
SEQ2SEQ VS SKETCH FILLING STRUCTURE FOR NATURAL LANGUAGE TO SQL

TRANSLATION

K. Ahkouk 1*, M. Machkour2, K. Majhadi3, R. Mama4

1Information Systems and Vision Laboratory, Ibn Zohr University, Agadir, Morocco – karam.ahkouk@gmail.com,

2Information Systems and Vision Laboratory, Ibn Zohr University, Agadir, Morocco – m.machkour@uiz.ac.ma
3Information Systems and Vision Laboratory, Ibn Zohr University, Agadir, Morocco – khadija.majhadi@gmail.com

4Information Systems and Vision Laboratory, Ibn Zohr University, Agadir, Morocco – mathmama15@gmail.com

Commission VI, WG VI/4

KEY WORDS: Language processing, Relational Databases, Natural language translation, Human language to SQL translation.

ABSTRACT:

Sequence to sequence models have been widely used in the recent years in the different tasks of Natural Language processing. In

particular, the concept has been deeply adopted to treat the problem of translating human language questions to SQL. In this context,

many studies suggest the use of sequence to sequence approaches for predicting the target SQL queries using the different available

datasets. In this paper, we put the light on another way to resolve natural language processing tasks, especially the Natural Language

to SQL one using the method of sketch-based decoding which is based on a sketch with holes that the model incrementally tries to

fill. We present the pros and cons of each approach and how a sketch-based model can outperform the already existing solutions in

order to predict the wanted SQL queries and to generate to unseen input pairs in different contexts and cross-domain datasets, and

finally we discuss the test results of the already proposed models using the exact matching scores and the errors propagation and the

time required for the training as metrics.

* Corresponding author

+ https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-databases-single-vs-multiple-database-use/

1. INTRODUCTION

Many ways to find solutions for Natural Language Processing

(NLP) tasks have been deeply studied, among them, the

sequential models that were the pillars for tasks like language

translation, Text Summarization, etc. On one hand the

sequence-to-sequence structure was able to give satisfying

result for simple machine learning problems getting rid of the

old linguistic techniques and the syntactic methods that lack of

precision and suffer when they are exposed to complex inputs

and data.

Another class of tasks is natural language translation to database

languages like SQL, XQuery, Xpath and others (NL to Query).

This kind of models was a big step to find a consistent solution

for translation Natural language sentences to Structured Queries

like SQL, unlike the traditional works that are based on

syntactic parsing. The old models which followed several steps

like the part of speech tagging, the creation of the syntax tree,

and the use of some intermediate representation based on XML

or even the usage of dictionaries of synonyms that helped to

make elements substitution, were unable to provide satisfying

result against popular datasets.

Unlike the previous cited tasks of NLP, the NL to Query is the

task of translating the user question to a database language

query using a predefined syntax for the aim to extract data from

the database systems. In ordinary NLP tasks, there is a margin

of errors that might be tolerated even if the output sentence is

not completely correct. For example, if a user translates the

sentence in the Ex1 to French using the available models, the

output sentence can be straightforward understood even if there

are errors in the destination sentence like in the Ex2:

Ex1: ‘This is a beautiful house’ => ‘C'est une belle maison’

Ex2: ‘This is a beautiful house’ => ‘C’est un bon maison’

The essential thing is that the output is understandable by the

user even if there are errors. In the other side the predicted

queries in the task of NL to Query should not include errors

since this may affect the wanted result by the user or can trigger

errors in the execution of it.

About 60.48%+ of the used databases in the world are

Relational databases systems. This gives us an idea about how

much these kind of systems are spread and how are getting

more and more momentum in these days. Lots of domain-

experts and developers prefer to interact and use relational

databases as they are easy to manage and simple to understand

in term of the structure of the data. There are norms and

standards that help structuring the data in the right tables and

columns in order to keep things organized. Also, there are

several languages that help applying those norms. For example,

there are Data Definition, Data Manipulation, Data Control,

Transaction Control, Data Query languages that are all sub

languages of the parent-popular one called SQL. In the same

time the extraction of specific data from these tables and

columns is not simple for everyone, especially for people who

don’t know the behind-the-scene of these systems and how they

work. Therefore helping to provide a simple way for non-expert

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-7-2020 | © Authors 2020. CC BY 4.0 License.

