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ABSTRACT: 
 
The complete archive of images collected across all Landsat missions has been reprocessed and categorized by the U.S. Geological 
Survey (USGS) into a three-tiered architecture: Real-time, Tier-1, and Tier-2. This tiered architecture ensures data compatibility and 
is convenient for acquiring high quality scenes for pixel-by-pixel change analyses. However, it is important to evaluate the effects of 
converting older Landsat images from digital numbers (DN) to top-of-the-atmosphere (TA) and surface reflectance (SR) values that 
are equivalent to more recent Landsat data. This study evaluated the effects of this conversion on spectral indices derived from Tier-
1 (the highest quality) Landsat 5 and 8 scenes collected in 30 m spatial resolution.  Spectral brightness and reflectance of mixed 
conifers, Northern Mixed Grass Prairie, deep water, shallow water, and edge water were extracted as DNs, TA, and SR values, 
respectively.  Spectral indices were estimated and compared to determine if the analysis of these land cover classes or their 
conditions would differ depending on which preprocessed image type was used (DN, TA, or SR). Results from this study will be 
informative for others making use of indices with images from multiple Landsat satellites as well as for engineers planning to re-
process images for future Landsat collections. This time-series study showed that there was a significant difference between index 
values derived from three levels of pre-processing. Average index values of vegetation cover classes were consistently significantly 
different between levels of pre-processing whereas average water index values showed inconsistent significant differences between 
pre-processing levels.  
 
 

1. INTRODUCTION 

1.1 Landsat Overview and Remote Sensing Importance 

Landsat satellites have been collecting images since 1972 and 
are administered by the United States Geological Survey 
(USGS) in conjunction with the National Aeronautics and Space 
Administration (NASA) (Straub et al., 2019). These satellite 
images are provided at no-cost (USGS, 2018) and are utilized 
for a wide variety of applications including improving water use 
in vineyards (Ecker, 2020), wildfire and clear-cut mapping 
(Schroeder et al., 2011), invasive species mapping (Evangelista 
et al., 2009), and evaluating flooded areas (Sivanpillai et al., 
2020, Wang et al., 2002).  
 
1.2 Pre-processing  

Prior to an image being used, pre-processing is often performed 
(Jiang et al., 2018) to try to reduce the effects from the 
atmosphere, the sun, topography, and the sensor itself (Young et 
al., 2017). Operations that are performed before the main 
evaluation of the data are considered pre-processing (Campbell, 
Wynne, 2011). The majority of pre-processing operations fall 
into the categories of geometric, absolute, and relative pre-
processing (Young et al., 2017). Geometric pre-processing is 
performed to achieve accurate image location and includes 
image orthorectification and georeferencing (Young et al., 
2017).  Adjustments for effects of the sun, topography, the 
atmosphere, and the sensor are included in absolute pre-
processing, with absolute pre-processing aiding in values being 
able to be evaluated with other values of the same amount of 
pre-processing that were acquired from different sensors, times, 
or locations (Young et al., 2017). Relative pre-processing is 
performed to bring about radiometric scale equivalence between 

matching bands of a reference image and an evaluated image 
(Young et al., 2017).  
 
1.3 Data Types 

Light that is reflected from features on the Earth’s surface is 
registered by a satellite scanner as brightness, or radiance 
(Campbell and Wynne, 2011, Young et al., 2017), in W • 
micrometer-1 • steradian-1 • m-2 (Campbell and Wynne, 2011). 
The analog signals from the sensor are turned into numbers 
(Ose et al., 2016). A pixel in a digital image stores the 
brightness data as numeric values that are called digital numbers 
(DNs) (Campbell and Wynne, 2011). Digital numbers are noted 
as binary bits that function as a scale denoting approximate 
brightness (Campbell and Wynne, 2011). The number of bits 
determines how many values can be registered for each sensor 
band and the overall image (Campbell and Wynne, 2011). Data 
across the Landsat sensors vary in bits, with data from MSS 
being 6- and 7-bit, TM and ETM+ being 8-bit, and OLI being 
12-bit (USGS, 2019b).    
 
Since digital numbers do not give radiance in physical units 
(Campbell and Wynne, 2011), digital numbers cannot be used 
to evaluate spectral values through time (Young et al., 2017), 
and digital numbers cannot be used to evaluate brightness in 
physical units from one scene to another (Campbell and Wynne, 
2011). However, the metadata files of satellite images contain 
calibration coefficients that can be utilized to obtain absolute 
radiance from digital numbers; this radiance is commonly called 
at-sensor radiance and is one of the ways that an image can be 
pre-processed (Young et al., 2017).  
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Additional absolute pre-processing can be performed beyond at-
sensor radiance (Young et al., 2017). The sun’s angle of 
elevation, length between the Sun and the Earth, and 
exoatmospheric irradiance from the sun can be addressed by 
calculating top-of-the-atmosphere reflectance (TA), which gives 
the amount of reflected radiation that is being received by a 
sensor at the top of the atmosphere (Young et al., 2017).  
 
