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ABSTRACT: 

 

Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent 

and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic 

microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be 

characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate 

estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5m resolution 

by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated 

methods. Knowledge discovery through artificial intelligence (AI), big imagery, and high performance computing (HPC) resources is 

just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated 

computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of 

developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, AI, and 

HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map 

IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object 

instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the 

robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level 

application in repeated documentation of circumpolar permafrost disturbances. 

 

 

1. INTRODUCTION 

Arctic permafrost - unique landscapes comprising the Earth 

materials that remains at or below 0°C for at least two 

consecutive years - occupies approximately 24% of the exposed 

land surface of the northern hemisphere. Ice-rich permafrost can 

be identified by atypical surface features called ice-wedge 

polygons (IWPs), which are underlain by several meter-wide 

and deep ice-wedges that form a network across the tundra.  

 

Thawing of ice-rich permafrost can be seen from satellites by 

altered moisture and vegetation that follows the differential 

ground subsidence when the top of the ice-wedges thaws. The 

diameter of IWPs typically ranges from 5 m to 30 m and the 

associated microtopographic features, such as troughs or rims, 

are in sub-meter to ~1-meter scale (Kanevskiy et al. 2017). 

Vegetation and geology maps suggest that about two-thirds or 

more of the Arctic landscape is occupied by polygonal ground 

(Raynolds et al. 2019) and therefore ice-rich ground, but the 

exact extent and the prevailing IWP types (i.e. whether the ice 

wedges experienced melt or not) are largely unknown (Liljedahl 

et al. 2016). The microtopography associated with IWPs affects 

the Arctic ecosystem from local to regional scales due to the 

impacts on the flow and storage of water and therefore, 

vegetation and carbon. Over recent decades, ice-wedge 

degradation – transformation of low-centered polygons into 

high-centered polygons due to ice-wedge degradation has been 

documented at several locations across the Arctic tundra in the 

field and through localized remote sensing analyses (Steedman 

et al., 2017). The shift from one IWP type to the other is 

documented to occur in less than a decade (Liljedahl et al. 2016) 

with an unusual warm summer, wildfires, or human activities 

initiating the onset of ice-wedge degradation. Subsequent 

feedback processes can either continue, amplify, dampen or 

even reverse the ice-wedge melt, with such processes remaining 

active for multiple decades. Degradation of ice wedges is a 

quasi-cyclic process with degradation often occurring over a 

shorter time scale than the formation of new permafrost 

(aggradation), with the latter controlled by accumulation of 

organic and mineral soil above the ice-wedge (Kanevskiy et al. 

2017). Understanding of spatiotemporal dynamics behind the 

evolution of ice-wedge polygonal tundra demands for objective 

and detailed maps consolidating the ice wedge extent and their 

prevailing successional stages.  

 

Despite the alarming signals, yet, the Arctic science community 

has a limited understanding of the spatiotemporal continuity of 

the otherwise locally observed changes. The lack of knowledge 

on the larger geographical extent and successional stage of 

IWPs introduce uncertainties to regional and pan-Arctic 

estimates of carbon, water, and energy fluxes. Remote sensing 

provides transformational opportunities to observe, monitor, 

and measure the Arctic polygonal landscape at multiple spatial 

scales and varying temporal windows. IWPs are difficult to 

detect in any remote sensing imagery with spatial resolution 

greater than 4 m. Therefore, sub-meter resolution commercial 

satellite imagery (e.g. DigitalGlobe, Inc.) demonstrate a greater 

promise in accurate delineation and characterization of ice-

wedge polygonal networks. Due to IWPs’ varying spectral and 

morphometric characteristics visual inspection and manual 

digitization has so far been the most widely adopted and 

promising method to delineate polygons from high resolution 

remote sensing imagery. A considerable number of local-scale 

studies have analyzed ice wedge degradation processes using 

satellite imagery, and manned-/unmanned aerial 

imagery/LiDAR data (Muster et al. 2013). Most of the studies 
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to date have relied on manual image interpretation and/or semi-

automated approaches (Skurikhin et al. 2014). Therefore, there 

is a need and an opportunity for utilization of VHSR imagery in 

regional scale mapping efforts to spatio-temporally document 

microtopographic changes due to thawing ice-rich permafrost. 

Despite the accuracy, the intense workload of manual 

digitization constrains the size of a study area. Sophisticated 

image analysis algorithms are therefore needed to automatically 

extract ice-wedge polygons and their prevailing stages using 

hundreds to thousands of commercial satellite imagery. 

