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ABSTRACT: 

 

Sequence to sequence models have been widely used in the recent years in the different tasks of Natural Language processing. In 

particular, the concept has been deeply adopted to treat the problem of translating human language questions to SQL. In this context, 

many studies suggest the use of sequence to sequence approaches for predicting the target SQL queries using the different available 

datasets. In this paper, we put the light on another way to resolve natural language processing tasks, especially the Natural Language 

to SQL one using the method of sketch-based decoding which is based on a sketch with holes that the model incrementally tries to 

fill. We present the pros and cons of each approach and how a sketch-based model can outperform the already existing solutions in 

order to predict the wanted SQL queries and to generate to unseen input pairs in different contexts and cross-domain datasets, and 

finally we discuss the test results of the already proposed models using the exact matching scores and the errors propagation and the 

time required for the training as metrics. 
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1. INTRODUCTION 

Many ways to find solutions for Natural Language Processing 

(NLP) tasks have been deeply studied, among them, the 

sequential models that were the pillars for tasks like language 

translation, Text Summarization, etc. On one hand the 

sequence-to-sequence structure was able to give satisfying 

result for simple machine learning problems getting rid of the 

old linguistic techniques and the syntactic methods that lack of 

precision and suffer when they are exposed to complex inputs 

and data. 

Another class of tasks is natural language translation to database 

languages like SQL, XQuery, Xpath and others (NL to Query). 

This kind of models was a big step to find a consistent solution 

for translation Natural language sentences to Structured Queries 

like SQL, unlike the traditional works that are based on 

syntactic parsing. The old models which followed several steps 

like the part of speech tagging, the creation of the syntax tree, 

and the use of some intermediate representation based on XML 

or even the usage of dictionaries of synonyms that helped to 

make elements substitution, were unable to provide satisfying 

result against popular datasets. 

Unlike the previous cited tasks of NLP, the NL to Query is the 

task of translating the user question to a database language 

query using a predefined syntax for the aim to extract data from 

the database systems. In ordinary NLP tasks, there is a margin 

of errors that might be tolerated even if the output sentence is 

not completely correct. For example, if a user translates the 

sentence in the Ex1 to French using the available models, the 

output sentence can be straightforward understood even if there 

are errors in the destination sentence like in the Ex2:     

Ex1: ‘This is a beautiful house’  => ‘C'est une belle maison’ 

Ex2: ‘This is a beautiful house’  => ‘C’est un bon maison’ 

The essential thing is that the output is understandable by the 

user even if there are errors. In the other side the predicted 

queries in the task of NL to Query should not include errors 

since this may affect the wanted result by the user or can trigger 

errors in the execution of it. 

About 60.48%+ of the used databases in the world are 

Relational databases systems. This gives us an idea about how 

much these kind of systems are spread and how are getting 

more and more momentum in these days. Lots of domain-

experts and developers prefer to interact and use relational 

databases as they are easy to manage and simple to understand 

in term of the structure of the data. There are norms and 

standards that help structuring the data in the right tables and 

columns in order to keep things organized. Also, there are 

several languages that help applying those norms. For example, 

there are Data Definition, Data Manipulation, Data Control, 

Transaction Control, Data Query languages that are all sub 

languages of the parent-popular one called SQL. In the same 

time the extraction of specific data from these tables and 

columns is not simple for everyone, especially for people who 

don’t know the behind-the-scene of these systems and how they 

work. Therefore helping to provide a simple way for non-expert 
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users to interact with these systems is the core of the Natural 

Language to SQL translation task. 

In this paper, we present a logical comparison between each 

method and how the sketch may outperform the already existing 

techniques in NL to Query 

2. BACKGROUND 

There have been lots of studies treating the problem of NL to 

Query. The majority of these works tackle the problem as a 

semantic parsing task of NLP using a variety of annotated 

Datasets. In particular, there is WIKISQL (Victor et al., 2017) 

which is a mono table dataset that contains more than 80000 

pairs of natural language sentences and SQL queries. This 

dataset can’t be used for evaluating models since it includes 

simple structures of queries with only one column in the 

SELECT clause and one table in the FROM clause with no joins 

and nested queries. Spider (Yu et al., 2018) is another dataset 

that covers multiple domains in one corpus. This dataset 

contains about 10000 Question/SQL query pairs that can be 

used as a starting point for training semantic parsing-based 

models. The number of pairs in that corpus is relatively small 

for a task of NL to Query.  

