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ABSTRACT: 

 

Smart grid construction puts higher demands on the construction of 3D models of substations. However, duo to the complex and diverse 

structures of substation facilities, it is still a challenge to extract the fine three-dimensional structure of the substation facilities from 

the massive laser point clouds. To solve this problem, this paper proposes a method for extracting substation equipment from laser 

scanning point clouds. Firstly, in order to improve the processing efficiency and reduce the noises, the regular voxel grid sampling 

method is used to down-sample the input point cloud. Furthermore, the multi-scale morphological filtering algorithm is used to segment 

the point cloud into ground points and non-ground points. Based on the non-ground point cloud data, the substation region is extracted 

using plane detection in point clouds. Then, for the filtered substation point cloud data, a three-dimensional polygon prism segmentation 

algorithm based on point dimension feature is proposed to extract the substation equipment. Finally, the substation LiDAR point cloud 

data collected by the UAV laser scanning system is used to verify the algorithm, and the qualitative and quantitative comparison 

analysis between the detected results and the manually extracted results are carried out. The experimental results show that the proposed 

method can accurately extract the substation equipment structure from the laser point cloud data. The results are consistent with the 

manually extracted results, which demonstrate the great potential of the proposed method in substation extraction and power system 

3D modelling applications. 

 

 

1. INTRODUCTION 

In the digital era, smart grid construction puts forward higher 

demands on substation engineering construction (Guo et al., 

2013; Zhang et al., 2013). Through the innovation of technical 

means, it is a must to further improve the construction and 

management level of substation engineering. At present, the main 

direction of China's power grid construction and development is 

to ensure the construction quality, improve the operation 

efficiency and reduce the construction cost.  

 

Digital power grid is the data source of intelligent analysis and 

management for power grid, and it is the cornerstone of building 

smart grid. The key of digital power grid lies in the digital 

modelling and storage of pivotal components such as power grid 

facilities and so on. The results of digital modelling will become 

the basic data of the whole life cycle digital system of the project. 

Through the development of corresponding digital modelling and 

design standards, and with the help of 3D digital design means, 

the digital achievements of new power grid project can be 

transferred. However, for the existing power grid, it is faced with 

many problems, such as outdated or incomplete design data, non-

standard construction earlier, which leads to the inconsistency 

between the design and the final construction results. Therefore, 

it is necessary to use efficient three-dimensional model 

acquisition means to collect the actual construction scene data for 

accurate as-built model building, thus to provide the digital data 

basis for the construction of the smart grid (Tang et al., 2009, Lv 

et al., 2016). 

 
* Corresponding author 

2. RELATED WORKS 

Laser scanning equipment can achieve 3D high-precision point 

cloud scanning of electrical equipment, and directly obtain high-

precision 3D data of substations without affecting the safe 

operation of substations. The laser point cloud data with precise 

geometry description can also be fused with RGB or 

multispectral camera data. In addition to obtaining 3D geometric 

information, the material and texture information of the 

equipment under scanning can be obtained. Compared with the 

traditional modelling methods, 3D fine modelling using laser 

point cloud data fusion of multi-source spectral image data has 

the advantages of higher accuracy and efficiency, and lower 

labour cost and so on (Guan et al., 2016; Liu et al., 2010). 3D 

laser scanning measurement technology has important 

applications in the extraction of power grid equipment (Cheng et 

al., 2014). 

 

The substation is an important part of the power grid, but 

compared with other ground objects (such as buildings, roads, 

etc.), the structure of substation facilities is more complex and 

the types are more diverse. How to extract the fine three-

dimensional structure of substation facilities from massive laser 

point cloud data is still an important problem to be solved in 

terms of the construction of digital power grid. At present, the 

target extraction of power equipment based on laser point cloud 

data mainly focuses on power grid components with simple 

geometry such as tower and power line. For example, Chen et al. 

