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ABSTRACT:

Sequence to sequence models have been widely used in the recent years in the different tasks of Natural Language processing. In
particular, the concept has been deeply adopted to treat the problem of translating human language questions to SQL. In this context,
many studies suggest the use of sequence to sequence approaches for predicting the target SQL queries using the different available
datasets. In this paper, we put the light on another way to resolve natural language processing tasks, especially the Natural Language
to SQL one using the method of sketch-based decoding which is based on a sketch with holes that the model incrementally tries to
fill. We present the pros and cons of each approach and how a sketch-based model can outperform the already existing solutions in
order to predict the wanted SQL queries and to generate to unseen input pairs in different contexts and cross-domain datasets, and
finally we discuss the test results of the already proposed models using the exact matching scores and the errors propagation and the

time required for the training as metrics.

1. INTRODUCTION

Many ways to find solutions for Natural Language Processing
(NLP) tasks have been deeply studied, among them, the
sequential models that were the pillars for tasks like language
translation, Text Summarization, etc. On one hand the
sequence-to-sequence structure was able to give satisfying
result for simple machine learning problems getting rid of the
old linguistic techniques and the syntactic methods that lack of
precision and suffer when they are exposed to complex inputs
and data.

Another class of tasks is natural language translation to database
languages like SQL, XQuery, Xpath and others (NL to Query).
This kind of models was a big step to find a consistent solution
for translation Natural language sentences to Structured Queries
like SQL, unlike the traditional works that are based on
syntactic parsing. The old models which followed several steps
like the part of speech tagging, the creation of the syntax tree,
and the use of some intermediate representation based on XML
or even the usage of dictionaries of synonyms that helped to
make elements substitution, were unable to provide satisfying
result against popular datasets.

Unlike the previous cited tasks of NLP, the NL to Query is the
task of translating the user question to a database language
query using a predefined syntax for the aim to extract data from
the database systems. In ordinary NLP tasks, there is a margin
of errors that might be tolerated even if the output sentence is
not completely correct. For example, if a user translates the
sentence in the Ex1 to French using the available models, the
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output sentence can be straightforward understood even if there
are errors in the destination sentence like in the Ex2:

Ex1: ‘This is a beautiful house’ => ‘C'est une belle maison’

Ex2: ‘This is a beautiful house’ => ‘C’est un bon maison’

The essential thing is that the output is understandable by the
user even if there are errors. In the other side the predicted
queries in the task of NL to Query should not include errors
since this may affect the wanted result by the user or can trigger
errors in the execution of it.

About 60.48%* of the used databases in the world are
Relational databases systems. This gives us an idea about how
much these kind of systems are spread and how are getting
more and more momentum in these days. Lots of domain-
experts and developers prefer to interact and use relational
databases as they are easy to manage and simple to understand
in term of the structure of the data. There are norms and
standards that help structuring the data in the right tables and
columns in order to keep things organized. Also, there are
several languages that help applying those norms. For example,
there are Data Definition, Data Manipulation, Data Control,
Transaction Control, Data Query languages that are all sub
languages of the parent-popular one called SQL. In the same
time the extraction of specific data from these tables and
columns is not simple for everyone, especially for people who
don’t know the behind-the-scene of these systems and how they
work. Therefore helping to provide a simple way for non-expert
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users to interact with these systems is the core of the Natural
Language to SQL translation task.

In this paper, we present a logical comparison between each
method and how the sketch may outperform the already existing
techniques in NL to Query

2. BACKGROUND

There have been lots of studies treating the problem of NL to
Query. The majority of these works tackle the problem as a
semantic parsing task of NLP using a variety of annotated
Datasets. In particular, there is WIKISQL (Victor et al., 2017)
which is a mono table dataset that contains more than 80000
pairs of natural language sentences and SQL queries. This
dataset can’t be used for evaluating models since it includes
simple structures of queries with only one column in the
SELECT clause and one table in the FROM clause with no joins
and nested queries. Spider (Yu et al., 2018) is another dataset
that covers multiple domains in one corpus. This dataset
contains about 10000 Question/SQL query pairs that can be
used as a starting point for training semantic parsing-based
models. The number of pairs in that corpus is relatively small
for a task of NL to Query.

