
USING TRANSFER LEARNING FOR MALWARE CLASSIFICATION

PRIMA Bouchaib 1, BOUHORMA Mohamed 1

1 Computer Science, Systems and Telecommunication Laboratory, Faculty of Sciences and Techniques, Abdelmalek Essaâdi
University, Tangier 90000, Morocco -

bouchaib.prima@etu.uae.ac.ma

bouhorma@gmail.com

KEY WORDS: Cybersecurity, Malware, Machine Learning, Deep Learning, Transfer Learning, Convolutional Neural Network.

ABSTRACT:

In this paper, we propose a malware classification framework using transfer learning based on existing Deep Learning models that

have been pre-trained on massive image datasets. In recent years there has been a significant increase in the number and variety of

malwares, which amplifies the need to improve automatic detection and classification of the malwares. Nowadays, neural network

methodology has reached a level that may exceed the limits of previous machine learning methods, such as Hidden Markov Models

and Support Vector Machines (SVM). As a result, convolutional neural networks (CNNs) have shown superior performance

compared to traditional learning techniques, specifically in tasks such as image classification. Motivated by this success, we propose

a CNN-based architecture for malware classification. The malicious binary files are represented as grayscale images and a deep

neural network is trained by freezing the pre-trained VGG16 layers on the ImageNet dataset and adapting the last fully connected

layer to the malware family classification. Our evaluation results show that our approach is able to achieve an average of 98%

accuracy for the MALIMG dataset.

1. INTRODUCTION

Malware and associated computer security threats have become

more and more developed, and also malware developers have

become more creative and use increasingly complex escape

techniques (obfuscation, packers, cryptor, protector, Advanced

Evasion Techniques (AET) and Network evasion) (Sibi

Chakkaravarthy, Sangeetha, and Vaidehi 2019).

The latest Mcafe report indicates that the new PowerShell

malwares increased by 689% in the 1st quarter of 2020

compared to the previous quarter, and the number of new macro

malwares has increased by 412% in the first quarter of

2020.(McAfee Labs Threats Report, juillet 2020).

Figure 1. Augmentation of the total number of malwares

(McAfee Labs, 2020)

This increase in the number of malware and the complexity of

the escape techniques used, has led researchers to use detection

and classification techniques based on machine learning,

motivated by the success of this technique recently in the fields

of computer vision and natural language processing.

The use of machine learning has shown favorable results

compared to traditional malware analysis techniques that often

require a lot of time and resources in feature engineering. Also,

recently the Convolutional Neural Network (CNN) has been

used for malware classification and this architecture has been

able to achieve more satisfactory results in terms of accuracy.

The principle of these techniques is presented in Section 2.

Based on the work of (Nataraj et al. 2011) who presented the

malware presentation in grayscale images, we realize a malware

classification system based on deep learning and we use transfer

learning technique to train our CNN model based on VGG16

(Simonyan and Zisserman 2015) pre-trained model on larger

dataset. Also, we make a comparative study of the different

used techniques for malware classification.

We adapt VGG16 pre-trained model to make a malware

classification and we make a comparative study of the obtained

results with the literature, we prove that the transfer learning

realizes a superior performance for malware classification then

training our deep learning model from scratch.

2. RELATED WORK

In this section, we present the progress of the research as well as

the techniques used to detect and classify malwares.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License. 343

mailto:bouchaib.prima@etu.uae.ac.ma
mailto:bouhorma@gmail.com

2.1 Static and Dynamic analysis

The objective of the malware analysis is to study the behavior

and structure of malware, and there are two types: static

analysis and dynamic analysis.

• Static Analysis :

The static analysis is performed without executing the malware,

for Windows portable executable (PE) files we can proceed in

two ways, either based on the binary file or on the disassembled

malware program. This method of reverse engineering can be

done on PE files executable by several tools the most used are:

IDA Pro and Radare.