(Victor et al., 2017), (Wang et al., 2017), (Xu et al., 2017), (Yu 

et al., 2018), (Dong, Lapata, 2018), (Shi et al., 2018), (Hwang et 

al., 2019), (He et al., 2019), (Liu et al., 2019), (Lee, 2019), (Yu 

et al., 2018), (Lin et al., 2019), (Bogin et al., 2019), (Yao et al., 

2019), (Catherine et al.2018) and (Lyu et al., 2020) as it is 

shown in (Ahkouk, Machkour, 2019) have all proposed models 

based on semantic parsing for the generation process. A few of 

them include linguistic techniques or some Heuristics to 

enhance the quality of the generated queries or to reduce the 

output space. For instance the work of (Victor et al., 2017) 

which is evaluated against the WIKISQL dataset was among the 

earliest works that introduce the use of sequence to sequence 

structure to the problem of text translation to SQL. Using that 

approach combined with the reinforcement learning layer has 

yielded a 59.4% of execution accuracy. While the majority of 

the works adopt a sequence to sequence structure for the 

decoding part, The SQLNet by (Xu et al., 2017) is a different 

solution based on a sketch filling approach, which provides a 

simpler way to make the model focus on the necessary parts of 

the query. The SQLNet was evaluated using the WIKISQL 

dataset, and based on the Column Attention mechanism which 

helps to highlight the relevant parts of the user question 

regarding the columns of the dataset. The model is composed of 

several sub-modules; each module is in charge to predict one 

token not a sequence of ones. 

3. SEQ2SEQ DECODING AND SKETCH FILLING 

3.1 Overview 

The differences between the sequential generation and the 

sketch filling solution can be seen clearly in the decoder part of 

the model, in contrast with the encoder section where there are 

often the same structures. In the Figure. 1, an example of the 

common Encoders structures:  

    

Figure 1. The general structure of an Encoder. 

The user question is feed to the model after being tokenized in 

order to get the words embeddings. This is done using a layer of 

Bidirectional Encoder Representations from Transformers 

(BERT) (Jacob et al., 2018). Unlike Word2Vec (Mikolov et al., 

2013) which contains static vectors only, BERT is used since it 

allows the extraction of contextualized word embeddings 

depending on the whole input. Further operations on the output 

of BERT are done using Bidirectional Long Short-Term 

Memory (BLSTM components). This is helpful to better 

understand and get the adequate representations of each token 

either in the user natural language sentence or in the schema of 

the database as it has been done by (Hwang et al., 2019). The 

user’s question and schema use a shared layer of BERT to have 

closer and inner contextualized word embeddings that will be 

feed in their turn to the bidirectional LSTMS. 

3.2 Seq2Seq 

The generation process in the sequential approach is made by 

predicting one token each time. This includes the reserved 

tokens of the SQL syntax like: SELECT, FROM, WHERE, etc. 

Each generated token is also given as input to the next 

prediction operation and so on until the token <END> is 

generated as it is shown in the Figure. 2. The output of the 

encoder, which is the representation of the user’s question and 

the schema of the database, is used through the BLSMs in order 

to predict the appropriate elements either from the SQL syntax 

vocabulary, which includes the SQL commands like SELECT, 

WHERE, GROUP BY, JOIN, etc, or from the set of columns of 

the database (previously fed from the encoder) or even from the 

values of the user question using a copying mechanism. 

This method incorporates high risk in the generation process. 

When one token is faulty, and since each token is feed to the 

next generation operation, the rest of the process is affected, and 

hence, all the next generated tokens are more likely to be faulty. 