(Victor et al., 2017), (Wang et al., 2017), (Xu et al., 2017), (Yu
et al., 2018), (Dong, Lapata, 2018), (Shi et al., 2018), (Hwang et
al., 2019), (He et al., 2019), (Liu et al., 2019), (Lee, 2019), (Yu
et al., 2018), (Lin et al., 2019), (Bogin et al., 2019), (Yao et al.,
2019), (Catherine et al.2018) and (Lyu et al., 2020) as it is
shown in (Ahkouk, Machkour, 2019) have all proposed models
based on semantic parsing for the generation process. A few of
them include linguistic techniques or some Heuristics to
enhance the quality of the generated queries or to reduce the
output space. For instance the work of (Victor et al., 2017)
which is evaluated against the WIKISQL dataset was among the
earliest works that introduce the use of sequence to sequence
structure to the problem of text translation to SQL. Using that
approach combined with the reinforcement learning layer has
yielded a 59.4% of execution accuracy. While the majority of
the works adopt a sequence to sequence structure for the
decoding part, The SQLNet by (Xu et al., 2017) is a different
solution based on a sketch filling approach, which provides a
simpler way to make the model focus on the necessary parts of
the query. The SQLNet was evaluated using the WIKISQL
dataset, and based on the Column Attention mechanism which
helps to highlight the relevant parts of the user question
regarding the columns of the dataset. The model is composed of
several sub-modules; each module is in charge to predict one
token not a sequence of ones.

3. SEQ2SEQ DECODING AND SKETCH FILLING
3.1 Overview

The differences between the sequential generation and the
sketch filling solution can be seen clearly in the decoder part of
the model, in contrast with the encoder section where there are
often the same structures. In the Figure. 1, an example of the
common Encoders structures:

The Encoder
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embeddings
e e
r N A
s
‘ BLSTM BLSTM J
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‘ BERT J

® Get the name of
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Figure 1. The general structure of an Encoder.

The user question is feed to the model after being tokenized in
order to get the words embeddings. This is done using a layer of
Bidirectional Encoder Representations from Transformers
(BERT) (Jacob et al., 2018). Unlike Word2Vec (Mikolov et al.,
2013) which contains static vectors only, BERT is used since it
allows the extraction of contextualized word embeddings
depending on the whole input. Further operations on the output
of BERT are done using Bidirectional Long Short-Term
Memory (BLSTM components). This is helpful to better
understand and get the adequate representations of each token
either in the user natural language sentence or in the schema of
the database as it has been done by (Hwang et al., 2019). The
user’s question and schema use a shared layer of BERT to have
closer and inner contextualized word embeddings that will be
feed in their turn to the bidirectional LSTMS.

3.2 Seq2Seq

The generation process in the sequential approach is made by
predicting one token each time. This includes the reserved
tokens of the SQL syntax like: SELECT, FROM, WHERE, etc.
Each generated token is also given as input to the next
prediction operation and so on until the token <END> is
generated as it is shown in the Figure. 2. The output of the
encoder, which is the representation of the user’s question and
the schema of the database, is used through the BLSMs in order
to predict the appropriate elements either from the SQL syntax
vocabulary, which includes the SQL commands like SELECT,
WHERE, GROUP BY, JOIN, etc, or from the set of columns of
the database (previously fed from the encoder) or even from the
values of the user question using a copying mechanism.

This method incorporates high risk in the generation process.
When one token is faulty, and since each token is feed to the
next generation operation, the rest of the process is affected, and
hence, all the next generated tokens are more likely to be faulty.
For example, in third step of the generation, the model should
output the token ‘FROM’, if the generated token is different of
‘FROM’ then the whole prediction steps should be started from
the beginning again until the third token corresponds to the one
on the ground truth.
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Figure.2. An example of a sequential decoder.