• Dynamic Analysis :

 The dynamic analysis is performed by executing the malware

on a testing environment (Sandbox) where we can analyse its

behavior and have all traces made by this malware. This

analysis is usually used if we were not able to collect much

information about the malware by static analysis due to the

complex obfuscation used by the malware developer or can be

used as a complementary analysis to extract more features.

This scan should be performed on a completely isolated

environment to avoid impacting our system, there are several

environments to use, the most well-known is Cuckoo Sandbox.

(Talukder 2020; Sibi Chakkaravarthy, Sangeetha, and Vaidehi

2019) they summarize the tools used for each type of analysis

and the extracted information.

2.2 Methods based on Machine Learning

The classification and detection of malware using Machine

Learning (ML) is based on the following steps:

1- Features extraction.

2- Features selection.

3- Classification algorithm.

The work of (Ahmadi et al. 2016) is focused on extracting and

selecting a new set of features from binary files and

disassembled files to effectively represent malware samples.

Once the features are extracted and selected, they will be used

to train the malware classification model or malware detection

in case of binary classification (malicious or benign file) using a

dataset of benign file features.(Ranveer and Hiray 2015)

There are several works that have performed the malware

classification based on machine learning (ML) method such as:

(Nataraj et al. 2011) after presenting binary malware files as

grayscale images, they performed a classification of the images

based on GIST as features and they used machine learning

algorithm k-nearest neighbors with Euclidean distance for

malware classification.

(Kong and Yan 2013) based on the features (function call

graphs) extracted from the malware they calculate the similarity

of the two malwares using SVM, KNN.

(Abou-Assaleh et al. 2004) in this work, they used text

classification techniques based on n-grams (is a subsequence of

n elements built from a sequence of text), extracted from the

signatures of malware, and they performed the KNN algorithm

to perform the classification.

2.3 Methods based on Deep Learning

The malware visualization has successfully introduces deep

convolutional neural networks into malware classification

problems.

(Xiao et al. 2020) After they displayed the binary malware as

entropy graphs they used deep learning to do feature extraction

automatically and then used SVM to classify the malware based

on the extracted features.

(Gibert et al. 2019) Based on the presentation of malware as an

image, the following work presents a convolutional neural

network (CNN) composed of three convolution layers followed

by a fully-connected layer used for the classification of

malware. They made a comparative study to prove that CNN

has better results than KNN.

To resume, the methods based on traditional machine learning

use a high computational cost because they often have to define

and extract in advance a group of features and are not adapted

for processing massive data. On the other hand the Deep

learning automates the feature extracting and selecting, avoids

the high computational cost. However, the literature has proved

that the Deep Learning methods are more performant than the

Machine Learning methods in term of accuracy.

3. METHODOLOGY

In this section we discuss the dataset and implementation details

of our proposed models.

3.1 Visualizing Malware as an Image

Our work is based on the visualization of malware as an image,

this approach initiated by (Nataraj et al. 2011) allowing to read

a given malware binary as a vector of 8 bit unsigned integers

and then organized into a 2D array. Finally this can be

visualized as a gray scale image in the range [0,255] (0: black,

255: white).

Figure 2. Visualizing malware as a grayscale image process

This presentation allows us to visualize malware belonging to

the same family with a very similar image.

However, this malware visualization is based on the binary

code, so if a malware developer is going to create a new

malware by modifying the code of an old malware, with this

approach the new malware will be visualised with a very similar

image. Then we can use our classification model (CNN)

presented later to easily classify it into the same family.

3.2 Dataset

The MalImg dataset was provided by (Nataraj et al. 2011)

contains 9435 grayscale images of malwares packed with UPX,

collected from 25 families:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License.