(2015), and Lin et al. (2016) used 3D laser point cloud data 

obtained from UAV and airborne platform to extract power lines 

and conducted diagnostic analysis on safe distance of 

transmission channel; Peng. et al. (2017) extracted tower location 
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from UAV point cloud data and established three-dimensional 

models of tower. However, compared with other targets (such as 

transmission lines, towers, buildings, roads, etc.), the structure of 

substation facilities is more complex and the types are more 

diverse. How to extract the fine three-dimensional structure of 

substation facilities from massive laser point cloud data is an 

important problem in digital power grid engineering 

construction. The research on extracting substation equipment 

from laser point cloud data is relatively rare. Li et al. (2016) 

proposed a 3D modelling method for substations based on 

massive point cloud data. In this method, the filtered point cloud 

is divided into different priority point cloud sets through point 

cloud data clustering, and then local surface fitting is performed 

for different point cloud sets respectively. Finally, different 

fitting surfaces are integrated to generate the final three-

dimensional model. This method can deal with massive point 

cloud quickly after clustering segmentation, but it requires 

complex geometric and topological relationship construction to 

ensure the integrity of local fitting surface and the merging rules 

between different surfaces. Peng et al. (2017) proposed a division 

method based on spatial region complexity for fine measurement 

of substations, and then used automatic and manual methods for 

point cloud de-noising, filtering and 3D visualization. Tian et al. 

(2018) used Streetview panoramic camera and IMS3D mobile 

mapping system to collect 3D laser point cloud of substations, 

and then used 3D Max 3D modelling software to realize 3D 

model of substations. Based on the manually labelled training 

samples, Fang et al. (2015) used random forest to segment the 

substation point cloud and extracted the geometric structure of 

the substation point cloud. 

 

Due to the large number of internal components and complex 

scene, there are many special-shaped structures and power 

components in the substation. The shape of the internal parts of 

the substation is irregular, and the structure of the feature points, 

characteristic lines and feature planes are complex and diverse. 

At present, the 3D modelling technology of the substation still 

needs large manual interaction, and it is still a difficulty to 

automatically extract the three-dimensional structure of the 

substation from the Massive point cloud (Fang et al., 2015; Peng 

et al., 2018). Therefore, this paper proposes a new method to 

extract the equipment and facilities from the Massive point cloud 

data. 

 

3. EQUIPMENT EXTRACTION BASED ON LIDAR 

POINT CLOUD DATA IN SUBSTATION 

 

Figure.1 Overall workflow of the method 

 

The whole algorithm can be divided into the following parts, and 

the work flow is shown in Figure 1. 1) Regularization of point 

cloud data. Aiming to solve the problems of large redundancy, 

long reconstruction time and low efficiency of 3D point cloud 

data, a point cloud simplification algorithm based on regular 

voxelized mesh down sampling is adopted for subsequent 

processing. 2) Point clouds separation. The original point cloud 

data contains a large number of ground data. The ground and the 

non-ground data must be separated. In this paper, morphological 

filtering is used for the separation. The non-ground data are used 

for further extraction. 3) Point cloud extraction of the substation 

equipment. This paper designs a method of extracting substation 

area based on the consistency estimation of point cloud normal 

to filter out the irrelevant non-surface point data outside the 

substation area. Based on the linear characteristics of substation 

equipment model, the point cloud dimension features are 

calculated to extract the fine equipment structure. 

 

3.1 Regularization of Substation Point Clouds 

In order to improve the processing efficiency, it is necessary to 

simplify the point cloud and eliminate the redundancy in the point 

cloud data. This paper adopts a simplified point cloud processing 

method based on regular voxels. The point cloud data is 

compressed by regular voxel down-sampling, and the spatial 

shape and structure features of the point cloud are saved at the 

same time, which improves the efficiency of subsequent point 

cloud filtering and feature calculation. 

 

By calculating the side length L of the cube grid, the original 

point cloud is decomposed into m n l  small grids. The 

X(Xmin, Xmax) , Y (Ymin, Ymax) , Z (Zmin, Zmax)  values are 

obtained by traversing all point clouds, and the length of three 

sides of the 3D voxel grid are calculated according to formula 

(1). In order to ensure that the laser point points are in the three-

dimensional bounding box, the bounding box are extended 

outward, and the distance correction of   is increased, which is 

usually set as the side length of single voxel. 

 
𝐿𝑋 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) + 𝜆

𝐿𝑋 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) + 𝜆

𝐿𝑋 = (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 𝜆

               (1) 

 

The minimum 3D bounding box Cube(Lx, Ly, Lz)  are 

calculated for preparing regularized 3D point cloud data by the 

data statistics. According to the set edge length Vlength , the 

minimum 3D bounding box space is divided into m × n × l 
voxels. Firstly, each laser point is assigned into the corresponding 

voxel; Secondly, the original point cloud is normalized by 

calculating the centre of mass P of each voxel and the point 

clouds in this voxel is replaced with P. After the voxel 

regularization, a large number of redundant points in the point 

cloud are eliminated.  

