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ABSTRACT: 

 

Great effort has been recently employed for the development of a modern and competitive agriculture in Morocco, growth in the 

agricultural sector is determined largely through the realization of thousands of new projects, and the support of the smallholder 

farmers at a national scale. Modernization of irrigation systems, and enlargement of the extent and spatial distribution of irrigated 

areas holds the key to increase annual productions. In this context, we established a unique procedure for monitoring the agricultural 

surfaces not fully exploited in terms of potential and production, in the semi-arid zone of the Haouz plain, central Morocco. We 

derived Normalized Difference Vegetation Index (NDVI) time series from Sentinel-2 (S2) and Landsat 8 (L8) high spatial resolution 

satellite images from 2016 to 2018. Seasonal phenological changes and land-cover dynamics, in addition to elevation models and 

landscape slopes, helped determine periods and thresholds suitable for classes separability, and establish a set of rules to be 

implemented in a Decision tree classifier model for a detailed land-cover mapping of the last three years. The agricultural zone was 

successfully separated from mountains and hills, and the derived maps of the three years yielded satisfying result with an OAthat 

reached above 91% for quite detailed landscape-type information. The outputs of this work hold promise to provide valuable 

information for planners, decision-makers and regional offices, to help smallholder farmers. Although this approach has been 

developed at regional-scale, it holds the potential to be adapted to larger scales, with the appropriate selection of land-cover types, 

and carful adjustment in the threshold values. 

 

1. INTRODUCTION 

The agricultural sector in Morocco is one of the main centers of 

the economy. It is characterized by a great annual and spatial 

variability, as it follows strong seasonal lifecycles, as well as 

unstable climatic conditions and diverse agricultural 

management practices. Irrigated agriculture occupies only about 

15% of the overall cultivated area, yet the weight of its 

contribution is very important, especially during the drought 

years when the production of Bour (rainfed) zones is severely 

affected. As part of the implementation of the Green Morocco 

Plan, one of the main objectives of the state is to improve the 

living conditions of the smallholder farmers and to increase 

agricultural incomes in the most vulnerable areas, financial aid 

is granted to encourage agricultural investments. In this context, 

demands for determining reliable, cost efficient methodologies 

for assessing and evaluating vegetation changes are increasing. 

Remote sensing has become a significant contribution mean for 

providing a timely and accurate description of the agricultural 

sector, as it is presenting the advantage of gathering information 

over immense territories with high temporal repetitivity 

(Atzberger 2013), and reducing the cost of the field 

investigations. Many applications of remote sensing for 

vegetation monitoring can be found in literature: (Matton et al. 

2015, Sakamoto et al. 2006, Benhadj et al. 2012, Wang et al. 

2016, Er-raki et al. 2016, Moumni et al. 2019, Moumni et al 

2020). From various methodologies and approaches, the 

Normalized Difference Vegetation Index (NDVI) (Tucker 1979) 

represents the most common and popular technique used to 

indicate and analyze the greenness of the earth’s surface (Omdi, 

Daoudi and Adiri, 2017), and to fully exploit its usefulness, 

further consideration and analysis of time-series are required, 

especially when the study area is highly heterogeneous 

(Ghorbani et al. 2012).  By the use of the multi-temporal aspect, 

remote sensing means can also be employed to assess change on 

earth’s surface, particularly land-use/land-cover changes, and 

shifting agricultural patterns. A variety of reviews regarding 

techniques assessing change and their applications can be found 

in Lu et al. (2003), Coppin et al. (2004), Halmy et al. (2004), 

and Alqurashi and Kumar (2013).The classification of the 

remotely sensed products is known to be effectuated by the 

mean of a selection of algorithms. The ultimate goal of 

researchers in this field, is to find an automatic and robust 

procedure that does all the work. 

 

The current study is an example of improvisation, for the fact 

that we were faced with several constraints and found good 

alternative solutions. In the study area, in central Morocco, there 

is mainly tree different areas, mountainous, Jebilat hills and 

between the two, the agricultural zone where the crops are 

mainly located. For an efficient land-cover mapping and due the 

topographical complexity, we were brought to adapt and 

provide for the classifier -in addition to high Spectro-temporal 

information- Digital Elevation Models and slopes data, as for 

example it was the only way to avoid confusion between forest 

trees in the mountains and crop trees in the agricultural zone, 

despite the classification algorithm used. The main objectives of 

this study are to exploit the means provided by satellite imagery 

for  the creation of  detailed and accurate maps of the complex 

study area, and then, to locate and map  ‘Non-Fully-Exploited 

Agricultural Surfaces (NFEAS)’ in order to present to the public 

authorities, and more specifically the regional offices, useful 

documents for schemes of development of the most vulnerable 
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zones, to improve access for smallholder farmers to state aid, 

and help augment the annual yields and incomes. 