Recently, deep learning (DL) convolutional neural nets (CNNs) 

has shown great potential for object instance segmentation in 

detecting and delineating each distinct object in an image of 

common objects from everyday pictures. The success of 

DLCNNs in computer visions (CV) applications has received 

great interest from the remote sensing community. There has 

been an explosion of studies integrating DCLNN to address 

remote sensing classification problems spanning from general 

land use and land cover mapping to targeted feature extraction. 

Deep learning CNNs excel at object detection, semantic 

segmentation, and semantic object instance segmentation. A 

plethora of DLCNN architectures have been proposed, 

developed, and tested. The influx of new DLCNNs continues to 

grow. Each has its own merits and disadvantages with respect to 

the detection and/or classification problem at hand. DL-based 

approaches are being adapted to finely classify Arctic 

permafrost features from high-resolution remote sensing 

imagery (aerial (Zhang et al. 2018), satellite (Bhuiyan et al. 

2019), imagery-derived digital elevation models (DEMs), and 

LiDAR-based DEMs.  

Figure 1. (a) Circumpolar Arctic vegetation map 

(CAVM) showing the extent of tundra (Raynolds et al. 2019).

(b) A 100 km x 100 km grid overlain on CAVM to show the 

geographic extent to be mapped using commercial 

satellite imagery, comprising tundra of Alaska, Canada, and 

Russia. The area under the grid covers approximately 5 million 

km2. 

The entire Arctic has been imaged at 0.5 m resolution by 

commercial satellite sensors (DigitalGlobe, Inc.). The 

image repository at the Polar Geospatial Center (PGC) 

provides transformational opportunities to observe, 

monitor, and document permafrost thaw occurring across the 

Arctic, which is a remote region with extremely sparse 

field observation network. Alaska, Canada, and Russia 

collectively harbor approximately 5 million km2 of tundra 

(Figure 1). Producing a permafrost thaw map for the pan-Arctic 

tundra region just once would require an analysis of 

thousands commercial satellite image scenes. Such large-

scale deployment of imagery resources requires 

sophisticated computational approaches to automated image 

interpretation coupled with efficient use of high-performance 

computing (HPC) resources. Besides our ongoing efforts, to 

the best of our knowledge, no university-led study has so far 

been developed a fully automated and scalable method, which 

is capable of accurately detecting and 

characterizing surface features from sub-meter satellite imagery 

over large geographical areas (e.g. pan-Arctic) in an operational 

context.  

The overarching goal of our ongoing effort is the production of 

the first pan-Arctic ice-wedge polygon map using large volume 

of commercial satellite imagery available at the Polar 

Geospatial Center and HPC resources. The resulting 

circumpolar ice-wedge polygon map will advance our 

understanding of the complex and interlinked processes 

responsible for the evolution of the pan-Arctic ice-wedge 

polygon tundra landscape. Here we unravel a new framework 

that we developed and tested – Mapping Application for 

Permafrost Land Environment (MAPLE) – to drive imagery-

enabled Arctic permafrost science applications. We also present 

some of the automated ice-wedge polygon mapping results 

while relating to the DLCNN model interoperability across 

different tundra vegetation types. As seen on Figure 1, we have 

so far completed mapping of over 10000 km2 of North Slope of 

Alaska. The rest of the Alaska is being processed at the moment 

and we will expand the mapping operation to rest of tundra 

regions. 

2. METHODS

2.1 Mapping Application for Permafrost Land Environment 

A general schematics of our mapping application for permafrost 

land environment (MAPLE) is shown in Figure 2. While our 

primary target is large volumes of commercial satellite imagery, 

manned- and unmanned-aerial imagery can also be integrated 

into the workflow as needed. Our target is to derive 

science-ready products from imagery. Such products are not 

limited to ice-wedge polygons but extend to other 

permafrost thaw features and microtopograpy such as thaw 

slumps, lake erosion, trough, and capillaries or even 

vegetation (shrubs) mapping. MAPLE primarily sits on 

HPC resources such XSEDE (eXtreme Science and 

Engineering Discovery Environment) that are available for 

the U.S. National Science Foundation (NSF) funded research.  

Accurate characterization of IWPs from VHSR imagery directly 

depend on the segmentation (i.e. isolation of targets from the 

surrounding) and classification (i.e. assigning the correct 

label to the targets) processes. Semantic object instance 

segmentation methods are designed to afford target isolation 

and labeling to thematic classes. Ideally, a mapping 

application for permafrost land environment should consist of 

candidate DLCNN models tailored to extract different 

permafrost features of interest from remote sensing imagery. 

Among suite of target features, micrtopography, thaw 

features, capillaries, and plant functional exhibit high priority. 