7

mailto:m.machkour@uiz.ac.ma
mailto:khadija.majhadi@gmail.com

users to interact with these systems is the core of the Natural

Language to SQL translation task.

In this paper, we present a logical comparison between each

method and how the sketch may outperform the already existing

techniques in NL to Query

2. BACKGROUND

There have been lots of studies treating the problem of NL to

Query. The majority of these works tackle the problem as a

semantic parsing task of NLP using a variety of annotated

Datasets. In particular, there is WIKISQL (Victor et al., 2017)

which is a mono table dataset that contains more than 80000

pairs of natural language sentences and SQL queries. This

dataset can’t be used for evaluating models since it includes

simple structures of queries with only one column in the

SELECT clause and one table in the FROM clause with no joins

and nested queries. Spider (Yu et al., 2018) is another dataset

that covers multiple domains in one corpus. This dataset

contains about 10000 Question/SQL query pairs that can be

used as a starting point for training semantic parsing-based

models. The number of pairs in that corpus is relatively small

for a task of NL to Query.

(Victor et al., 2017), (Wang et al., 2017), (Xu et al., 2017), (Yu

et al., 2018), (Dong, Lapata, 2018), (Shi et al., 2018), (Hwang et

al., 2019), (He et al., 2019), (Liu et al., 2019), (Lee, 2019), (Yu

et al., 2018), (Lin et al., 2019), (Bogin et al., 2019), (Yao et al.,

2019), (Catherine et al.2018) and (Lyu et al., 2020) as it is

shown in (Ahkouk, Machkour, 2019) have all proposed models

based on semantic parsing for the generation process. A few of

them include linguistic techniques or some Heuristics to

enhance the quality of the generated queries or to reduce the

output space. For instance the work of (Victor et al., 2017)

which is evaluated against the WIKISQL dataset was among the

earliest works that introduce the use of sequence to sequence

structure to the problem of text translation to SQL. Using that

approach combined with the reinforcement learning layer has

yielded a 59.4% of execution accuracy. While the majority of

the works adopt a sequence to sequence structure for the

decoding part, The SQLNet by (Xu et al., 2017) is a different

solution based on a sketch filling approach, which provides a

simpler way to make the model focus on the necessary parts of

the query. The SQLNet was evaluated using the WIKISQL

dataset, and based on the Column Attention mechanism which

helps to highlight the relevant parts of the user question

regarding the columns of the dataset. The model is composed of

several sub-modules; each module is in charge to predict one

token not a sequence of ones.

3. SEQ2SEQ DECODING AND SKETCH FILLING

3.1 Overview

The differences between the sequential generation and the

sketch filling solution can be seen clearly in the decoder part of

the model, in contrast with the encoder section where there are

often the same structures. In the Figure. 1, an example of the

common Encoders structures:

Figure 1. The general structure of an Encoder.

The user question is feed to the model after being tokenized in

order to get the words embeddings. This is done using a layer of

Bidirectional Encoder Representations from Transformers

(BERT) (Jacob et al., 2018). Unlike Word2Vec (Mikolov et al.,

2013) which contains static vectors only, BERT is used since it

allows the extraction of contextualized word embeddings

depending on the whole input. Further operations on the output

of BERT are done using Bidirectional Long Short-Term

Memory (BLSTM components). This is helpful to better

understand and get the adequate representations of each token

either in the user natural language sentence or in the schema of

the database as it has been done by (Hwang et al., 2019). The

user’s question and schema use a shared layer of BERT to have

closer and inner contextualized word embeddings that will be

feed in their turn to the bidirectional LSTMS.

3.2 Seq2Seq

The generation process in the sequential approach is made by

predicting one token each time. This includes the reserved

tokens of the SQL syntax like: SELECT, FROM, WHERE, etc.

Each generated token is also given as input to the next

prediction operation and so on until the token <END> is

generated as it is shown in the Figure. 2. The output of the

encoder, which is the representation of the user’s question and

the schema of the database, is used through the BLSMs in order

to predict the appropriate elements either from the SQL syntax

vocabulary, which includes the SQL commands like SELECT,

WHERE, GROUP BY, JOIN, etc, or from the set of columns of

the database (previously fed from the encoder) or even from the

values of the user question using a copying mechanism.