Converting TA data to surface reflectance aims to minimize 
how electromagnetic radiation is impacted by particles such as 
atmospheric aerosols, water vapor, and gases (Young et al., 
2017). The radiative transfer models used in calculating surface 
reflectance for Landsat 4-5, and 7 is the 6S method (Vermote et 
al., 1997, USGS, 2019a), whereas Landsat 8 uses an internal 
algorithm (USGS, 2019a).  
 
1.4 Landsat Data Product Structure and Processing 

Data products from images procured from Landsat missions 1-8 
are available in Landsat Collection 1 (USGS, 2018).  Within 
Landsat Collection 1, there are three tiers (USGS, 2018). 
Depending on the amount of processing performed and quality, 
data products are designated as Real-Time (RT), Tier 1 (T1), or 
Tier 2 (T2) (USGS, 2018). After receiving preliminary 
processing, data from Landsat 8 OLI/TIRS and Landsat 7 
ETM+ are placed into the Real-Time tier; this data is 
subsequently processed again and moved into Tier 1 or Tier 2 
(USGS, 2018). Products in Tier 1 fulfill specific quality 
requirements; Tier 2 products are lower in quality compared to 
products in Tier 1 (USGS, 2018). 
 
During Level 1 Processing, MSS data are scaled from 6- and 7-
bit data to 8-bit, and OLI data are scaled from 12-bit to 16-bit 
(USGS, 2019b).  Additional processing information can be 
found in the Landsat Collection 1 Level 1 Product Definition 
(USGS, 2019b). 
 
The possibility that pre-processing could cause artifacts or 
errors has been noted (Campbell and Wynne, 2011, Young et 
al., 2017). Roy et al. (2016) has also evaluated Normalized 
Difference Vegetation Index (NDVI) values between Landsat 7 
ETM+ and Landsat 8 OLI for both surface reflectance and top 
of the atmosphere. However, there is a lack of studies 
evaluating the effects of the conversion of digital numbers to 
top-of-the-atmosphere and surface reflectance values on spectral 
indices.  
 
Given the wide variety of practical applications for which 
Landsat images are used, understanding if there are effects in 
derived products from the underlying image pre-processing is 
needed. This study evaluated the conversion of digital numbers 
to top-of-the-atmosphere and surface reflectance values on 
select spectral indices calculated for five cover classes. 
 

2. MATERIALS AND METHODS 

2.1 Image Acquisition and Pre-processing 

Four Landsat 5 Thematic Mapper (TM) and two Landsat 8 
Operational Land Imager (OLI) scenes were downloaded from 
Landsat Collection 1 from USGS Earth Explorer.  Scenes were 
acquired in 1998, 2000, 2002, 2004, 2014, and 2016. Each of 
the six scenes was downloaded as compressed files in three pre-
processing levels: digital number (DN), top-of-the-atmosphere 
(TA), and surface reflectance (SR) for a total of eighteen scenes.  
 

From each compressed file, the three visible and three infrared 
bands were extracted and stacked for a total of six bands.  
 
2.2 Study Site Description 

Spectral reflectance and DN values were extracted from these 
images for the following classes: predominately mixed conifers 
(MC), predominately Northern Mixed Grass Prairie (NMGP), 
deep water (DW), shallow water (SW), and edge water (EW).  
 
2.2.1 Predominately Mixed Conifers: The MC cover class 
pixels were extracted from an area on National Forest land 
within the Black Hills of South Dakota (SD). The main tree 
species in the Black Hills is the ponderosa pine (Pinus 
ponderosa), but also includes other tree species such as Rocky 
Mountain juniper (Juniperus scopulorum), quaking aspen 
(Populus tremuloides), white spruce (Picea glauca), and bur 
oak (Quercus macrocarpa) (Walters et al., 2013). Mean annual 
precipitation in the nearby town of Custer, SD is 49.91 
centimeters (cm) and mean annual temperature is 6.83ºC 
(44.3ºF) (Arguez et al., 2010). 
 