Given the diversity of target features and their heterogeneous 

characteristics coupled with semantic complexities, 

multiple model architectures better serve the purpose. In 

MAPLE, one pipeline targets on mapping ice-wedge polygons 

in which we utilized Mask RCNN algorithm. The pipeline 

is extensible and tailored to work with remote sensing imagery 

using high performance computing resources. This allows 

scalability to larger spatial extents. Mapping workflow and 

Mask-RCNN architecture is detailed out in Figure 2. Our 

mapping workflow is modular. First, input image scene is 

portioned into tiles of 200 pxl 200 pxl. Next, tiles are streamed 

to the trained model for prediction. Post processing of 

predictions takes place in stage 3. The predicted categorical 

raster is vectorized as a shapefile. All the individual shapefiles  

are post-processed by omitting duplicates along tile borders and 
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merged together to create a single shapefile corresponding to 

the extent of the input satellite image scene. The workflow is 

parallelized and optimized to work on multiple GPUs and 

nodes.  

Figure 2. Simplified schematic of the Mapping Application 

for Permafrost Land Environment (MAPLE) (top). 

Imagery-enabled workflow embedded with the Mask 

R-CNN architecture (bottom). 

The Mask R-CNN (He et al. 2016) serves as the key DLCNN 

algorithm in MAPLE. It has widely been acknowledged as a 

promising algorithm in semantic segmentation tasks across 

multitude scientific domains. The Mask-RCNN is an extended 

method for object instance segmentation built on the Faster R-

CNN with the aid of a function for predicting masks for distinct 

objects. The Mask R-CNN generates proposals (i.e., candidate 

object bounding boxes) after scanning the image, and 

subsequently, the model predicts the class, bounding box, and 

binary mask for each region of interest (ROI). The primary 

segments of the Mask R-CNN include: backbone architecture 

Residual Learning network (ResNet) for feature extraction, 

Feature Pyramid Network (FPN) for improving representation 

of objects at multiple scales, and other modules, such as Region 

Proposal Network (RPN) for generating (RoI), RoI Classifier 

for class prediction of each RoI, Bounding Box Regressor 

(BBR) for refining RoI, and FCN with RoIAlign and bilinear 

interpolation for predicting pixel-accurate mask. 

2.2 Model Training 

We practiced transfer learning strategy to re-train the Mask-

RCNN network. Annotated data (defining and labelling regions 

of interest) were created using an online web tool “VGG Image 

Annotator” from satellite imagery comprising heterogeneous 

tundra types. We randomly selected 262 cropped subsets (tiles 

of 200 pxl by 200 pxl) (~15,000 polygons) from different tundra 

types (tussock, non-tussock, and sedge) considering the spectral, 

and spatial variability. Each file has 200 x 200 pixels. Dataset 

are annotated for two classes: Low-centered (LC) polygons 

(8962 objects) and high-centered (HC) polygons (6038 objects). 

The annotated tiles were randomly divided into a training 

dataset, validation dataset, and test dataset based on the 8:1:1 

split rule. We trained the Mask R-CNN model with a mini-batch 

size of two image tiles, 350 steps per epoch, learning rate of 

0.001, learning momentum of 0.9, and weight decay of 0.0001. 

To minimize overfitting, random horizontal flips augmentation 

was applied to introduce variability in the training data that has 

acceptable estimation accuracy. During calibration, the weights 

and biases of each neuron were estimated iteratively by 

minimizing a mean squared error cost function using a gradient 

descent algorithm with back propagation. Training was 

implemented using NVIDIA V100 GPUs on XSEDE 

supercomputing resources. We trained the Mask R-CNN with 

100 epochs. To optimize Mask R-CNN, we examined different 

losses, such as (a) Smooth-L1 loss, defines box regression on 

object detection systems, which is less sensitive to outliers, than 

other regression loss; (b) Mask R-CNN bounding box loss 

indicates the difference between predicted bounding box 

correction and true bounding box; (c) Mask R-CNN classifier 

loss estimates difference of class labels between prediction and 

ground truth ; (d) mask binary cross-entropy loss measures 

(probability value between 0 and 1) the performance of a 

classification model by observing predicted class and actual 

class; (e) RPN bounding box loss identifies the regression loss 

of bounding boxes only when there is object and; (f) RPN 

anchor classifier loss indicates the difference between the 

predicted(RPN) and actual (closest ground truth box to the 

anchor box) regression. 