For example, in third step of the generation, the model should 

output the token ‘FROM’, if the generated token is different of 

‘FROM’  then the whole prediction steps should be started from 

the beginning again until the third token corresponds to the one 

on the ground truth. 
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Figure.2. An example of a sequential decoder. 

In the case of the mono-columns datasets like WIKISQL it’s 

obvious that the token generated after a column is the reserved 

word ‘FROM’. Thus, including such reserved words in the 

generation process impact negatively the model, therefore it 

reduces the quality of outputs. 

The model is seen as one block, thus for the training and if there 

are errors, the optimization should be done to the whole model, 

which means more time for the training. 

The sequential approach can be helpful in the WHERE section 

if it is used appropriately, since each element on the WHERE 

clause depends on the previous one. For example, a solution that 

adopts sequence to sequence structure for predicting the 3 

elements, the column, the operator and the value, can yield 

satisfying result; or even to use sequence to sequence structure 

for copying values from the user natural language question, 

since some queries might include values with more than one 

token for the same condition.  

3.3 Sketch with holes 

The first thing that might be noticed is that the generation 

process in sequential models includes reserved SQL tokens. A 

better solution is to get rid of these tokens and to focus only on 

the variable parts in the target query. The static tokens can be 

added then to the final query regarding the structure of the 

query. 

The same encoder can be used which provides closed 

representations of the input so the decoder can decode those 

elements and generate the adequate outputs. 

In general, the sketch is a composition of several sub-modules; 

each one is in focus for predicting the related output. The query 

can be seen as a sentence with holes, when the holes are the 

missing parts that the sub-modules should fill. 

 

Figure.3. A Sketch-based decoder. The decoding is performed 

for each independent sub-module. 

Before the generation process, the number of elements in each 

slot should be inferred. The Figure.3 displays the overview of 

the process of getting the number of columns and the number of 

conditions in the where clause of a potential query. Each 

element is treated as a classification problem. For example the 

number of conditions in the where clause is an N-way 

classification one, with N as the maximum possible number of 

conditions in that slot.   

 

Figure.4. An example of a Sketch-based decoder. 

Once the number of elements is detected, we proceed with the 

elements prediction as it is shown in the Figure.4. Only the 

important parts are generated in the query and not the whole 

query in contrast with the sequential approach. For example, in 

the slot of SELECT, a sub-module is there to focus only on the 

columns to be generated and the same is done for the FROM 
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clause. The Figure.5 shows the generation process in the where 

clause which includes the column, the operator and the value. 

The advantages of the Sketch-filling solution is that each sub-

module is independent from the others, therefore the errors 

propagation is limited within each sub-module, thing that helps 

also to reduce the time for the training. If there is an error in one 

sub-module, only the parameters of this one are optimized not 

the ones of the whole model.   

In this paper we don’t go deeper on how each sub-module 

works since our goal is to highlight the differences between the 

sequential approach and the sketch one. 

 

Figure.5. The Sketch-based decoder – where clause. 

The Sketch-based decoder can also support advanced SQL 

structures using multiple sub-modules for the GROUP BY, 

HAVING, ORDER BY, etc, as it is mentioned in the work of 

(Ahkouk, Machkour, 2020). In the same time the sketch can be 

used recursively for predicting the nested queries in the where 

clause by inferring the structure of the whole query before 

triggering each sub-module in the model. 

4. DISCUSSION 

4.1 Models performance 

There are many metrics that can be used to understand the 

differences between the two approaches. To evaluate the 

performance of each structure we propose to use 2 metrics. The 

most important metric is the quality of the output. The table 

bellow shows the scores of only two previously proposed 

models. We compare these models since they use the same 

dataset and the two discussed approaches. 