 

2. MATERIALS AND METHODS 

2.1 Study area 

The study area is located 40 km south-east of Marrakech city in 

the eastern part of the plain of Haouz (about 2800 km²) in the 

center of Morocco. It extends between the mountain ranges of 

the High Atlas in the south, and the Jebilat hills in the north-

west, with an altitude varying from 466m to 700m in the central 

area (slopes not exceeding 6º), and up to 1588m in the 

mountains. The semi-arid climate of the region is characterized 

mostly by absence of rainfall during the summer except for 

some storms, and irregular falls during the rest of the year with 

an annual average of 240mm and highly inter- and intra-annual 

variability (Tensift Water Basin Agency data). Statistics and 

field campaigns carried out by the regional public agency 

responsible for agricultural development in the Haouz plain 

(ORMVAH), show that the main production sectors are cereals, 

mainly wheat and barley, and tree plantations: olives (about 85 

%), citrus and apricot.  

 

2.2 Satellite imagery 

All the available S2 atmospherically and geometrically 

corrected, cloud free and 10 m multispectral images, since 2016, 

were downloaded from the Theia land data center. L8 OLI 

(Operational Land Imager) 30 m multispectral, on demand 

level-2 cloud free pre-processed data (bands 1-7),  

 

Table 1. Description of satellite data used in this study, 

including sensor types, resolutions and temporal distribution of 

acquisition dates. 

 

and SRTM (Shuttle Radar Topography Mission) 1 arc second 

global Digital Elevation Models (DEMs) were acquired from 

the United States Geological Survey (USGS) user’s interface. 

L8 products represent about 18% of all the used here in satellite 

data, they were added to cover some particular dates where S2 

have cloudy scenes, and in order to complete a time series that 

is well ranged over the seasons, with an average of two scenes 

per month when possible. The images were taken between 

January 2016 and December 2018 and were projected in WGS 

84 UTM, zone 29N. From 60 (49 Sentinel-2 and 11 Landsat-8 

images) cloud free high spatial resolution satellite images 

(Table 1), we derived NDVI scenes, before laying over ground 

truth information, and starting the extraction of the NDVI 

profiles.  

 

 

Table 2. Size and source of the used ground truth references, for 

the different classes training and testing over the last three 

years. 

2.3 Ground truth data 

 

 Ground data collection was done by field campaigns carried out 

during 2018, and by the use of Google Earth’s 10m to around 

0.5m very high spatial resolution imagery for 2016 and 2017 

(Table 2). The latter source was also used to extract samples 

from inaccessible/hard to reach areas (e.g. mountain and hills as 

field investigation were mainly conducted in the agricultural 

zone). We focused on 8 main land-cover types in the 

agricultural zone: irrigated cereals (IC), olive trees (Ol), 

agricultural zone). We focused on 8 main land-cover types in 

the agricultural zone: irrigated cereals (IC), olive trees (Ol), 

citrus trees (Ci), prunus trees (Pr) (mostly apricot, and peach, 

almond, cherry, plum…), autumn crops (AC) (potato, bean, 

pea…), water bodies (WB), fallow or Bour (Fa/Bo) (cereals 

depending on rainfall) and bare soil (BS) (the latter two classes 

were used to identify the NFEAS). The mountainous area is 

Purpose Classes 
Pixel’s number 

Source 
Cal Val 

Land-

cover 

mapping 

Ci 2033 2752 FI 

Pr 455 670 FI 

Ol 822 929 FI 

IC 

2016 704 856 

FI / GE 2017 744 560 

2018 968 1085 

AC 

2016 523 409 

FI / GE 2017 559 569 

2018 536 311 

Fa/Bo 

2016 532 406 

FI / GE 2017 261 300 

2018 612 542 

DF 2742 4642 GE 

SF 775 1330 GE 

MV 580 704 GE 

BS 1200 559 FI 

WB 2182 1048 GE 

Je 3265 2454 GE 

Change 

detection 

L1 - 10792 GE 

L2 - 25922 GE 

L3 & L4 - 10199 GE 

Sensor Resolution Year 
Acquisition 

dates 

L8 30m 

2016 

06/01;22/01;07/

02;02/03;27/04; 