2.3 Model Interoperability 

We employed a systematic experiment to investigate the 

model’s immunity to landscape heterogeneity across three 

tundra types (tussock, non-tussock, and sedge). The experiment 

was based on four summer-time multi-spectral images acquired 

by the WorldView-2 satellite sensor (Figure 3). Pansharpened 

multispectral images at 0.5m were provided by the Polar 

Geospatial Center as orthorectified, atmospherically corrected 

data products.. Scenes primarily comprised wet-sedge, tussock, 

and non-tussock tundra according to the Circumpolar Arctic 

Vegetation map (Raynolds et al. 2019). Candidate scenes cover 

1500 km2 of coastal and upland tundra (tussock, non-tussock, 

and sedge), from the North Slope, Alaska. We selected training 

study sites comprising tussock, non-tussock, sedge, and barren 

tundra dominant landscapes, primarily from coastal tundra 

region of North Slope Alaska, Canada, and Wrangler Island of 

Russia. The training sites provide a substantial landscape 

heterogeneity for model classifying and detection of ice-wedge 

polygons. 

Figure 3. Geographic setting (left) and (b) tundra 

vegetation map overlain by four candidate satellite image 

scenes. 

2.4 Accuracy Assessment 

We tasked several error metrics to assess the DL model 

performances across tundra vegetation types.  

The mean intersection over union (mIoU) between predicted 

and actual polygon. A mIoU score > 0.5 is considered a “good” 

prediction which indicates successful delineation.  

Absolute mean relative error (AMRE) is the mean of the 

relative percentage error, calculated by the normalized average 

…………(1) 
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Here, umber of predicted polygons , the number of actual 

polygons . For an unbiased model, the AMRE would be 0.

Correctness, which indicates how many of predicted positives 

were truly positive; Completeness, determines   what 

percentage   of   actual   positives were detected; F1 Score, 

which determines a balance between Correctness and 

Completeness into one value [29]. High magnitudes of 

Correctness suggest that there are less false positives in the 

classification. In addition, if the model classification always 

predicts positive magnitudes, Completeness will be 1, which 

indicates ice-wedge polygon is properly detected by the model. 

Moreover, an accurate prediction of ice-wedge polygon is 

represented by F1 score, where score of 1 specifies perfect 

prediction. An accurate prediction is represented by all metric 

values closing to 1.  

Here, true positive (TP) is the number of polygons correctly 

identified, false positive (FP) is the number of polygons 

identified by model but not true, and false negative (FN) is 

undetected polygons. 

3. RESULTS AND DISCUSSION

We statistically evaluated the performances of the DL model in 

detecting and classifying IWPs. For the quantitative 

assessments, from each image scene, we randomly selected 40 

subsets to manually delineate polygons as a reference (ground-

truth polygons). The mean intersection over union (mIoU) 

values varied between 0.85 to 0.91 (Table 1), which indicted 

that predicted polygons that agree with the ground-truth 

polygons. 

Scene mIoU 

S1 0.91 

S2 0.87 

S3 0.86 

S44 0.85 

Table 1. Summary Statistics of mean intersection over union 

Zoomed-in views of the original imagery, ground truth, 
and model classification results show that our predicted 
IWPs closely matched ground-truth IWPs (Figure 4).  

(a) (b) (c) 
Figure 4. Zoomed-in views of (a) original imagery, (b) ground 

truth (manual delineation, blue outline) and (c) model result 
(yellow outline) for candidate scene 4. Imagery © [ 2016] 

DigitalGlobe, Inc.  

We used three quantitative error statistics (correctness, 

completeness, and F1 score) to show the performances of 

the framework. Candidate scenes 1, 2, 3, and 4 produced 

high model detection accuracies for the F1 score, ranging from 

0.89 to 0.96 (Figure 5, Table 2).  

Scene #of 

reference 

polygons 

Correctness Completeness F1 

Score 

S1 582 0.99 89% 0.96 

S2 567 1 85% 0.94 

S3 579 1 83% 0.92 

S4 573 1 81% 0.89 

Table 2. Reported scores for correctness, completeness, and F1 

measure  

(a) Scene 1 (c) Scene 3

(b) Scene 2 (d) Scene 4

Figure 5. Sample views of original imagery (left) and model 

classification (right) for candidate scenes. Yellow 

outlines denote automatically detected IWPs. Imagery © 

[2010, 2012, 2015, 2016] DigitalGlobe, Inc. 

Although all the image scenes are geographically close to 

each other, but they still have different tundra variations 

in the microtopography. Predominance of tussock sedge 

tundra and the high spatial resolution of imagery 

information provide landscape-scale variation within the 

original CAVM polygons throughout northern Alaska. Scene 

4 (covering tundra tussock sedge) achieves mIoU 0.85 (Table 

1) which still have a chance to improve model prediction by 

increasing more training data from that tundra region. 