 

3.2 Separation of the point clouds 

The original substation point clouds contain a large number of 

ground points. Thus, it is necessary to separate the point clouds 

into ground points or non-ground points. In this paper, the 

morphological method (Zhang et al., 2003, Balado et al., 2020) 

is adopted to filter the point clouds. Two basic operations of 

expansion and corrosion are defined as equation 2, 3 in 

morphology. (Zhang et al., 2016). 

 

Corrosion: 

(f ⊗ g)(i, j) = Z(i, j) = min
Z(s,t)∈w

Z0(s, t)      (2) 

Expansion: 

(f ⊕ g)(i, j) = Z(i, j) = min
Z(s,t)∈w

Z0(s, t)      (3) 

Where f is the image to be processed 

 g is the morphological structure element 

Z(i, j)  is the corresponding value of the (i, j)  pixel 

position of the image after morphological operation 

 

High precision laser point cloud data 

Point cloud regularization 

Point Cloud Filtering 

Equipment cloud extraction 
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w is the structure element window 

Z0(s, t)  is the value of pixel position (s, t)  in the 

corresponding area of the structure element window in the 

original image. 

 

When the morphological theory is applied to LiDAR point cloud 

data filtering, the size of structural elements is set larger than the 

size of ground objects, and carry out opening operation to filter 

out the surface objects. The mathematical expression is as 

follows: 

 

(f ◦ g) = ((f ⊗ g) ⊕ g)              (4) 

 

First, the structural element g is used to corrode f, and then the 

corrosion result is expanded. The mutil-scale morphological is 

designed to segment the point clouds. To be specifically, the 

filtering window adopts a linear increasing gradient structure 

element according to the characteristics of different features. The 

detail process is as follows: 

 

(1) The corrosion. Set the structure element window size to 

w × w, and use this window to traverse the laser point clouds. 

For each point in the structural window, the elevation distribution 

is calculated, and the minimum elevation in the window of the 

structure is taken as the elevation value after corrosion. 

 

(2) The expansion. The structure element window is set to be the 

same size as in step 1 (w × w). After traversing the laser point 

clouds, the data obtained after step 1 is processed by dilation 

operation with a w × w structure window. Firstly, the original 

point cloud elevation value is replaced with the output point 

cloud elevation value in step 1. Then comparing with the 

elevation of each point in the structure window, and the elevation 

maximum value in the w × w window is taken as the expanded 

elevation value. 

 

(3) Ground point extraction. Whether the point is a ground point 

or not can be determined by the elevation difference generated 

via the process of corrosion and expansion. Let ZP  be the 

original elevation of point p. After steps 1-2, the absolute value 

of the elevation difference between the expanded elevation value 

ZP1  of point P and the original elevation value ZP  are 

calculated. If the absolute value of the elevation difference is less 

than or equal to the hard threshold t, then point p is classified as 

a ground point. Otherwise, it will be classified as a non-ground 

point. 

 

3.3 Substation Equipment Extraction 

The substation equipment point clouds are encircled in the non-

ground point clouds after the morphological filter segmentation. 

The necessary step is to localize the cover range of the substation, 

that is, to calculate the convex polygon of the substation, which 

could be obtained based on the levelling property of the 

substation. To be specifically, the localization of the substation is 

based on an assumption that the ground plane of the substation is 

horizontal. By estimating the normal distribution of the ground 

point clouds, the plane 𝑃𝑙𝑎𝑟𝑔𝑒that contains the largest number of 

points could be extracted. The convex polygon construction 

method, alpha-shape (Santos et al., 2019), is used to calculate the 

convex polygon boundary of the 𝑃𝑙𝑎𝑟𝑔𝑒 . Appearently, the 

substation equipment’s boundary is the same with the 𝑃𝑙𝑎𝑟𝑔𝑒’s 

boundary. However, the convex boundary could only provide a 

rough range of substation. In order to extract the fine structure of 

substation, a dimension feature based method is designed to 

refine the substation equipment point clouds.  

 

Point cloud dimension feature (Hackel et al., 2016, Weinmann et 

al. 2017) can describe the shape distribution of point cloud, and 

it has been widely used in point cloud segmentation and 

classification (Yang et al., 2013). And substation equipment 

usually has the characteristics of line and plane distribution. 