344

Family Family Name Number of

samples

Worm Allaple.L 1591

Worm Allaple.A 2949

Worm Yuner.A 800

PWS Lolyda.AA 1 213

PWS Lolyda.AA 2 184

PWS Lolyda.AA 3 123

Trojan C2Lop.P 146

Trojan C2Lop.gen!G 200

Dialer Instantaccess 431

Trojan Downloader Swizzor.gen!I 132

Trojan Downloader Swizzor.gen!E 128

Worm VB.AT 408

Rogue Fakerean 381

Trojan Alueron.gen!J 198

Trojan Malex.gen!J 136

PWS Lolyda.AT 159

Dialer Adialer.C 125

Trojan Downloader Wintrim.BX 97

Dialer Dialplatform.B 177

Trojan Downloader Dontovo.A 162

Trojan Downloader Obfuscator.AD 142

Backdoor Agent.FYI 116

Worm:AutoIT Autorun.K 106

Backdoor Rbot!gen 158

Trojan Skintrim.N 80

Table 1. MalImg: Distribution of Samples

After analysing the number of samples of this dataset, we can

notice that the MALIMG datatest is quite unbalanced: more

than 30% of the images belong to class: Allaple.A and 17% to

class : Allaple.L!

Figure 3. MalImg: Unbalanced dataset

Figure 4. shows the representation of the malware samples,

belonging to twenty-five different families as gray-scale images.

It can be observed that the images of malware belonging to the

same family are very similar, and they are different from other

families.

3.3 Transfer Learning for Malware Classification

The general structure of a CNN is the combination of two

components: The feature extractor in the first stage and the

classifier:

Figure 5. CNN Architecture

The transfer learning is to replace the Classifier component of

the pre-trained model, VGG16 in our case, from VGG family

(Visual Geometry Group at University of Oxford) with a

customized classifier to resolve our classification problem.

In practice we replace the last layer of the VGG16 (Figure 6),

which takes a probability for each of the 1000 classes in the

ImageNet (Krizhevsky, Sutskever, and Hinton 2012) and

replaces it with a Fully Connected layer that takes 25

probabilities corresponding to 25 families of malwares. This

way, we use all the knowledge that VGG16 has trained on the

ImageNet dataset and apply it to our malware classification

problem.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License.

345

Figure 6. VGG16 Architecture (Simonyan and Zisserman 2015)

The VGG16 network architecture (Simonyan and Zisserman

2015) is shown in figure 6.

The input layer is an RGB image of fixed size 224 × 224, then

the image is passed through a stack of convolutional layers,

where the size of the filters used is 3 x 3 with a stride 1, and it

always uses the same padding and maxpool layer of 2x2 filter of

stride 2.

Finally for classification, it has 2 fully connected layers

followed by a softmax for output.

The 16 in VGG16 refers to it has 16 layers in total:

- 5 convolutional layers,

- 5 max pooling layers,

- 3 fully-connected layers

- output layer (softmax)

3.4 Our proposed models

As explained above, we propose a CNN model for malware

classification based on the pre-trained model VGG16, using

transfer learning (Figure 8). And we make a performance

comparison with a second CNN model (Figure 7) trained from

scratch.

The input of our network is a malicious program represented as

a grayscale image, and the output is the predicted class of the

malware sample.

Figure 7. Our proposed CNN model for classification of

malware represented as grayscale images.

For our first proposed architecture (Figure 7), we used three

convolutional layers where the size of the filters used is 3x3 that

scans the whole images and create a feature map to predict the

class probabilities for each feature.

After each convolution layer we used a max pooling layer of

2x2 filters to scales down the amount of information generated

for each feature and maintains only the most essential

information.

At the end, the generated feature maps are flattened and

combined to be used as input of the following fully connected

layer composed of 256 neurons. Lastly, the output of the fully

connected layer passes to a Softmax layer to classify the binary

malware into its corresponding family.

To prevent overfitting during the training phase, we employed

one dropout layer (Srivastava et al. 2014) to ignoring units of

certain set of neurons which is chosen at random.

Figure 8. Our proposed CNN model for classification of

malware represented as grayscale images using VGG16 as

features extractor connected with optimised classifier for 25

families of malwares.

In this second model we customize the VGG16 architecture to

our classification problem by adding a fully-connected layer

containing 25 neurones corresponding to 25 malware families,

instead of final fully connected layer (intended for 1000

classes).

The objective of this architecture is to employ the initial weights

of pre-trained CNN of natural images (ImageNet dataset) to

classify the binary malwares.