17/08; 21/11 

2017 09/02;29/03 

2018 20/06;22/07 

S2 10m 

2016 

18/03;28/03;07/

04;06/06;06/07;

16/07;05/08;24/

09;14/10;13/12;

23/12 

2017 

02/01;12/01;02/

04;02/05;12/05;

01/06;06/07;26/

07;15/08;20/08;

09/09;24/09;04/

10;24/10;13/11;

23/11;13/12;28/

12 

2018 

12/01;27/01;21/

02;03/03;23/03;

17/04;27/04;02/

05;22/05;01/06;

31/07;20/08;30/

08;19/09;29/09;

08/11;28/11;08/

12;18/12;28/12 

ASTER 90m 2002 _ 
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known for vegetation diversity patterns divided into forested 

vegetation and non-forested vegetation For the purpose of 

clarity, a relatively simple separation was set for the mountain’s 

land-cover types, and three classes were chosen: dense forests 

(DF), sparse forests (SF) (forests with lower canopy cover of 

trees), and mountain vegetation (MV). We also added a 

particular class that we called ‘Jebilat’ (Je), to take into account 

hills crowns with high slopes (>20%), as those lands are not 

feasible for agriculture. 

 

2.4 Methodology 

The workflow of the methodological approach used in the 

present work and the main steps are illustrated in figure 1. 

 

Figure 1. The workflow of the approach employed for land-

cover mapping and NFEAS localization. 

 

2.4.1 Data processing and NDVI profiles extraction: 

Analyzing land-cover dynamics over a 3-years period is of great 

importance for sufficiently understanding the general spectral 

behaviors of the land-cover types. We started processing data by 

the creation of NDVI time-series and the generation of land-

cover samples from ground observations. Yearly statistical 

measures of vegetative classes, and non-vegetative land-covers, 

namely the maximum, minimum, mean and standard deviation 

values were extracted from the training samples overlaid on the 

fused NDVI data, and the resulting averages were used to plot 

continuous phenological or dynamical patterns from 2016 

through 2018 ( Figure 2). 

The chosen land-cover classes compared to each other, apart 

from crop trees (olive and citrus) and forest trees, follow 

different NDVI temporal patterns, yet, each land-cover type still 

particularly follows a general trend throughout the years, 

although values of the same periods from different years are not 

always identical and the reasons can differ from water 

availability, to cultural calendar, to acquisition dates... Olive 

and citrus trees have evergreen vegetation throughout the years, 

with decreasing trend of NDVI values in July and August 

(Figure 2 graphs a and c) being very dry months, with 

precipitation not exceeding 2 mm. Nevertheless, citrus trees 

biomass reflects higher in infra-red than olives, hence have 

higher NDVI values. Figure 2, graphs d and f show almost 

similar general trend between irrigated cereals and fallow or 

Bour. The sowing of the cereal crops generally starts early in 

November, reach their maximum in Mars through April, and are 

harvested at the beginning of June. Fallow compared to cereals, 

emerges and become quite detectable at the same period of 

Mars to April, but have most of the time lower NDVI maximum 

values than healthy cereals getting enough water amounts. 