Planar devices (e.g. transformers) are usually connected to linear 

devices (e.g. conductors, insulators). Thus, in this paper, the 

dimension feature and region growth algorithms are combined to 

extract substation equipments. The dimension feature of LiDAR 

point cloud is mathematically defined as: 

 

(a1D, a2D, a3D) = (
√λ1−√λ2

√λ1
,

√λ2−√λ3

√λ1
,

√λ3

√λ1
)    (5) 

 

Where    a1D + a2D + a3d =1 

  λ1, λ2, λ3, (λ1 ≥ λ2 ≥ λ3)  are the matrix 

eigenvalues obtained from the covariance matrix constructed by 

the point cloud neighbourhood point set.  

 

In order to determine the optimal size of the neighbourhood 

radius and avoid the inaccurate description of local geometric 

features of point clouds, this paper adopts the method of 

minimizing the dimension feature entropy function to realize the 

adaptive calculation of the neighbourhood size and select the 

optimal neighbourhood radius. The basic principles are as 

follows: Firstly, the minimum and maximum neighbourhood 

search radius and interval step size, rmin (initialized as 0.5m), 

rmax (initialized as 2m),  rstep (initialized as 0.1M) are fixed 

empirically; Secondly, matrix decomposition is conducted in a 

certain radius to calculate the eigenvalue λ1, λ2, λ3  and it 

calculate corresponding (a1D, a2D, a3D) value; Finally, entropy 

function is defined by equation 6: 

 

Ef = −a1D ln(a1D) − a2D ln(a2D) − a3D ln(a3D)   (6) 

 

Where Ef is the entropy of the sum of dimension feature. 

 

According to formula (6), radius that corresponds to the 

minimum value of Ef is the optimal neighbourhood radius, and 

the obtained (a1D, a2D, a3D)  describes the feature description 

of point cloud geometry distribution. 

 

Mathematically, for a linear target’s point cloud, the eigenvalue 

of the neighbourhood point set in its own principal direction is 

much larger than that in the other two directions, namely the 

eigenvalue λ1 ≫ λ2 ≅ λ3 . Thus, the point clouds of linear 

equipment have good distinguishability, leading them to be 

selected as the seed points for region growth, in which the points 

set with the same linear distribution dimension characteristics are 

generated. Through the spatial connection of different devices, 

linear and planar equipment could be extracted, so as to realize 

the extraction of structured substation facilities. 

 

4. EXPERIMENTAL 

The whole approach proposed in this paper is implemented by 

C++ and PCL open source library under Windows 10. The point 

clouds of a typical substation collected by UAV LiDAR system 

is used to verify the method. The data acquisition and sensor 

calibration is not the main topic studied in this paper. Thus the 

data quality is assumed to full fill the demand. The data coverage 

of the laser point cloud substation is 480m ×370m. The average 

point density is 17 points / m2, a total of 4574697 points. The 

original LiDAR point cloud data is shown in Figure 2 (a) (b). 
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(a) Overview snapshot of the data 

 

(b) Detailed snapshot of the experimental data 

Figure 2. Overview and detailed snapshot of the data 

 

Figure 3 shows the overall and details snapshot of the point 

clouds before and after regularization. The point clouds are 

rendered with height, and the green represents the higher height. 

Through the regularized point cloud details, as shown in Figure 

3 (c) (d), it can be speculated that after voxel regularization, the 

phenomenon of uneven point density and uneven scanning line 

spacing in the original point cloud has been eliminated. It avoids 

the influence of uneven point density and spacing, reducing the 

robustness of subsequent equipment extraction. 

 

  
(a) Before the data 

regularization 

(b) After the data 

regularization 

  
(c) Detailed before 

regularization 

(d) Detailed after 

regularization 

Figure 3. Overview and detailed snapshot of the experiment 

data before and after the data regulation, and the (c)(d) are 

rendered with grey to better show the uneven density. 

 

The morphological filtered results are shown in Figure 4. Figure 

4 (a) is the extracted substation ground point cloud data, mainly 

including the substation area ground point cloud (flat area) and 

surrounding undulating terrain. Figure 4 (b) shows the extracted 

non-ground point cloud data, including substation equipment 

point cloud data and substation outside non-ground point cloud 

data. The non-ground point cloud outside the substation is mainly 

composed of vegetation and trees. Compared with Figure 4 (a) 

(b), it can be seen that after morphological filtering, the ground 

point cloud data is well filtered. But due to the interference of the 

surrounding non-substation point clouds, there are a large 

number of non-equipment point clouds in the extracted non-

ground points. Therefore, this paper designs a method for 

extracting substation area based on the consistency estimation of 

point cloud normal, in which the irrelevant non-ground point data 

outside the substation area are filtered out. 