This method incorporates high risk in the generation process.

When one token is faulty, and since each token is feed to the

next generation operation, the rest of the process is affected, and

hence, all the next generated tokens are more likely to be faulty.

For example, in third step of the generation, the model should

output the token ‘FROM’, if the generated token is different of

‘FROM’ then the whole prediction steps should be started from

the beginning again until the third token corresponds to the one

on the ground truth.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-7-2020 | © Authors 2020. CC BY 4.0 License.

8

Figure.2. An example of a sequential decoder.

In the case of the mono-columns datasets like WIKISQL it’s

obvious that the token generated after a column is the reserved

word ‘FROM’. Thus, including such reserved words in the

generation process impact negatively the model, therefore it

reduces the quality of outputs.

The model is seen as one block, thus for the training and if there

are errors, the optimization should be done to the whole model,

which means more time for the training.

The sequential approach can be helpful in the WHERE section

if it is used appropriately, since each element on the WHERE

clause depends on the previous one. For example, a solution that

adopts sequence to sequence structure for predicting the 3

elements, the column, the operator and the value, can yield

satisfying result; or even to use sequence to sequence structure

for copying values from the user natural language question,

since some queries might include values with more than one

token for the same condition.

3.3 Sketch with holes

The first thing that might be noticed is that the generation

process in sequential models includes reserved SQL tokens. A

better solution is to get rid of these tokens and to focus only on

the variable parts in the target query. The static tokens can be

added then to the final query regarding the structure of the

query.

The same encoder can be used which provides closed

representations of the input so the decoder can decode those

elements and generate the adequate outputs.

In general, the sketch is a composition of several sub-modules;

each one is in focus for predicting the related output. The query

can be seen as a sentence with holes, when the holes are the

missing parts that the sub-modules should fill.

Figure.3. A Sketch-based decoder. The decoding is performed

for each independent sub-module.

Before the generation process, the number of elements in each

slot should be inferred. The Figure.3 displays the overview of

the process of getting the number of columns and the number of

conditions in the where clause of a potential query. Each

element is treated as a classification problem. For example the

number of conditions in the where clause is an N-way

classification one, with N as the maximum possible number of

conditions in that slot.

Figure.4. An example of a Sketch-based decoder.

Once the number of elements is detected, we proceed with the

elements prediction as it is shown in the Figure.4. Only the

important parts are generated in the query and not the whole

query in contrast with the sequential approach. For example, in

the slot of SELECT, a sub-module is there to focus only on the

columns to be generated and the same is done for the FROM

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-7-2020 | © Authors 2020. CC BY 4.0 License.

9

clause. The Figure.5 shows the generation process in the where

clause which includes the column, the operator and the value.

The advantages of the Sketch-filling solution is that each sub-

module is independent from the others, therefore the errors

propagation is limited within each sub-module, thing that helps

also to reduce the time for the training. If there is an error in one

sub-module, only the parameters of this one are optimized not

the ones of the whole model.

In this paper we don’t go deeper on how each sub-module

works since our goal is to highlight the differences between the

sequential approach and the sketch one.

Figure.5. The Sketch-based decoder – where clause.

The Sketch-based decoder can also support advanced SQL

structures using multiple sub-modules for the GROUP BY,

HAVING, ORDER BY, etc, as it is mentioned in the work of

(Ahkouk, Machkour, 2020). In the same time the sketch can be

used recursively for predicting the nested queries in the where

clause by inferring the structure of the whole query before

triggering each sub-module in the model.

4. DISCUSSION

4.1 Models performance

There are many metrics that can be used to understand the

differences between the two approaches. To evaluate the

performance of each structure we propose to use 2 metrics. The

most important metric is the quality of the output. The table

bellow shows the scores of only two previously proposed

models. We compare these models since they use the same

dataset and the two discussed approaches.