3.5 K-fold cross validation

To evaluate the generalization performance of our models we

used K-fold cross validation. The dataset is divided into K equal

size folds. Of the K subsamples, a single subsample is retained

as the validation data for testing the model and the remaining

subsamples are used as training data. This procedure is repeated

as many times as there are folds, with each of the K folds used

exactly once as the validation data.

3.6 The performance metric

To train our two models we will use an unbalanced dataset

(Malimg). Furthermore, the accuracy is not the best metric to

use when evaluating unbalanced datasets as it can be very

misleading.

However, for our comparative study we will use the following

metrics: precision, recall and F1 score and confusion matrix:

 Precision (P): is the number of true positives

predictions (Tp) divided by all true positive predictions (Tp)

plus the number of false positives (Fp).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License.

346

 Recall (R): is the number of true positives (Tp)

divided by the number of true positives plus the number of false

negatives (Fn)

 F1 Score: the weighted average of precision and

recall.

 Macro averaged F1 Score: is the average of the

individual F1 scores obtained for each class.

Where q = number of classes in the dataset

 F1
i = F1 score of classe i

 Confusion Matrix: is a table showing the correct

predictions and the incorrect types of predictions.

4. RESULTS AND DISCUSSION

We performed two different experiments and we made a

comparative study of the obtained results. We present in this

section the performed experiments and we discuss the results.

After several experiments we have optimized the hyper-

parameters for the two proposed models (batch-size, epochs,

and number of folds) to achieve the best performance.

4.1 Experiment 1

To train our first CNN model (Figure 7) using Malimg dataset

we used the Cross-Validation algorithm (defined above) with 10

Folds and 40 epochs, and we downsampled the images to a

fixed size. The size of the new images was set to 200*200

pixels.

Figure 9. Confusion matrix for 10-fold cross validation of CNN

model with 3 convolutional layers connected to one fully

connected layer.

Figure 10. Performance metrics for CNN model with 2

convolutional layers connected to one fully connected layer.

According to the obtained results, this first model is very

powerful for all malwares given in input except the following

families:

The Autorun.K family is classified incorrectly as Yunner.A, as

you can see in the (figure 10), the precision of the Autorun.K

family is 0. That is because these two families are very similar

and are indistinguishable by the human eye (Figure 11).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License.

347

Figure 11. Autorun.K and Yuner.A samples

Also, the model can't distinguish correctly the samples

belonging to the same family: Swizzer.genE and Switzer.gen! I.

(precision 0.61 and 0.66).

4.2 Experiment 2

To train our second model (Figure 8) (based on the transfer

learning) using Malimg dataset, we used 5 Folds cross

validation and 10 epochs, and we downsampled the images to a

fixed size. The size of the new images was set to 200*200

pixels. This model has proven the best performance by using

only 90% of dataset.

Figure 12. Confusion matrix for CNN model for malware

classification using VGG16 as features extractor connected with

optimised classifier for 25 families of malwares.

Figure 13. Performance metrics for CNN model for malware

classification using transfer learning.

Compared to the first model, this CNN model based on the

VGG16 architecture classified correctly 96 samples of

Autorun.K with a precision of 1 (as you can see on the figure

13) and in the confusion matrix (Figure 12).

Concerning the samples belonging to the same family

Swizzer.genE and Switzer.gen! I, this model is also not precise

(precision 0.48 and 0.53).

4.3 Comparison of models performance:

To compare the performance of our two models, we will use the

following metrics already explained above. However, we obtain

an overall classification accuracy of 97% for the CNN model

with the simple architecture and trained from scratch, which

represents a significant decline from the VGG16 model

accuracy of 98%.

The others performance metrics are summarized in the

following table.

Method Accuracy Precision Recall F1 score

CNN 0.97 0.91 0.91 0.91

Using

VGG16

0.98 0.95 0.95 0.95

Table 2. Comparison of performance metrics for our models

The following table present a comparison of accuracy

performance of our two models with the literature.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License.

348

Method Technique Accuracy

(Nataraj et al.