Furthermore, these natural vegetation types are most of the time 

hard to separate from rainfed cereals, as their spectral signatures 

overlap during all the growing season. Although this may m like 

a land-cover mapping problem, fortunately it has on the 

contrary eased the process of achieving the final purpose 

(NFEAS detection), as we were targeting agricultural lands 

lacking water and means. The latter facts were the reason why 

those two classes (Fallow and Bour) were originally combined 

together as one.  Autumn crops, as shown in Figure 2 graph e, 

reflect a unique agricultural calendar making them relatively 

easy to spot, they are normally sowed in autumn and reach a 

maximum NDVI value in January. The phenological patterns of 

the ‘Prunus’ class (Figure 2 graph b), show low NDVI values 

during most of the autumn and winter and high values in spring 

through summer, for the fact that, every year, these deciduous 

tree crops follow the cycle of shredding leaves every autumn 

and growing them in late winter to early spring. Figure 2 graphs 

g, h and i display phenological evolution of ‘Dense forest’, 

‘Sparse forest’, and ‘Mountain vegetation’ respectively. Those 

classes would of have been confused with ‘Citrus’, ‘Olive’ and 

‘Irrigated cereals’ (in the same order), as they present almost 

similar phonologies’ evolutions. The NDVI time-series alone, 

was not enough to separate those two groups, which was the 

reason behind the introduction of the elevation information. The 

last two classes, namely ‘Bare soil’ and ‘Water bodies’, can be 

easily separated from the other classes. Bare soils have no to 

10% vegetation and present the lowest relatively-constant 

NDVI values (around 0.18 all the time) (Figure 2 graph j), while 

water bodies present 93% of the time negative NDVI values 

(Figure 2 graph k). As the 3-years NDVI analysis was carried 

out to understand the general trend of the different targeted 

classes, a closer look-on an annual time-scale- helped the 

determination of the best fitting periods for the spectral 

separation of the land classes and the identification of a suitable 

way for the classification. Figure 3 is a representation of NDVI 

profiles from 2018. 
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Figure 2. NDVI Temporal patterns behaviors of the chosen 

classes in the study area, over a three-years period. 

 

 

For overlaying and reading problems mountainous classes 

profiles were plotted apart, also ‘Bare soil’ and ‘Water bodies’ 

classes were not presented in the graphs, for being relatively 

easy to spot compared to the rest throughout the year, as they 

respectively present near null and negative NDVI values. When 

looking at the annual evolution of the curves, we notice the 

presence of three critical periods for the Spectro-temporal 

separation of the classes, and the set of the optimal thresholding 

values: 

 

 

Figure 3. 2018 NDVI profiles extracted from the agricultural 

zone on the left, and mountainous area on the right. 

 

• Mid-August, being the intermediate season when the cereals 

are normally already harvested and autumn crops are just or not 

yet sowed. The absence of annual crops and natural vegetation 

during this period permits the isolation of the trees keeping their 

leaves. The olives are the most affected by the summer’s water 

shortage, and present the lowest NDVI values (with a minimum 

NDVI average down to 0.3 recorded for olive during summers 

of the three studied years) compared to prunus and citrus trees, 

hence, can be identified by the criteria ‘Present in summer and 

have lowest NDVI values. Although ‘Prunus’ and ‘Citrus’ 

classes have almost similar NDVI values at this period, they can 

be separated during the winter as citrus trees always keep dense 

perennial vegetation, while prunus trees lose their leaves. 

• Mid to late January: as mentioned above, this period is used to 

identify citrus from prunus trees. The maximum NDVI value 

recorded for ‘Prunus’ class during this period is about 0.29, and 

although it’s above the no-vegetation value (0.18), the 

explanation may mainly be related to the presence of a natural 

vegetation understory due to irrigation activities. This period is 

also critical for identifying autumn crops, their vegetation 

density becomes important during the start of winter (with high 

NDVI averages varying from 0.74 to 0.80), whereas the cereals 

and fallow are absent, as they flourish from late Mars to early 

April. 

 

• Late Mars to early April: this period benefits from great 

amounts of precipitations in terms of annual distribution. Thus, 

natural vegetation and cereal crops reach full development. As 

the two classes are different in terms of density and reflectance, 

the fallow or Bour attain lower NDVI averages (from 0.40 to 

0.63) than irrigated cereals (from 0.79 to 0.82), and a threshold 

value based on that difference makes this period suitable for 

their discrimination. 

 

The same temporal analysis stays valid for the separation of 

mountainous area’s classes as they spectrally and temporally 

behave like citrus, olive and cereals. The resemblance could of 

have created the problem of those groups’ confusion, except 

that forest and mountain vegetation are located at high altitudes, 

and as mentioned in the long-term analysis, the addition of the 

DEM information was helpful to resolve this issue. On the other 

hand, we couldn’t apply the elevation criteria to exclude ‘lands 

not suitable for agriculture’ north-west in the Jebilat hills, for 

being not too high, but the derived slope raster, was sufficient to 

detect and locate the crowns of those hills using the description 

‘high slopes (>20%) and low altitudes’. 

