (intended for 1000 

classes). 

 

The objective of this architecture is to employ the initial weights 

of pre-trained CNN of natural images (ImageNet dataset) to 

classify the binary malwares. 

 

 

3.5 K-fold cross validation 

To evaluate the generalization performance of our models we 

used K-fold cross validation. The dataset is divided into K equal 

size folds. Of the K subsamples, a single subsample is retained 

as the validation data for testing the model and the remaining 

subsamples are used as training data. This procedure is repeated 

as many times as there are folds, with each of the K folds used 

exactly once as the validation data. 

 

3.6 The performance metric 

To train our two models we will use an unbalanced dataset 

(Malimg). Furthermore, the accuracy is not the best metric to 

use when evaluating unbalanced datasets as it can be very 

misleading. 

 

However, for our comparative study we will use the following 

metrics: precision, recall and F1 score and confusion matrix: 

 

 Precision (P): is the number of true positives 

predictions (Tp) divided by all true positive predictions (Tp) 

plus the number of false positives (Fp). 
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 Recall (R): is the number of true positives (Tp) 

divided by the number of true positives plus the number of false 

negatives (Fn)   

 
 

 

 F1 Score: the weighted average of precision and 

recall. 

 
  

 Macro averaged F1 Score:  is the average of the 

individual F1 scores obtained for each class.  

 

 
Where  q = number of classes in the dataset 

 F1
i = F1 score of classe i 

  
 

 Confusion Matrix: is a table showing the correct 

predictions and the incorrect types of predictions. 

 

 

 

4. RESULTS AND DISCUSSION 

We performed two different experiments and we made a 

comparative study of the obtained results. We present in this 

section the performed experiments and we discuss the results. 

 

After several experiments we have optimized the hyper-

parameters for the two proposed models (batch-size, epochs, 

and number of folds) to achieve the best performance. 

 

 

4.1 Experiment 1 

To train our first CNN model (Figure 7) using Malimg dataset 

we used the Cross-Validation algorithm (defined above) with 10 

Folds and 40 epochs, and we downsampled the images to a 

fixed size. The size of the new images was set to 200*200 

pixels. 

 

  

 

 
Figure 9. Confusion matrix for 10-fold cross validation of CNN 

model with 3 convolutional layers connected to one fully 

connected layer. 

 

  

Figure 10. Performance metrics for CNN model with 2 

convolutional layers connected to one fully connected layer. 

 

According to the obtained results, this first model is very 

powerful for all malwares given in input except the following 

families: 

The Autorun.K family is classified incorrectly as Yunner.A, as 

you can see in the (figure 10), the precision of the Autorun.K 

family is 0. That is because these two families are very similar 

and are indistinguishable by the human eye (Figure 11). 
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Figure 11. Autorun.K and Yuner.A samples 

 

Also, the model can't distinguish correctly the samples 

belonging to the same family: Swizzer.genE and Switzer.gen! I. 

(precision 0.61 and 0.66). 

 

4.2 Experiment 2 

To train our second model (Figure 8) (based on the transfer 

learning) using Malimg dataset, we used 5 Folds cross 

validation and 10 epochs, and we downsampled the images to a 

fixed size. The size of the new images was set to 200*200 

pixels. This model has proven the best performance by using 

only 90% of dataset. 

 

 
 

 

  
Figure 12. Confusion matrix for CNN model for malware 

classification using VGG16 as features extractor connected with 

optimised classifier for 25 families of malwares. 

 

 

Figure 13. Performance metrics for CNN model for malware 

classification using transfer learning. 

 
 

Compared to the first model, this CNN model based on the 

VGG16 architecture classified correctly 96 samples of 

Autorun.K with a precision of 1 (as you can see on the figure 

13) and in the confusion matrix (Figure 12). 

 

Concerning the samples belonging to the same family 

Swizzer.genE and Switzer.gen! I, this model is also not precise 

(precision 0.48 and 0.53).   

 
4.3 Comparison of models performance:  

To compare the performance of our two models, we will use the 

following metrics already explained above. However, we obtain 

an overall classification accuracy of 97% for the CNN model 

with the simple architecture and trained from scratch, which 

represents a significant decline from the VGG16 model 

accuracy of 98%. 

 

The others performance metrics are summarized in the 

following table. 

 

Method Accuracy Precision Recall F1 score 

CNN 0.97 0.91 0.91 0.91 

Using 

VGG16 

0.98 0.95 0.95 0.95 

Table 2. Comparison of performance metrics for our models 

 

 

The following table present a comparison of accuracy 

performance of our two models with the literature. 
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Method Technique Accuracy 

(Nataraj et al. 

2011) 

GIST + KNN 96.97% 

(Gibert et al. 

2019) 

CNN 97.5% 

(Yue 2017) Fine-tuning 

VGG19 

97.32% 

Our model 1 CNN 97% 

Our model 2 Transfer learning 

using VGG16 

98% 

Table 3. Comparison of accuracy performance 

 

CONCLUSION 

In this paper, we propose an image-based malware classification 

system, using a pre-trained deep learning image recognition 

model. We compared these image-based deep learning (DL) 

results to a simpler convolutional neural network (CNN) 

approach trained from scratch. We carried out two experiments 

using the same dataset with the same image sizes. 

 

Our experiments, has proven that the model based on the 

transfer learning results are particularly impressive with high 

accuracy. So we can deduce that the transfer learning technique 

can be used for the classification of malwares. 

 

This study can be considered as an introduction to many new 

experiments in the field of using transfer learning for malware 

classification. 
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