2011)

GIST + KNN 96.97%

(Gibert et al.

2019)

CNN 97.5%

(Yue 2017) Fine-tuning

VGG19

97.32%

Our model 1 CNN 97%

Our model 2 Transfer learning

using VGG16

98%

Table 3. Comparison of accuracy performance

CONCLUSION

In this paper, we propose an image-based malware classification

system, using a pre-trained deep learning image recognition

model. We compared these image-based deep learning (DL)

results to a simpler convolutional neural network (CNN)

approach trained from scratch. We carried out two experiments

using the same dataset with the same image sizes.

Our experiments, has proven that the model based on the

transfer learning results are particularly impressive with high

accuracy. So we can deduce that the transfer learning technique

can be used for the classification of malwares.

This study can be considered as an introduction to many new

experiments in the field of using transfer learning for malware

classification.

REFERENCES

Abou-Assaleh, Tony, Nick Cercone, Vlado Kesˇelj, and Ray

Sweidan, 2004. Detection of New Malicious Code Using N-

Grams Signatures. Second Annual Conference on Privacy,

Security and Trust.

Ahmadi, Mansour, Dmitry Ulyanov, Stanislav Semenov,

Mikhail Trofimov, and Giorgio Giacinto, 2016. Novel Feature

Extraction, Selection and Fusion for Effective Malware Family

Classification. In Proceedings of the Sixth ACM on Conference

on Data and Application Security and Privacy - CODASPY ’16

Pp. 183–194. New Orleans, Louisiana, USA: ACM Press.

http://dl.acm.org/citation.cfm?doid=2857705.2857713.

Gibert, Daniel, Carles Mateu, Jordi Planes, and Ramon Vicens

 2019. Using Convolutional Neural Networks for

Classification of Malware Represented as Images. Journal of

Computer Virology and Hacking Techniques 15(1): 15–28.

Kong, Deguang, and Guanhua Yan, 2013. Discriminant

Malware Distance Learning on Structural Information for

Automated Malware Classification. Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining: 9.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton

 2012 ImageNet Classification with Deep Convolutional

Neural Networks. Communications of the ACM 60(6): 84–90.

McAfee Labs Covid-19 threats report, juillet 2020.

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-

quarterly-threats-july-2020.pdf.

Nataraj, L., S. Karthikeyan, G. Jacob, and B. S. Manjunath,

 2011. Malware Images: Visualization and Automatic

Classification.ACMPress.

http://dl.acm.org/citation.cfm?doid=2016904.2016908.

Ranveer, Smita, and Swapnaja Hiray, 2015. Comparative

Analysis of Feature Extraction Methods of Malware Detection.

International Journal of Computer Applications 120(5): 1–7.

Sibi Chakkaravarthy, S., D. Sangeetha, and V. Vaidehi

 2019. A Survey on Malware Analysis and Mitigation

Techniques. Computer Science Review 32: 1–23.

Simonyan, Karen, and Andrew Zisserman 2015. Very Deep

Convolutional Networks for Large-Scale Image Recognition.

ArXiv:1409.1556 [Cs].

http://arxiv.org/abs/1409.1556, accessed September 13, 2020.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov, 2014. Dropout: A Simple

Way to Prevent Neural Networks from Overfitting.

Talukder, Sajedul, 2020. Tools and Techniques for Malware

Detection and Analysis. ArXiv:2002.06819 [Cs].

http://arxiv.org/abs/2002.06819, accessed July 16, 2020.

Xiao, Guoqing, Jingning Li, Yuedan Chen, and Kenli Li

 2020. MalFCS: An Effective Malware Classification

Framework with Automated Feature Extraction Based on Deep

Convolutional Neural Networks. Journal of Parallel and

Distributed Computing 141: 49–58.

Yue, Songqing, 2017. Imbalanced Malware Images

Classification: A CNN Based Approach. ArXiv:1708.08042

[Cs, Stat]. http://arxiv.org/abs/1708.08042.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020 | © Authors 2020. CC BY 4.0 License.

349