 

Reduced-data time series are designed to reduce the 

dimensionality of a dataset while maintaining a multi-raster 

temporal sequence (Bunker, Tullis, et al., 2016). For this case, 

each full yearly NDVI time-series was reduced to the cited three 

critical dates. This reduction was sufficient in terms of 

information needed for the phenological separation, hence for 

the classification process. 
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2.4.2 Decision tree modelling and classification: The 

previously described separation strategy is quite particular, we 

therefore needed an algorithm capable of understanding the 

processing structure and chronology, and that was the reason 

behind the use of the Decision Tree classifier. This machine 

learning technique, is an approach to multistage decision 

making (tree-like structure), as basically it turns a complex 

decision into a union of several simpler ones, to obtain a final 

solution that resembles the desired one (Safavian and Landgrebe 

1991). We constructed a software-based Decision Tree model 

using ENVI (Figure 4). For feeding the nodes, small changes 

from one year to another should be taken into account, and the 

NDVI threshold values should be slightly adjusted. Those 

values are usually empirically identified on a trial and error 

basis, and normally we start by correctly classifying as much of 

the training sample as possible, then we generalize beyond to 

validation samples so that they could be classified with as high 

of an accuracy as possible (Safavian and Landgrebe 1991). But 

for a matter of consistency and robustness, and instead of 

determining the threshold values iteratively, we built a set of 

rules based on the NDVI separation analysis and statistical 

distribution assumptions of these data, which made it easier for 

adapting the tree to the previous years (2016 and 2017) or even 

coming years(future studies).  

 

Figure 4. The hierarchical structure of Decision Tree model, 

along with class names and threshold values for 2018 land-

cover classification. 

 

 
 

Table 3 summarizes the approach used for determining nodes 

values. 

 

Min = Mean - Standard deviation 

Man = Mean + Standard deviation 

NDVIBS is the thresholding value of Bare soil class and is 

equal to 0.18 

DF: Dense forest; SF: Sparse forest; AC: Autumn crop; Irr: 

Irrigated cereals; F/B: Fallow/Bour; WB: Water bodies; MV: 

Mountain vegetation. 

 

2.4.3 Change detection and NFEAS localization: For the 

purpose of our study, we focused on the spatial distribution of 

the ‘Bare soil’ and ‘Fallow/Bour’ classes over the last three 

years, as they were the key to successfully detect our targeted 

class. We couldn’t assign a pixel to NFEAS for just being bare 

soil, fallow or Bour for only one year, as the intra-annual state 

of a land-cover type is not sufficient for change detection and its 

dynamic is susceptible of changing the year after that. 

Meanwhile, inter-annual comparison is better suited, as it has 

been shown to be efficient to many socioeconomic and natural 

processes (Campbell 2011).  In a similar process from the 

definition of FAO and Pointereau et al. (2008) which used a 

minimum of four fallow years in five consecutive years to label 

a field as abandoned, and in addition to our knowledge of the 

area, we located pieces of land that has been mapped as ‘Bare 

soil’, ‘Fallow/Bour’ or a combination of both for three 

consecutive years, as for sure they contain the NFEAS. Yet, 

each of those detected pieces of land, could present different 

possible scenarios, hence, further examination could reflect the 

level of absence of management or water in this area, and 

highlight the degree of change. A set of the different possible 

change combination levels is constructed as table 4 

Summarizes.  

 

 

 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020 
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-365-2020 | © Authors 2020. CC BY 4.0 License.

 
369



 

 

Figure 5. The hierarchical structure of the change detection 

Decision Tree model. 

 

To our knowledge, Decision Trees have not been used for 

comparison of the post-classification results to detect change. 

Another Decision Tree model was built for the purpose. As it is 

shown in Figure 5, we exploited the post-classification resulting 

maps of 2016, 2017 and 2018 as input variables, in addition to 

the DEM raster to mask the mountainous area in the root node. 

We used the descriptions and combinations listed in the table 

above to determine splitting rules in the internal nodes, and for 

each year, classes other than ‘Bare soil’ or ‘Fallow/Bour’ were 

eliminated. 

 

Table 4. Levels representing the type and degree of change as 

the different possible combinations over the last three years. 