In the case of the mono-columns datasets like WIKISQL it’s
obvious that the token generated after a column is the reserved
word ‘FROM’. Thus, including such reserved words in the
generation process impact negatively the model, therefore it
reduces the quality of outputs.

The model is seen as one block, thus for the training and if there
are errors, the optimization should be done to the whole model,
which means more time for the training.

The sequential approach can be helpful in the WHERE section
if it is used appropriately, since each element on the WHERE
clause depends on the previous one. For example, a solution that
adopts sequence to sequence structure for predicting the 3
elements, the column, the operator and the value, can yield
satisfying result; or even to use sequence to sequence structure
for copying values from the user natural language question,
since some queries might include values with more than one
token for the same condition.

3.3 Sketch with holes

The first thing that might be noticed is that the generation
process in sequential models includes reserved SQL tokens. A
better solution is to get rid of these tokens and to focus only on
the variable parts in the target query. The static tokens can be
added then to the final query regarding the structure of the

query.

The same encoder can be used which provides closed
representations of the input so the decoder can decode those
elements and generate the adequate outputs.

In general, the sketch is a composition of several sub-modules;
each one is in focus for predicting the related output. The query
can be seen as a sentence with holes, when the holes are the
missing parts that the sub-modules should fill.

ENCODER

SKETCH-BASED DECODER

Detect the number
of columns

s I |
_)J SELECT I LSTM I FRom .= WHERE LSTM :

1-‘ SELECT {1 column} from ... WHERE {Ocolumn} Y

Figure.3. A Sketch-based decoder. The decoding is performed
for each independent sub-module.

Before the generation process, the number of elements in each
slot should be inferred. The Figure.3 displays the overview of
the process of getting the number of columns and the number of
conditions in the where clause of a potential query. Each
element is treated as a classification problem. For example the
number of conditions in the where clause is an N-way
classification one, with N as the maximum possible number of
conditions in that slot.
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Figure.4. An example of a Sketch-based decoder.

Once the number of elements is detected, we proceed with the
elements prediction as it is shown in the Figure.4. Only the
important parts are generated in the query and not the whole
query in contrast with the sequential approach. For example, in
the slot of SELECT, a sub-module is there to focus only on the
columns to be generated and the same is done for the FROM

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-7-2020 | © Authors 2020. CC BY 4.0 License. 9



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7-8 October 2020, Virtual Safranbolu, Turkey (online)

clause. The Figure.5 shows the generation process in the where
clause which includes the column, the operator and the value.
The advantages of the Sketch-filling solution is that each sub-
module is independent from the others, therefore the errors
propagation is limited within each sub-module, thing that helps
also to reduce the time for the training. If there is an error in one
sub-module, only the parameters of this one are optimized not
the ones of the whole model.

In this paper we don’t go deeper on how each sub-module
works since our goal is to highlight the differences between the
sequential approach and the sketch one.

SKETCH-BASED DECODER (WHERE)

Repeat this WHERE || LSTM LSTM LSTM

for N (the
number of
detected cols
in Where
clause)

WHERE 1989

birth_date

Figure.5. The Sketch-based decoder — where clause.

The Sketch-based decoder can also support advanced SQL
structures using multiple sub-modules for the GROUP BY,
HAVING, ORDER BY, etc, as it is mentioned in the work of
(Ahkouk, Machkour, 2020). In the same time the sketch can be
used recursively for predicting the nested queries in the where
clause by inferring the structure of the whole query before
triggering each sub-module in the model.

4. DISCUSSION

4.1 Models performance

There are many metrics that can be used to understand the
differences between the two approaches. To evaluate the
performance of each structure we propose to use 2 metrics. The
most important metric is the quality of the output. The table
bellow shows the scores of only two previously proposed
models. We compare these models since they use the same
dataset and the two discussed approaches.