Model RL Sets (WIKISQL) Approach

 Dev(EM) Test(EM)

Seq2SQL No 52.2% 50.7% Sequential

SQLNet + RL Yes 53.5% 51.6% Sequential

SQLNet No 63.2% 61.3% Sketch

Table 1. Performence of Seq2SQL vs SQLNet

The Table 1. Performence of shows a comparison of the

Seq2SQL by (Victor et al., 2017) and SQLNet by (Xu et al.,

2017). From the table it can be clearly seen that SQLNet, which

is based on a sketch method, outperforms the sequence to

sequence model. The model predicted 61.3% of queries in the

test set of the WIKISQL dataset correctly, while the Seq2SQL

model generated only 51.6% with the use of reinforcement

learning. In the table we only mention the exact matching (EM)

scores not the execution ones since we believe that we might

have wrong queries that return the same result as the correct

one. For example, the queries below can have the same result if

the table employees have no employee with a salary equal to 0:

Query1: SELECT * FROM employees

Query2: SELECT * FROM employees WHERE salary != 0

Another metric that can be used to evaluate the two approaches

is the time for the training and errors propagation.

In the partial test set result from the Table 2, we notice that the

Sketch-based model outperforms the other one on all prediction

slots. It is obvious that the sequence to sequence suffer for

precision especially on the Where clause. This is due to the

concept of independence between each slot in the sketch. When

the column sub-module makes a wrong prediction, the where

sub-modules are kept safe and the error is not propagated to

their parameters, thing that requires shorter time for the training

for that one sub-module only, in contrast to the sequential

models which will try to re-generate the whole query from the

beginning, hence the back-propagation is triggered and the

parameters are updated for the whole model not only for the

faulty parts.

Model RL Slots of SQL Query Approach

 Aggregation Select Where

Seq2SQL YES 90.1% 88.9% 60.2% Sequential

SQLNet No 90.3% 90.9% 71.9% Sketch

Table 2. Partial comparison between a sequential model and the

sketch-based one

The time for training is also impacted by the number of

parameters of the model that should be optimized, bigger the

model is, longer the time for the training.

4.2 Analysis

When analysing the structure of SQL queries inside the

proposed training corpuses like WikiSQL and SPIDER, we can

reformulate the problem of text to SQL as the prediction of two

main categories of objects. The first one might include the

global objects that are predicted to define the structure and the

form of the SQL query, while the second group of objects is

related to the content of the query.

Global objects: These types of objects include the output that

will be helpful to infer ‘how our target query is’ in term of

complexity, grouping, query inclusion, etc. For example we

might have a sub-module that predicts the empty structure of the

wanted query like:

SELECT $ FROM $ WHERE $ (SELECT $ FROM $) $ (SELECT $

FROM $ WHERE $)

In the above example we have a query with one column or

more, one table or more, but we are sure that we have two

conditions with nested queries ($ are things to predict). Using

this approach of decoupling global objects from the content

ones allowed us to get 50% of the final query. Before the

training phase, the dataset should include annotations related to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-7-2020 | © Authors 2020. CC BY 4.0 License.

10

the empty structure of the query; this can be added to the corpus

manually or automatically via a script.

Content objects are elements that have relation with the wanted

data from the database like columns, operators, aggregation

function and values. The prediction of these elements can be

done efficiently using separated sub-modules; each module is in

charge to predict one component. Note that there is no relation

between the two categories of objects as the first class defines

the shape of the target query and the second one fill the already

constructed query with the adequate elements in a total

independency between the components and the clauses.

The concept of using a sketch filling solution allows us as well

to apply the NO answer technique for question answer tasks like

(Jacob et al., 2018) which is very beneficial for the training

process in term of the training time and the quality of the trained

model.

5. CONCLUSION

In this paper we presented a logical comparison between the

Seq2Seq approach and the Sketch filling one and how the latter

one can outperform the sequential models when facing complex

and rich SQL queries. To sum up, the Sketch-based models can

be good replacements for the previous solutions that adopt

seq2seq approaches especially for the task of Natural language

translation to SQL. Our Goal is to build a system that can

translate natural languages to SQL automatically especially for

right to left languages like Arabic using a rich scale of SQL

structures.

REFERENCES

Ahkouk, K. and Machkour, M., 2019. Human Language

Question To SQL Query Using Deep Learning," Third

International Conference on Intelligent Computing in Data

Sciences (ICDS), Marrakech, Morocco, pp. 1-6, doi:

10.1109/ICDS47004.2019.8942342.

