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ABSTRACT: 

Place recognition or loop closure is a technique to recognize landmarks and/or scenes visited by a mobile sensing platform previously 
in an area. The technique is a key function for robustly practicing Simultaneous Localization and Mapping (SLAM) in any environment, 
including the global positioning system (GPS) denied environment by enabling to perform the global optimization to compensate the 
drift of dead-reckoning navigation systems. Place recognition in 3D point clouds is a challenging task which is traditionally handled 
with the aid of other sensors, such as camera and GPS. Unfortunately, visual place recognition techniques may be impacted by changes 
in illumination and texture, and GPS may perform poorly in urban areas. To mitigate this problem, state-of-art Convolutional Neural 
Networks (CNNs)-based 3D descriptors may be directly applied to 3D point clouds. In this work, we investigated the performance of 
different classification strategies utilizing a cutting-edge CNN-based 3D global descriptor (PointNetVLAD) for place recognition task 
on the Oxford RobotCar dataset1. 

1. INTRODUCTION

One important aspect of SLAM algorithms is that the localization 
errors keep accumulating as the number of measurements keeps 
increasing, due to the errors in measurements caused by the noise 
of sensors (Dhiman et al., 2015). To handle this problem, SLAM 
algorithms rely on place recognition (PR), or loop closure 
detection (LCD) techniques, wherein the algorithms are able to 
recognize previously visited places and then use them as 
additional constraints for increasing the precision of localization 
estimation and solving the global localization problem. Therefore, 
a robust PR scheme could enhance the robustness and 
performance of SLAM algorithms. For the Lidar-SLAM, PR is 
still a challenging task and very few of the state-of the art 
algorithms has solved the loop closure problem (Singandhupe et 
al., 2019). Many methods have been proposed for this task, and 
a traditional solution is sensor integration with other sensors, 
such as camera (Olson, Edwin, 2009a) (Wu et al., 2016) or GPS 
(Emter, Thomas, 2012) (Emter et al., 2018). However, these 
techniques face challenges, such as vision based methods 
suffering from illumination changes, season-to-season based 
appearance changes and viewpoints differences, and poor GPS 
performance in urban areas.  

Since Lidar data is invariant to lighting and appearance changes, 
the geometric methods for PR with 3D Lidar data, such as line 
feature-based scan matching, key point matching and 3D local 
feature-based strategies are widely investigated (Olson, Edwin, 
2009b) (Bosse et al., 2013) (Dubé et al., 2017). Unfortunately, 
extracting and matching these features could be difficult in 
certain environments. To that end, CNN-based solutions have 
recently been proposed as effective learning tools to generate 
features from general environments. Due to the different ways to 
learn and extract descriptors, these solutions can be classified in 
two categories: semantic (local) level feature-based (Dubé et al., 
2018) and frame (global) level feature-based (Angelina, Hee Lee, 
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1 https://robotcar-dataset.robots.ox.ac.uk/

2018) (Yin H et al., 2018) (Yin H et al., 2019) (Yin P et al., 2018a) 
(Yin P et al., 2018b). The major limitation for extracting semantic 
features is the assumption that there are enough static objects 
which have been adequately learned by the pretrained CNN 
model. However, this assumption may not always be satisfied in 
real-world practice. On the other hand, with the global descriptor, 
the PR task is handled as a similarity modeling problem in which 
Nearest Neighbor (NN) method is commonly used for 
classification. Additionally, one interesting task in the real-world 
PR practice is classification under the restriction that we may 
only observe a single example of each possible scenario before 
making a prediction about a test instance. This problem is known 
as one-shot learning (Koch et al., 2015), and the Siamese neural 
networks have been demonstrated as an effective solution for 
one-shot learning in imagery application (Yin W et al., 2015) and 
low dimensional 3D semantic segment descriptors classification 
(Cramariuc et al., 2018).  

To efficiently generate reliable PR candidates by improving the 
performance of classification network, in this study we 
investigated a one-shot learning classification method, the CNN-
based Siamese network with high dimensional global descriptors 
on 3D Lidar data (Figure 1). In the experiment, we compared the 
effectiveness of classification between our CNN-based classifier, 
a commonly used nearest neighbor (NN) method and random 
forests (RF) which is a typical nonlinear classic machine learning 
classifier. The details of proposed method are discussed in the 
remainder of this paper, structured as follows. Section 2 reviews 
the proposed method, including network for global feature 
descriptor extraction and CNN classifier model. The experiments, 
including training, testing and performance comparison are 
presented in Section 3. Finally, the conclusions are summarized 
in Section 4. 
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2. METHOD

2.1 Global Descriptor 

Compared to its image counterpart, applying a CNN model to 3D 
points is more challenging due to the fact points in a point cloud 
are generally unordered. Some works handled this challenge by 
projecting 3D point clouds into 2D image plane (Su et al., 2015) 
(Yin P et al., 2018b) or transforming point clouds into 3D 

volumetric representations (Qi et al., 2016) (Yin P et al., 2018a). 
The downside of these networks is that they cannot handle well 
the large-scale outdoor PR problems. Additionally, for these 
networks, Lidar data need to be preprocessed to provide proper 
input which is computationally expensive. To directly operate on 
an unordered points subset in a point cloud, (Angelina, Hee Lee, 
2018) proposed the PointNetVLAD2 network which integrates 
PointNet network and VLAD layer (Figure 2). 