An area to the southwest of Jewel Cave National Monument 
[43.729832, -103.829320] was selected for its relative 
homogeneity in canopy cover and size. These sites were initially 
identified with Google Maps and later confirmed through field 
visits. From visual inspection, the stands appeared to be 
dominated by ponderosa pine with interspersed Rocky 
Mountain juniper. Due to the mixture of conifer species and 
potential for understory vegetation to also be a part of the 
spectral reflectance, the cover class was designated as 
predominately MC.  
 
Additionally, the closest year available in Google Earth Pro was 
used to evaluate historic ground conditions and to ensure 
uniformity in canopy cover and tree condition (live or dead) 
across time for each sampling location. Google Earth Pro was 
also used to establish approximate 90 x 90-meter (m) plots for 
each image of the closest year to the corresponding Landsat 
image. Geographic coordinates were recorded from each plot in 
ERDAS Imagine using a combination of Google Earth Pro and 
Google Maps.  
 
2.2.2 Predominately Northern Mixed Grass Prairie: For 
the predominately NMGP class, an area of land in northeastern 
Wyoming (WY) was chosen approximately five miles north of 
the town of Newcastle, WY [43.854969, -104.206915]. This 
area was selected due to its familiarity, and site location was 
determined by viewing Google Maps for size and relative 
homogeneity in cover. While ground inspection of the site was 
not performed, major species in the northern mixed grass prairie 
of the United States are needle-and-thread (Hesperostipa 
comata), western wheatgrass (Pascopyrum smithii), and blue 
grama (Bouteloua gracilis) (Singh et al., 1983).   
 
The closest year available in Google Earth Pro was also used for 
the NMGP cover class to evaluate historic ground conditions 
and try to ensure the most uniformity in grass ground cover for 
each sampling location. The cover class was designated as 
predominately mixed NMGP to account for additional variables, 
such as bare ground or rock. Google Earth Pro was again used 
to establish approximate 90 x 90-meter (m) plots for each image 
of the closest year to the corresponding Landsat image. 
Geographic coordinates were recorded from each plot in 
ERDAS Imagine using a combination of Google Earth Pro and 
Google Maps.  
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2.3 Water Cover Classes: For the three water classes, 
Keyhole Reservoir [44.360154, -104.850673] in northeastern 
Wyoming was selected. A bathymetric map of Keyhole (Ferrari, 
2005) was used for ocular selection of areas that were shallow 
and deep water, with shallow water being designated as 
approximately 1240 m (4070 feet) to 1245 m (4085 feet) in 
elevation on the map. Deep water was considered to fall 
between approximately 1228 m (4030 feet) to 1231 m (4040 
feet) in elevation on the map. Pixels that appeared along the 
perimeter of the waterbody and possessed mixed coloring 
between the waterbody and the land were visually selected as 
edge water. Geographic coordinates were recorded from 
ERDAS Imagine for each sample. 
 
2.4 Data collection 

File pixel values were extracted using the ‘Inquire’ function in 
ERDAS Imagine for the five cover classes. For every year, the 
three pre-processed images (DN, TA, SR) were displayed in the 
ERDAS viewer and file pixel values were collected from the 
same latitude and longitude for each pre-processed image. The 
number of samples per cover class varied, with numbers ranging 
from seven to fourteen depending on site suitability. Additional 
samples were limited for certain years due to variables 
including cloud cover, differences in vegetation cover, canopy 
closure, or tree health.  
 
2.5 Spectral Indices 

Spectral indices were calculated from the file pixel values for 
each product level across time. Select water and vegetation 
indices are given in Table 1.  
 
Cover 
Class  Index Formula Reference  

MC 
NMGP 
EW 

NDVI NIR-Red/ 
NIR+Red Rouse et al., 1973 

MC 
NMGP 
EW 

Simple 
Ratio 

Red/ 
NIR 

Pearson and Miller, 
1972† 

MC 
NMGP 
EW 

Vegetation 
Index NIR/R  

Lillesand and Kiefer, 
1987† 
Jordan, 1969 

DW  
SW  
EW 

NDWI Green-NIR/ 
Green+NIR McFeeters, 1996 

DW 
SW  
EW 

MNDWI 
Green- 
SWIR/ 
Green+SWIR 

Xu, 2006 

DW  
SW  
EW 

WII* NIR^2/ 
Red Caillaud et al., 1991† 

DW  
SW  
EW 

MWII** SWIR^2/ 
Red Davrache et al., 2013 

DW  
SW  
EW 

WI*** NIR^2/ 
Green Davrache et al., 2013 

DW  
SW  
EW 

MWI**** SWIR^2/ 
Green Davrache et al., 2013 

Table 1.  Spectral indices calculated for a given cover class. 
NOTES: *Water Impoundment Index; **Modified Water 

Impoundment Index; ***Water Index; ****Modified Water 
Index; †As cited in Davranche et al., 2013 

Both vegetation and water indices were calculated for the edge 
water pixels due to the potential for vegetation to be 
incorporated in the pixel. Formula for these indices were 
adjusted to accommodate the coastal blue and cirrus bands of 
OLI.  
 