Moreover, lake rich regions, such of Alaska's North Slope 

demonstrated dominant sedges tundra, which contains more 

detailed information which will help IWP mapping for that 

tundra type. Image scenes 2 and 3 represents non-tussock 

sedge tundra of Alaska's North Slope. Model 

performances for image scenes 2-3 (F1 score: 0.92-0.94) were 

consistent, which means training sample were sufficient 

to predict IWPs for non-tussock sedge tundra regions. In a 

similar fashion, scenes 1-4 scored high values for 

completeness (81-89%). In all four cases, the correctness 

metric scored ~ 1, allowing less freedom for false alarms. 

Classification accuracies varied from 0.94 to 0.97 for 

candidate scenes, indicating a robust performance of the 

new version of the ice-wedge polygon mapping algorithm 

across different tundra types in northern Alaska. Results 

showed substantially low systematic errors (AMRE values 

from 0.17 to 0.23) for all candidate scenes (Figure 6). Overall, 

both quantitative and qualitative evaluations support the 

possible interoperability of the IWP mapping algorithm 

across different tundra assemblages in northern Alaska. 

………..(2) 

………..(3) 

………..(4) 
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The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-2-2020, 2020 
ASPRS 2020 Annual Conference Virtual Technical Program, 22–26 June 2020

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-111-2020 | © Authors 2020. CC BY 4.0 License.

 
114



Figure 6. Absolute Mean relative Error (AMRE) for candidate 

scenes 

Considering the geographical extent of Arctic tundra and 

associated landscape complexities that yet to be exposed, we 

make no strong claims that our transferability study is 

comprehensive but an exploratory effort. Arctic tundra 

landscapes cover spatially isolated ponds, lakes, marshes, river, 

and stream corridor wetlands, which representing highly 

heterogeneous features, varying in soil moisture, vegetation 

composition, elevation, surficial geology, ground ice content, 

soil thermal regimes and surface hydrology. Fine-scale 

differences in microtopography, limit the ability to comprehend 

local scale controls on regional to global scale patterns which, is 

an important factor in characterizing IWPs in arctic varying 

tundra areas. As Arctic tundra vegetation are spatially 

heterogeneous which vary significantly over small spatial 

scales, including additional different tundra landforms with 

different vegetation, hydrology, or soil characteristics could 

further improve the model. Further research is inevitably needed 

to better understand how trained models behave across tundra 

types. Such study can incorporate not only vegetation cover but 

also other factors as well, such as terrain units, soil types, 

hydro-climatic regimes, and permafrost characteristics. For 

instance, Arctic tundra types are very sensitive in summer 

temperature, which can cause major changes to vegetation 

structure via by pose spectral/textural changes in the acquired 

imagery. Thus, the seasonality could be an important factor 

deciding the appearance of ice wedge polygon on the satellite 

imagery because changes to spectral and textural characteristics 

can alter the overall semantics of the target. The model can be 

biased when it is trained only based on the imagery acquired in 

particular time window. The predictions can be suffered, if the 

model is given imagery from different time windows, for 

example early summer image vs late summer image. As much 

as important to understand model’s interoperability across 

space, it is also imperative to examine how model responds to 

temporal variations. Operator biasness in hand-annotated data 

production can also negatively influence model performances. 

Tasking multiple operators to produce sizeable amount of 

quality-controlled training datasets can help improving the 

variability training samples and eventually leveraging the model 

performances. 

4. CONCLUSION

We are in the process of developing a Mapping Application for 

Permafrost Land Environment (MAPLE) by combining big 

imagery, AI, and HPC resources. The MAPLE uses DLCNNs 

algorithms on HPCs to automatically map IWPs from VHSR 

commercial satellite imagery across large geographic domains. 

We trained and tasked a DLCNN semantic object instance 

segmentation algorithm to automatically classify IWPs from 

VHSR satellite imagery. We explored the DLCNN model 

interoperability across different tundra types and image scene 

complexities in order to understand the opportunities and 

challenges prior to any future circumpolar IWP mapping 

applications. The DL model exhibited promising performances 

with high detection and classification accuracies. Also reported 

low systematic error for all image scenes and indicated 

significant improvement in model predictions across the 

heterogeneous tundra regions. Consideration of contextual 

information (e.g. edges, vegetation, shape, area, and the 

consistency of feature distributions) increased the reliability of 

the model classification and helped generalizing the DL model 

across tundra vegetation types. Complex topography play a vital 

role in controlling the spatial variation in image scenes. Effort 

to further refine model prediction accuracies could include a) 

increasing the variability of training samples with additional 

annotated IWPs from a larger set of tundra vegetation types, and 

b) explore more sophisticated image pre-processing steps such

as differing data fusion approaches.
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