Figure 1. Proposed network for PR task 

Figure 2. Network architecture of PointNetVLAD (Angelina, Hee Lee, 2018) 

The PointNet extracts local feature descriptors for each input 
point by encoding points into vectors in a higher dimensional 
space. In the next phase, the NetVLAD layer aggregates local 
features into the VLAD bag-of-words (BoWs) global feature 
descriptor vectors. Additionally, since NetVLAD is a symmetric 
function and PointNet model transforms each point in the point 
cloud independently, the output global descriptor is invariant to 
the order of the points. In the training process, PointNetVLAD 
was trained with the lazy quadruplet loss in which the Euclidean 
distances between descriptors are used for calculating similarity. 
During inference (testing), NN method was used for 
classification. The lazy quadruplet loss is defined as: 

𝐿 = max
!
&'𝛼 + 𝛿"#$ − 𝛿%&'!,(

-

	+max
)
&/𝛽 + 𝛿"#$ − 𝛿%&'"∗ 1(- (1) 

2 https://github.com/mikacuy/pointnetvlad.git 

where      𝛼, 𝛽 = margin 
               𝛿 = Euclidean distances between global descriptor 

vectors 

In this work, pretrained PointNetVLAD baseline network was 
used as global feature extractor. 

2.2 CNN-based Classifier 

As depicted in Fig 1, two input point clouds are firstly given to 
two branches of the Siamese network which are distinct 
PointNetVLAD networks and create global descriptors. In the 
next stage, these two descriptors are combined and processed by 
a CNN classification model in which the similarity score is 
calculated as the final output. The structure of CNN classification 
model is detailed in Figure 3. 
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Figure 3. Network architecture of CNN classification model 

One advantage of Siamese network is that the feature extraction 
model and classification model can be trained and used 
simultaneously or independently. In this work, we trained and 
used CNN classification model independently for a fair 
comparison of classification performance with respect to other 
classifiers. The binary cross entropy loss with stochastic gradient 
descent (SDG) is applied during training process. The loss 
function is formed as: 

𝐿 = −𝑡 log 𝑦 − (1 − 𝑡) log(1 − 𝑦)                  (1) 

where      𝑡 = logic label 
               𝑦 = output of CNN classification model 

3. EXPERIMENT

3.1 Training the Model 

Since we only investigate the performance of classifiers in this 
work, the same training and test dataset, as used in original 
PointNetVLAD research, was applied to guarantee a consistent 
performance of feature extraction. The dataset was built from the 
Oxford RobotCar dataset (Maddern et al., 2017) in which 44 sets 
of full and partial runs were used.  Training and testing reference 
maps are geospatially separated from each run with a proportion 
of 70% and 30%, respectively. Then submaps were segmented 
from reference maps following the rules: (1) each submap 
contains all Lidar points within a 20m trajectory of the vehicle, 
and (2) the intervals between submaps are 10m and 20m for 
training and testing datasets, respectively. Finally, 21,711 
training submaps and 3,030 testing submaps were segmented out 
from original dataset. The submaps within 10m intervals in 
centroid coordinates are seen as structurally similar and labelled 
as “positive” and those with 50m are dissimilar and “negative”. 

The training results for the CNN classification model are shown 
in Figure 4. The loss quickly converged during the first few 
epochs and remains almost constant in subsequent epochs. Thus, 
we stopped training at 1000 epochs. The CNN classification 
model was trained on a Nvidia GeForce Titan Xp GPU. 

Figure 4. Training results of CNN classification model 

3.2 Comparing Different Classification methods 

In this section we compare the performance of different 
classification methods, e.g. CNN-based classifier, NN and RF by 
using the same set of global feature descriptors extracted from 
testing datasets. In terms of training the RF, the input is two 
concatenated descriptors and output is their matching probability. 
The closest neighbour in NN method is decided based on the 
Euclidian distance in descriptor vector space. The receiver 
operating characteristic (ROC) curves of the different classifiers 
are shown in Figure 5. The best accuracy is achieved by the CNN-
based classifier. The numerical results are presented in Table 1. 
CNN-based classifier outperforms NN and RF in both general 
accuracy and true positive (recall) rate which are 95.3% and 70.1% 
respectively. Note that the commonly used NN method performs 
the worst, achieving a general accuracy of 61.1%, and true 
positive rate of 40.7%. The classic nonlinear classifier RF, used 
as a reference, outperforms NN with 88.5% in general accuracy 
and 57.6% in true positive. 

Figure 5. ROC curves for different classifiers with same set of 
global feature descriptors 

Method General Accuracy True Positive Rate 
NN 61.1% 40.7% 
RF 88.5% 57.6% 

CNN-based 
classifier 

95.3% 70.1% 

Table 1. Matching Accuracy statistics of different classifiers 

Examples visualizing the matching results are presented in Figure 
6 in which (a)~(c) are true positive matching, (d)~(f) are false 
positive matching. It can be seen that the proposed method shows 
robustness to noise, such as objects changing (Fig 6(a)), 
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viewpoint changing (Fig 6(b)) and both objects and viewpoint 
changing (Fig 6(c)). On the other hand, Fig 6(d)~(f) reveal the 
fact that the CNN based classifier fails to distinguish dissimilar 
submap pairs when two scenarios contain very similar features, 
such as semblable building structures and trees.  

4. CONCLUSION

In this work, we investigated the performance of CNN based 
classifier with Lidar data for PR task. The testing results show 
that the proposed model outperforms both NN and RF methods 

and achieves true positive rate at 70.05%. However, many false 
matchings occur when scenarios contain very similar features. In 
the future work, we will try to (1) increase the performance in 
recall by using geometric or other constrains to reject false 
matches, and (2) integrate the proposed place recognition method 
into Lidar SLAM. 

(a) 

(b) 

(c)
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(d) 

(e) 

(f) 
Figure 6. Examples of matching results, (a)~(c) are true positive matching, (d)~(f) are false positive matching. 
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