Model RL Sets (WIKISQL) Approach
Dev(EM) Test(EM)
Seq2SQL No | 52.2% 50.7% Sequential
SQLNet + RL | Yes | 53.5% 51.6% Sequential
SQLNet No | 63.2% 61.3% Sketch

Table 1. Performence of Seq2SQL vs SQLNet

The Table 1. Performence of shows a comparison of the
Seq2SQL by (Victor et al., 2017) and SQLNet by (Xu et al.,
2017). From the table it can be clearly seen that SQLNet, which
is based on a sketch method, outperforms the sequence to
sequence model. The model predicted 61.3% of queries in the
test set of the WIKISQL dataset correctly, while the Seq2SQL
model generated only 51.6% with the use of reinforcement
learning. In the table we only mention the exact matching (EM)

scores not the execution ones since we believe that we might
have wrong queries that return the same result as the correct
one. For example, the queries below can have the same result if
the table employees have no employee with a salary equal to 0:

Queryl: SELECT * FROM employees
Query2: SELECT * FROM employees WHERE salary !=0

Another metric that can be used to evaluate the two approaches
is the time for the training and errors propagation.

In the partial test set result from the Table 2, we notice that the
Sketch-based model outperforms the other one on all prediction
slots. It is obvious that the sequence to sequence suffer for
precision especially on the Where clause. This is due to the
concept of independence between each slot in the sketch. When
the column sub-module makes a wrong prediction, the where
sub-modules are kept safe and the error is not propagated to
their parameters, thing that requires shorter time for the training
for that one sub-module only, in contrast to the sequential
models which will try to re-generate the whole query from the
beginning, hence the back-propagation is triggered and the
parameters are updated for the whole model not only for the
faulty parts.

Model | RL Slots of SQL Query Approach
Aggregation | Select | Where
Seq2SQL | YES | 90.1% 88.9% |60.2% | Sequential
SQLNet | No |90.3% 90.9% |71.9% | Sketch

Table 2. Partial comparison between a sequential model and the
sketch-based one

The time for training is also impacted by the number of
parameters of the model that should be optimized, bigger the
model is, longer the time for the training.

4.2 Analysis

When analysing the structure of SQL queries inside the
proposed training corpuses like WikiSQL and SPIDER, we can
reformulate the problem of text to SQL as the prediction of two
main categories of objects. The first one might include the
global objects that are predicted to define the structure and the
form of the SQL query, while the second group of objects is
related to the content of the query.

Global objects: These types of objects include the output that
will be helpful to infer ‘how our target query is’ in term of
complexity, grouping, query inclusion, etc. For example we
might have a sub-module that predicts the empty structure of the
wanted query like:

SELECT $ FROM $ WHERE $ (SELECT $ FROM $) $ (SELECT $
FROM $ WHERE $)

In the above example we have a query with one column or
more, one table or more, but we are sure that we have two
conditions with nested queries ($ are things to predict). Using
this approach of decoupling global objects from the content
ones allowed us to get 50% of the final query. Before the
training phase, the dataset should include annotations related to
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the empty structure of the query; this can be added to the corpus
manually or automatically via a script.

Content objects are elements that have relation with the wanted
data from the database like columns, operators, aggregation
function and values. The prediction of these elements can be
done efficiently using separated sub-modules; each module is in
charge to predict one component. Note that there is no relation
between the two categories of objects as the first class defines
the shape of the target query and the second one fill the already
constructed query with the adequate elements in a total
independency between the components and the clauses.

The concept of using a sketch filling solution allows us as well
to apply the NO answer technique for question answer tasks like
(Jacob et al., 2018) which is very beneficial for the training
process in term of the training time and the quality of the trained
model.

5. CONCLUSION

In this paper we presented a logical comparison between the
Seq2Seq approach and the Sketch filling one and how the latter
one can outperform the sequential models when facing complex
and rich SQL queries. To sum up, the Sketch-based models can
be good replacements for the previous solutions that adopt
seq2seq approaches especially for the task of Natural language
translation to SQL. Our Goal is to build a system that can
translate natural languages to SQL automatically especially for
right to left languages like Arabic using a rich scale of SQL
structures.
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