Ahkouk, K. and Machkour, M., 2020. Towards an interface for

translating Natural Language questions to SQL: A conceptual

framework from a systematic review’, Int. J. Reasoning-based

Intelligent Systems.

Bogin, B., Matt, G., Jonathan, B., 2019. Representing Schema

Structure with Graph Neural Networks for Text-to-SQL Parsing.

arXiv:1905.06241

Catherine, F. D., Jonathan, K., Zhang, L., Ramanathan, K.,

Sadasivam, S., Zhang, R., and Radev, D., 2018. Improving Text-

to-SQL Evaluation Methodology, ACL

Dong, L., Lapata, M., 2018. Coarse-to-Fine Decoding for

Neural Semantic Parsing. arXiv:1805.04793

He, P., Mao, Y., Chakrabarti, K., Chen, W., 2019. X-SQL:

reinforce context into schema representation. MSR-TR-2019-6 |

March 2019. Published by Microsoft Dynamics 365 AI

Hwang, W., Yim, J., Park, S., Seo, M., 2019. A Comprehensive

Exploration on WikiSQL with Table-Aware Word

Contextualization.. arXiv:1902.01069v1

Jacob, D., Chang, M. W., Lee, K., Toutanova, K., 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language

Understanding. arXiv:1810.04805

Lee, D., 2019. Clause-Wise and Recursive Decoding for

Complex and Cross-Domain Text-to-SQL Generation.

arXiv:1904.08835v1

Lin, K., Bogin, B., Mark, N., Jonathan, B., Matt, G., 2019.

Grammar-based Neural Text-to-SQL Generation.

arXiv:1905.13326

Liu, X., He, P.g., Chen, W., Gao, J., 2019. Multi-Task Deep

Neural Networks for Natural Language Understanding.

arXiv:1901.11504

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient

Estimation of Word Representations in Vector Space.

arXiv:1301.3781

Shi, T., Tatwawadi, K., Chakrabarti, K., Mao, Y., Polozov, O.,

Chen, W., 2018. IncSQL: training incremental text-to-sql

parsers with non-deterministic oracles. arxiv:1809.05054

Victor, Z., Xiong, C. and Richard, S., 2017. Seq2sql: Generating

structured queries from natural language using reinforcement

learning. arXiv preprint arXiv:1709.00103,

Wang, C., Marc, B., Rishabh, S., 2017. Pointing Out

SQLQueries From Text. MSR-TR-2017-45 | November

Xu, X., Liu, C., Song, D., 2017. SQLNet: Generating Structured

Queries From Natural Language Without Reinforcement

Learning. arXiv:1711.04436v1

Yao, Z., Su, Y., Sun, H., Yih, W. T., 2019. Model-based

Interactive Semantic Parsing: A Unified Framework and A Text-

to-SQL Case Study. OSU & Facebook AI Research

Yu, T., Li, Z., Zhang, Z., Zhang, R., Radev, D., 2018. TypeSQL:

Knowledge-based Type-Aware Neural Text-to-SQL Generation.

The 16th Annual Conference of the North American Chapter of

the Association for Computational Linguistics, New Orleans,

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z.,

Radev, D., 2018. SyntaxSQLNet: Syntax Tree Networks for

Complex and Cross-DomainText-to-SQL Task.

arXiv:1810.05237

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z.,

James, M., Li, I., Yao, Q., Roman, S., Zhang, Z. and Radev, D.,

2018. A Large-Scale Human-Labeled Dataset for Complex and

Cross-Domain. arXiv:1809.08887

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik

Kundu, Jianwen Zhang, Zheng Chen. Hybrid Ranking Network

for Text-to-SQL. arXiv:2008.04759

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-4/W3-2020, 2020
5th International Conference on Smart City Applications, 7–8 October 2020, Virtual Safranbolu, Turkey (online)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-7-2020 | © Authors 2020. CC BY 4.0 License.

11

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/search/cs?searchtype=author&query=Lyu%2C+Q
https://arxiv.org/search/cs?searchtype=author&query=Chakrabarti%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Hathi%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Kundu%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Kundu%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Z
https://arxiv.org/abs/2008.04759