 

 

3. RESULTS AND DISCUSSION  

3.1 Land-cover mapping 

The implementation of the phenology-DEM-slope-based 

Decision Tree land-cover mapping model resulted in 3 maps 

showing the spatial distribution of the different classes in the 

study area. Table 5 shows the percent correct of all the classes, 

the OA and K statistics of the land-cover classification over the 

three years (2016-2018). The model performed greatly, and all 

the overall classification accuracies exceeded 91% (Kappa 

0.90). The greatest value was recorded for 2018, with OA of 

95% (Kappa 0.94). When using 3-years average of the threshold 

values, the results stayed quite impressive, which was expected 

as all the standard deviations of the yearly threshold values do 

not exceed 4%. The accuracies have slightly decreased and 

lowest OA of about 88 % (Kappa 0.87) was recorded for 2017 

where obviously the threshold values are the highest in terms of 

mean deviation. When assessed using calibration samples, the 

model gives slightly better results than when validated with 

validation samples. As it was expected, the classes that were 

clearly identified for all the years are ‘Bare soil’ and ‘Water 

Bodies’ in addition to  ‘Jebilat’, One noteworthy mention to 

‘Prunus’ class for being poorly classified, which can be 

explained -based on how our model is constructed- by the facts 

that either there was actually olive and citrus before they were 

replaced by a prunus specie, or the latter had younger trees with 

some annual crops on the understory. In fact, the inclusion of 

vegetation understories beneath some tree plantations, along 

with trees density and age, are the main reasons of confusion 

between annual vegetation and orchards, as it has been 

discussed in Benhadj et al. (2007). Detailed confusion matrices, 

indicate also the presences of three other confused groups: 1) 

between citrus trees and olive trees, 2) between dense forests 

and sparse forest, and 3) between Irrigated cereals and 

fallow/Bour. The belonging of those groups’ classes is 

sometimes misjudged by the algorithm, not mistakenly, but by 

the overlapping of signatures between them, as each pair of 

those groups have the closest properties in terms of spectral 

reflectance. Like Otukei and Blaschke (2010), for a qualitative 

assessment of our model, we first tried to compare it to two of 

the most Support Vector Machine-based techniques. However, 

famous classification algorithms: Maximum Likelihood and 

Support Vector Machine-based techniques. However, 

unfortunately the latter two classifiers couldn’t identify 

mountains and hills, even after multiple trials, thus the three 

algorithms performances couldn’t be compared for all the 

classes at the same time. Nevertheless, we separated the 

mountainous area from the agricultural zone, then classified the 

two zones using both Maximum Likelihood (ML) and Support 

Vector Machine (SVM), and even when using full yearly NDVI 

time-series (and not only the previously described separation 

periods), the OA have not exceeded 87% for all the simulations. 

We furthermore tested the Random Forest (RF) classifier, which 

is an increasingly gaining-popularity ensemble learning 

technique applied in land-cover classification suggested by 

Breiman as a new and promising classifier in (2001). The 

results showed that the differences in stability after 100 trees are 

very small and the computation time increases for larger ranges 

of possible values of the number of trees. Numerous RF models 

were created with different number of trees (100, 150, 160, 180, 

200 and 1000).  

 

 

 

Levels Description 2016 2017 2018 

Level 1 

buildings, 

paved roads, 

river beds, dry 

streams, or 

abandoned 

area 

BS BS BS 

Level 2 

Surfaces non-

feasible for 

agriculture 

mainly in the 

Jebilat hills 

BS Bare soil 
Fa/ 

Bo 

Level 3 

(NFEAS) 

Bad water 

availability 

conditions 

and/or lack of 

management 

BS 
Fallow/ 

Bour 
BS 

Fa/ 

Bo 
Bare soil BS 

Level 4 

(NFEAS) 

Mediocre 

water 

availability 

conditions 

and/or lack of 

management 

BS 
Fallow/ 

Bour 

Fa/ 

Bo 

Fa/ 

Bo 
Bare soil 

Fa/ 

Bo 

Fa/ 

Bo 

Fallow/ 

Bour 
BS 

Fa/ 

Bo 
Fa/Bo 

Fa/ 

Bo 
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2016 (%) 2017 (%) 2018 (%) 

Cal Val Cal Val Cal Val 

Ci 99.90 98.69 96.61 89.53 97.39 89.61 

Pr 91.65 39.16 82.86 100 94.95 100 

Ol 90.63 89.45 88.81 90.20 93.92 83.75 

IC 99.43 98.83 85.79 70.00 90.81 98.25 

AC 84.51 89.49 90.18 89.80 88.25 85.21 

Fa/Bo 80.83 89.66 93.87 94.67 86.76 99.45 

DF 95.04 91.90 90.63 94.36 81.55 74.81 

SF 74.32 88.20 85.42 85.65 97.45 99.31 

MV 96.21 93.47 94.83 77.70 95.69 87.93 

BS 99.58 100 95.33 100 96.58 97.14 

WB 100 100 98.99 100 100 99.81 

OA 94.49 91.24 92.95 91.09 95.04 92.27 

K 0.94 0.90 0.92 0.90 0.94 0.92 

 