 

 
(a) Extracted ground points. The ground points mainly contain 

the levelling area point clouds and the terrain points. 
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(b) Extracted non-ground points. The non-ground points mainly 

contain the substation equipment points and the vegetation 

points 

Figure 4. Morphological filtering of the point clouds 

 

Figure 5 shows the result of substation area extraction based on 

point cloud normal consistency estimation. Figure 5 (a) is the top 

view of the extracted ground point cloud data of the substation 

area. Through the constraint of normal vector in vertical 

direction, the irrelevant point cloud data outside the substation 

area are filtered out. Figure 5 (b) is a side view of the extracted 

results. It can be seen that the extracted results have good 

consistency in the elevation direction, which conforms to the flat 

characteristics of the substation area. 

 

(a) Substation levelling area extraction results.  

 
(b) Side view of point cloud  

Figure 5. Extraction of the substation region from the point 

clouds. (a) shows that the normal constraint in vertical direction 

is a powerful way to filter out the non-equipment point clouds. 

The point clouds are rendered with height value, And the color 

consistent also shows that the assumption of substation levelling 

area. (b) demonstrates that the assumption is reasonable. The 

convex boundary of levelling area of substation is consistent 

with the equipment’s boundary 

 

 

Figure 6. Extraction of the equipment point clouds after 

dimension feature estimation and region growth. The main body 

of substation point clouds are maintained, which is a 

foundational process for substation reconstruction. 

 

After the substation area is located, the point cloud data in the 

substation area are classified based on the dimension feature. By 

calculating the dimension feature of the point clouds point-

wisely, the point clouds with linear and plane feature are retained 

to form the point clouds of substation equipment, as shown in 

Figure 6. Compared with Figure 5 (b), the point cloud data 

outside the substation area in the non-ground points and the point 

cloud data of non-substation equipment inside the substation 

have been well filtered, and the equipment point cloud in the 

substation has been well preserved, thus laying a good data 

foundation for the subsequent modelling and analysis. 

 

In the quantitative comparative analysis, the manually selected 

power substation equipment point clouds are taken as the ground 

truth of the substation equipment. And the results extracted by 

the method proposed in this paper are compared with the ground 

truth. At the same time, the time costs in each step of the 

algorithm are calculated. The experimental results are shown in 

Table 1. According to statistics, the time consumption of the three 

stages of point clouds regularization, point clouds filtering and 

substation equipment extraction are 48s, 92s and 50s 

respectively. And additionally, the substation levelling area 

localization’s time consuming is 43s The extraction accuracy and 

recall rate of point clouds filtering, substation levelling area 

localization and substation equipment extraction are 72% / 90%, 

91% / 81% and 83% / 84% respectively. The point clouds 

distance between the automatically extracted and the manually 

extracted is almost smaller than 0.1m, which is accurate enough 

for the following fine modelling. 

 

At the same time, the efficiency of this algorithm is compared 

with that of manual extraction. The substation extraction time per 

square metre of each two different extraction process are treated 

as the efficiency metric. The smaller time, the higher efficiency. 

The efficiency of this algorithm is 7 s/m2, and that of manual 

algorithm is 87 s/m2. The extraction efficiency of this algorithm 

is about 12.4 times higher than that of manual algorithm, which 

greatly improves the extraction efficiency of equipment laser 

point clouds in substation. 
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Algorithm steps 
Time 

consuming (s) 

Extraction 

accuracy (%) 

Recall 

(%) 

Regularization of 

point cloud data 
48 -- -- 

Point Cloud Filtering 92 72% 90% 

Substation area 

extraction 
43 91% 81% 

Substation equipment 

extraction 
50 83% 84% 

Table 1. The time efficiency in each step of extraction 

 

Extraction method 
Substation equipment 

extraction (s/m2) 

Manual extraction 87 

The algorithm in this paper 7 

Table 2. Efficiency comparison between automatic extraction 

and manual extraction 

 

5. CONCLUSION 

The extraction of equipment laser point clouds in substation is 

the key and foundation of analysing the pivotal size of substation 

equipment and auxiliarily modelling equipment entity. This 

paper proposes a method for extracting equipment point clouds 

from UAV point clouds. And the detection results are evaluated 

qualitatively and quantitatively from point clouds collected by 

UAV LiDAR system. The accuracy of the proposed method is 

about equal to the traditional manual extraction method. 

efficiency. The experimental results show that the proposed 

method can significantly improve the efficiency by 12 times in 

this test area. That also shows the automation of this work. Future 

work will focus on the automatic construction of entity model 

under fine scale for the extracted substation facility data.  
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