Paired, two-tailed t-tests were calculated between the different 
product levels for each index to determine the significance 
between index averages. Since this experiment was evaluating 
recurrent measurements from the same groups (MC, NMGP, 
DW, SW, and EW), standard error bars are not applicable for 
determining significance (Cumming et al., 2007). Hence 
difference in averages were compared at an alpha value of 0.05. 
 

3. RESULTS 

3.1 Vegetation 

All three vegetation indices computed for both vegetation cover 
classes (predominately mixed conifer and predominately 
Northern Mixed Grass Prairie) exhibited a significant difference 
(p<0.001) between each pre-processing level for all six years. 
 
3.1.1 Predominately Mixed Conifers: Index values from all 
three pre-processing levels calculated from reflectance of MC 
pixels were consistently different from each other. There was a 
significant difference (p <0.001) between each pre-processing 
level for the three indices calculated across all six years (Fig. 1).  

 
Figure 1. Average values of the Vegetation Index (NIR/R), 

Normalized Difference Vegetation Index (NDVI), and Simple 
Ratio Index (R/NIR) for predominately mixed conifer at three 
pre-processing levels (DN, TA, SR) across six years. Letters 

denote significant difference (p<0.001) between pre-processing 
levels within a given index. Average index values for pre-

processing levels were not compared across different indices. 
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3.1.2 Predominately Northern Mixed Grass Prairie: Index 
values calculated from reflectance of NMGP pixels were also 
consistently different between data products, with there being a 
significant difference (p <0.001) between each pre-processing 
level for the three indices calculated across all six years (Fig. 2). 

 
Figure 2. Average values of the Vegetation Index (NIR/R), 

Normalized Difference Vegetation Index (NDVI), and Simple 
Ratio Index (R/NIR) for predominately Northern Mixed Grass 
Prairie at three pre-processing levels (DN, TA, SR) across six 
years. Letters denote significant difference (p<0.001) between 

pre-processing levels within a given index. Average index 
values for pre-processing levels were not compared across 

different indices. 
 
3.2 Water 

Average index values exhibited less consistency in significant 
difference between the three levels of pre-processing. Deep 
water exhibited the highest consistency of significant difference 
(p<0.05 for 106/108 p-values), with shallow water exhibiting 
lower consistency (p<0.05 for 101/108 p-values), and edge 
water pixels exhibiting the least amount of consistency in 
significant difference between the three levels of pre-processing 
(p<0.05 for 133/162 p-values). The edge water had a greater 
number of p-values calculated in comparison to deep water or 
edge water due to the three vegetation indices that were also 
computed for edge water.  
 
3.2.1 Deep Water: There was a significant difference (p 
<0.05) between each pre-processing level for the three indices 
calculated across all six years for DW pixels with only two 
exceptions (Fig. 3, Fig. 4). For the NDWI index calculated from 
a scene collected on July 6th, 1998 scene, there was not a 
significant difference between values calculated from digital 
number and surface reflectance products (p =0.71) (Fig. 3).  
The MNDWI index calculated for a scene collected on June 
23rd, 2002 also exhibited a non-significant difference between 
values calculated from digital number and surface reflectance  
products (p =0.10) (Fig. 3). 
 

 
Figure 3. Average values of the Modified Normalized 

Difference Water Index (abbreviated MDW in the graph) and 
the Normalized Difference Water Index (abbreviated NDW in 
the graph) of deep water for three pre-processing levels (DN, 
TA, SR) across six years. Letters denote significant difference 
(p <0.05) between pre-processing levels within a given index. 

Average index values for pre-processing levels were not 
compared across different indices. 

 
Figure 4. Average values of the Water Impoundment Index 
(WII), Modified Water Impoundment Index (MWII), Water 

Index (WI), and Modified Water Index (MWI) of deep water for 
three pre-processing levels (DN, TA, SR) across six years. 
Letters denote significant difference (p <0.05) between pre-

processing levels within a given index. Average index values 
for pre-processing levels were not compared across different 

indices. 
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3.2.2 Shallow Water: Index values calculated from 
reflectance of SW pixels exhibited less consistency in 
significant difference across data products in comparison to DW 
and vegetation cover classes. The majority (101/108) of p-
values between data products across the six years were 
significant (p<0.05) (Fig. 5, 6). Four years had one insignificant 
p-value and one year had three insignificant p-values (Table 2, 
Fig. 5, 6). In the year 2000, all p-values were significant (Fig. 5, 
6).  Four of the seven insignificant p-values were calculated 
from the NDWI index, with one p-value being from the DN-SR 
comparison, and the other three values resulting from the TA-
SR comparison (Table 2, Fig. 5).  
 