Overall Accuracy using Averaged 3 years 

threshold value) 

93.49 88.71 91.36 87.81 94.79 91.70 

Kappa 0.93 0.88 0.90 0.87 0.94 0.91 

Table 5. Percent correct of all the classes using calibration (Cal) 

and validation (Val) samples as ground reference data for 

evaluating classifications. 

 

The RF showed better results compared to the ML and the SVM 

classifiers, as it was able to accurately detect the mountainous 

area. Yet, the OA showed slight performance inferiority when 

compared to our made Decision tree model, ranging between 

88% and 91%. As the RF shows normally better results than the 

Decision Tree, a further investigation and analysis of the 

Random forest classification results were carried out and 

showed aberrations regarding Prunus and Jebilat classes. The 

Prunus class was mostly confused with Olive class, while sparse 

Jebilat pixels were detected all over the agricultural zone.   

 

 

3.2 NFEAS localization 

Over the three years, ‘Bare soil’ and ‘Fallow or Bour’ classes 

have been satisfactorily classified, from 2653 calibration and 

validation of ‘Fallow or Bour’ pixels, 2393 were correctly 

identified (percent correct of 90.20%), and from an average of 

1720 ‘Bare soil’ pixels, 1759 were well detected (percent 

correct of 97.78%). Those statistics were a good indicator, 

before even feeding the resulting maps to the change detection 

Decision Tree model, as in the post-classification approach, we 

rely on the quality of the classified images from each date 

obtain a good final accuracy. The model has yielded the final 

map of our work, showing the spatial distribution of the NFEAS 

along with levels 1 and 2 classes. 

 

 Ground Truth 

Classification 

 L1 L2 NFEAS 

L1 85.02 1.35 0.78 

L2 4.92 86.45 8.38 

NFEAS 10.06 12.20 90.83 

OA  87.07% (Kappa =0.79) 

 

Table 6. Confusion matrix for change detection classification’s 

evaluation. Levels 3 and 4 were merged as they both represent 

NFEAS. 

 

Confusions were observed in the irrigated sectors, regarding 

unpaved roads that should normally belong to Level 1 group, 

yet were detected as NFEAS, which can be due to the fact that, 

with the presence of water (rainfalls, leaks after flood 

irrigation…), vegetation has grown on them. The confusion 

matrix presented in Table 6 shows details of the percent 

correct/incorrect of the different groups.  The resulting map 

shows that about more than 70% of the NFEAS are located in 

the agricultural zone. Their spatial distribution indicates high 

concentration in three parts: south of the Jebilat area, north-east 

of the agricultural zone and central-south around a small city 

called Sidi Rahhal, which are known to be rainfed and 

sometimes flood irrigated. Level 1’s permanent buildings, dry 

river beds, paved roads and abandoned lands are sparsely 

distributed over the study area.  

 

Figure 6. 2016-2018 continuous NDVI profiles reflecting land-

cover dynamic of representative samples from the different 

levels’ combinations. (a) sample from level 1 lands; (b) sample 

from level 2 lands; (c) sample from level 3 lands; (d) sample 

from level 4 lands. 

 

The validation was done by extracting samples from each type 

of those sub-classes. Well known urban zones were identified, 

namely Chouiter, Ait Ourir and Sidi Rahhal villages, in addition 

to river Tensift’s bed, and paved roads larger enough to be 

detected from the 10m square pixels. For the abandoned lands 

validation, we explored Google earth’s images archives for 

product from the period 2016-2018, and although the 

acquisition dates of those images don’t follow regular time 

steps, fortunately those from the growing seasons were most of 

the time available and sufficient enough to detect sign of 

emptiness in those deserted lands over the years. Level 2 areas 

are mostly located in Jebilat hills, this type of land-cover 

reflects important shortage of water resources and almost 

impossible feasibility of agriculture, as obviously signs of 

vegetation weren’t apparent until 2018, being the water surplus 

year amongst the three. In an attempt of furthermore ensuring 

the accurateness of our final map by implicitly evaluating the 

resulting land-cover maps, we layered out the resulting classes 

(levels 1-4) on a continuous NDVI time series from 2016 to 

2018, in order to check the spectral dynamics of those lands. 