 

Model RL Sets (WIKISQL) Approach 

  Dev(EM) Test(EM)  

Seq2SQL No 52.2%  50.7% Sequential 

SQLNet + RL Yes 53.5% 51.6% Sequential 

SQLNet No 63.2% 61.3% Sketch 

Table 1. Performence of Seq2SQL vs SQLNet 

The Table 1. Performence of shows a comparison of the 

Seq2SQL by (Victor et al., 2017) and SQLNet by (Xu et al., 

2017). From the table it can be clearly seen that SQLNet, which 

is based on a sketch method, outperforms the sequence to 

sequence model. The model predicted 61.3% of queries in the 

test set of the WIKISQL dataset correctly, while the Seq2SQL 

model generated only 51.6% with the use of reinforcement 

learning. In the table we only mention the exact matching (EM) 

scores not the execution ones since we believe that we might 

have wrong queries that return the same result as the correct 

one. For example, the queries below can have the same result if 

the table employees have no employee with a salary equal to 0: 

Query1: SELECT * FROM employees 

Query2: SELECT * FROM employees WHERE salary != 0 
 

Another metric that can be used to evaluate the two approaches 

is the time for the training and errors propagation.  

In the partial test set result from the Table 2, we notice that the 

Sketch-based model outperforms the other one on all prediction 

slots. It is obvious that the sequence to sequence suffer for 

precision especially on the Where clause. This is due to the 

concept of independence between each slot in the sketch. When 

the column sub-module makes a wrong prediction, the where 

sub-modules are kept safe and the error is not propagated to 

their parameters, thing that requires shorter time for the training 

for that one sub-module only, in contrast to the sequential 

models which will try to re-generate the whole query from the 

beginning, hence the back-propagation is triggered and the 

parameters are updated for the whole model not only for the 

faulty parts.  

 

Model RL Slots of SQL Query Approach 

  Aggregation Select Where  

Seq2SQL YES 90.1% 88.9% 60.2% Sequential 

SQLNet No 90.3% 90.9% 71.9% Sketch 

Table 2. Partial comparison between a sequential model and the 

sketch-based one 

 

The time for training is also impacted by the number of 

parameters of the model that should be optimized, bigger the 

model is, longer the time for the training.  

4.2 Analysis 

When analysing the structure of SQL queries inside the 

proposed training corpuses like WikiSQL and SPIDER, we can 

reformulate the problem of text to SQL as the prediction of two 

main categories of objects. The first one might include the 

global objects that are predicted to define the structure and the 

form of the SQL query, while the second group of objects is 

related to the content of the query. 

Global objects: These types of objects include the output that 

will be helpful to infer ‘how our target query is’ in term of 

complexity, grouping, query inclusion, etc. For example we 

might have a sub-module that predicts the empty structure of the 

wanted query like:  

SELECT $ FROM $ WHERE $ (SELECT $ FROM $) $ (SELECT $ 

FROM $  WHERE $) 

In the above example we have a query with one column or 

more, one table or more, but we are sure that we have two 

conditions with nested queries ($ are things to predict). Using 

this approach of decoupling global objects from the content 

ones allowed us to get 50% of the final query. Before the 

training phase, the dataset should include annotations related to 
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the empty structure of the query; this can be added to the corpus 

manually or automatically via a script. 

Content objects are elements that have relation with the wanted 

data from the database like columns, operators, aggregation 

function and values. The prediction of these elements can be 

done efficiently using separated sub-modules; each module is in 

charge to predict one component. Note that there is no relation 

between the two categories of objects as the first class defines 

the shape of the target query and the second one fill the already 

constructed query with the adequate elements in a total 

independency between the components and the clauses. 

The concept of using a sketch filling solution allows us as well 

to apply the NO answer technique for question answer tasks like 

(Jacob et al., 2018) which is very beneficial for the training 

process in term of the training time and the quality of the trained 

model. 

5. CONCLUSION 

In this paper we presented a logical comparison between the 

Seq2Seq approach and the Sketch filling one and how the latter 

one can outperform the sequential models when facing complex 

and rich SQL queries. To sum up, the Sketch-based models can 

be good replacements for the previous solutions that adopt 

seq2seq approaches especially for the task of Natural language 

translation to SQL. Our Goal is to build a system that can 

translate natural languages to SQL automatically especially for 

right to left languages like Arabic using a rich scale of SQL 

structures.  
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