Figure 6 shows the NDVI profile of one random representative 

sample from each class. The continuous monitoring of the 

profiles of the randomly chosen samples translate very precisely 

classes descriptions in table 4. The visual interpretation of the 

dynamic of those samples is acceptably reliable, and the 

resulting profiles are interpretable, as it does not require great 

expertise nor the use of an algorithm to judge the absence of 

irrigated crops or tree plantations and the presence of only bare 

soils and fallow or Bour. 

 

(a) (b) 

(c) (d) 
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4. CONCLUSION 

 

We followed an unusual but effective procedure for mapping 

land-cover and cover’s change using Decision Tree models in 

the study area. Firstly, this approach provides a detailed 

description of land-cover’s spatial distribution of twelve classes 

(Citrus, Prunus, Olive, Irrigated cereals, autumn crops, 

Fallow/Bour, Dense forests, Sparse forests, Mountain 

vegetation, Bare soil and Water bodies) on a yearly basis from 

2016 through 2018. Secondly, in the context of land-cover 

change, it exploits the post classification resulting maps to 

locate potential agricultural lands that are not fully exploited. S2 

and L8 imagery were used to extract 3-years NDVI profiles of 

each of the most present land-cover types in the study area, in 

order to analyze the vegetation phenology and land dynamics. 

The profiles matched with the pre-known phenological features, 

and the inter-annual stability of NDVI trends was quite apparent 

as classes profiles generally slightly differ from one year to 

another. A 1-year analysis (2018) was then carried out to 

determine Spectro-temporal separation periods and figure out 

discrimination rules for the classification. This analysis shows 

that only three critical periods were needed for the separation, 

namely mid-August, mid-January, and late Mars to early April. 

The presence of the mountains and hills has led to the use of 

DEMs and slopes data for a topographic separation. Based on 

the yearly profiles’ analysis, elevation and slopes information, 

we implemented a threshold values rule in a Decision Tree 

classifier to map land-cover types from 2016 through 2018. The 

interpretations and analysis of the land-cover maps derived for 

three consecutive years (2016-2018), confirm the performance 

of the model. Compensations between annual crops and barren 

lands spatially and temporally reflect high coherence with the 

water availability statistics and crop rotation strategies, while 

stability of permanent classes’ spatial distribution and extent 

shows logical long duration space-time consistence. The OA 

and kappa of the model for the 3-years classifications reached 

above 91% and 0.90 respectively. The model is robust since 

even when not taking into account inter-annual adjustments, and 

implementing the averaging threshold values in the Decision 

Tree classifier, it’s application over the three years, still gives 

satisfying results, and slight decreases in the OA and Kappa are 

noticed, with a minimum value recorded of 87.81% (Kappa 

0.87). 

 

We used the post-classification resulting maps to monitor the 

change. As we were targeting lands affected by climate 

fluctuations and drought that we called NFEAS (Non-Fully 

Exploited Agricultural Surfaces), we constructed another 

Decision Tree model to identify the lands where only inter-

annual combinations of “Bare soil” and “Fallow/Bour” has been 

detected on the three maps. We carefully described the different 

combinations possible, to exclude some particular cases. For 

example, three consecutive year of barren land would indicate 

the presence of build-up areas, river beds, paved roads or 

deserted lands. 

 

The results show sparse distribution of the NFEAS in the 

agricultural zone except for three locations: south of the hills, 

north-east of the study area, and the surroundings of a village 

called Sidi Rahhal. In coherence with the qualitative knowledge 

of the study area, those parts are known to be productive of 

rainfed cereals which helped validate the results. The evaluation 

of the results was done using two methods: 1) quantitative and 

qualitative comparison to Google Earth’s very high spatial 

resolution images, and 2) random independent extraction of the 

spectral profiles of those lands from a continuous 3-years NDVI 

time-series. Overlaying the resulting map to the real images 

showed good similarities, and the generation of samples yielded 

in an OA of 87.07%. Meanwhile, the random profiles extraction 

from 3 consecutive years NDVI time-series from representative 

samples of the different change levels exactly matched their 

descriptions. 
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