Year Index  
Pre-processing Levels Compared 

DN-TA DN-SR TA-SR 

7/6/98 NDWI 1.43E-09 1.50E-01 3.00E-02 

6/23/02 NDWI 3.31E-07 1.20E-05 9.03E-02 

8/7/04 NDWI 4.76E-11 1.26E-06 2.81E-01 

9/20/14 NDWI 1.37E-11 2.54E-08 7.29E-01 

6/21/16 MNDWI 6.79E-10 5.89E-08 9.79E-02 

6/21/16 MWII 2.29E-09 2.07E-09 1.85E-01 
6/21/16 MWI 2.79E-09 2.60E-09 1.18E-01 
Table 2. P-values from years that exhibited an insignificant 

difference (p >0.05) between select indices calculated from DN, 
TA, and SR pre-processing levels for shallow water. Bold 

numbers denote insignificant p-values. 

 
Figure 5.  Average values of the Modified Normalized 

Difference Water Index (abbreviated MDW in the graph) and 
the Normalized Difference Water Index (abbreviated NDW in 

the graph) of shallow water for three pre-processing levels (DN, 
TA, SR) across six years. Letters denote significant difference 
(p <0.05) between pre-processing levels within a given index. 

Average index values for pre-processing levels were not 
compared across different indices. 

 
Figure 6. Average values of the Water Impoundment Index 
(WII), Modified Water Impoundment Index (MWII), Water 

Index (WI), and Modified Water Index (MWI) of shallow water 
for three pre-processing levels (DN, TA, SR) across six years. 
Letters denote significant difference (p <0.05) between pre-

processing levels within a given index. Average index values 
for pre-processing levels were not compared across different 

indices. 
 
3.2.3 Edge Water: The EW pixels exhibited the most 
inconsistency in significant difference between the three levels 
of pre-processing. The majority of average index values 
exhibited a significant difference (p<0.05) between the three 
levels of pre-processing (Fig. 7, 8, 9). However, out of 162 
average index values calculated, there were 29 instances where 
there was not a significant difference (p>0.05) between levels of 
pre-processing (Table 3).  
 
The majority (27/29) of insignificant values between the three 
levels of pre-processing came from the indices calculated from 
scenes acquired by Landsat 8 OLI in years 2014 and 2016 (13 
and 14 insignificant values, respectively) (Table 3, Fig. 7, 8, 9).  
The NDWI had the most insignificant values (4/29) out of all 
the indices (Table 4, Fig. 8).  
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Year Index  
Pre-processing Levels 

Compared 
DN-TA DN-SR TA-SR 

7/6/98 NDWI 3.15E-01 8.43E-06 4.05E-06 

8/7/04 NDWI 3.23E-01 4.47E-05 6.68E-07 

9/20/14 NIR/R 5.06E-01 2.33E-01 3.07E-02 
9/20/14 NDVI 6.71E-01 8.39E-01 7.09E-03 

9/20/14 MNDWI 2.00E-01 7.24E-01 9.20E-07 

9/20/14 NDWI 2.59E-01 9.33E-01 7.97E-04 

9/20/14 WII 7.95E-07 2.62E-07 1.67E-01 

9/20/14 WI  1.94E-06 3.48E-07 1.13E-01 

9/20/14 SR 2.25E-01 3.76E-01 7.16E-02 

6/21/16 NIR/R 3.36E-01 8.23E-01 9.47E-02 

6/21/16 NDVI 7.47E-02 2.05E-01 5.50E-01 
6/21/16 MNDWI 1.46E-02 2.05E-01 2.24E-04 

6/21/16 NDWI 1.83E-02 1.57E-01 7.21E-02 
6/21/16 WII 3.00E-05 2.26E-05 6.55E-01 

6/21/16 WI  6.47E-05 4.00E-05 2.46E-01 

6/21/16 SR 5.61E-02 1.20E-01 3.94E-01 
 

Table 3. P-values from years that exhibited an insignificant 
difference (p >0.05) between select indices calculated from DN, 

TA, and SR pre-processing levels. Bold numbers denote 
insignificant p-values. 

 

 
Figure 7. Average values of the Vegetation Index (NIR/R), 

Normalized Difference Vegetation Index (NDVI), and Simple 
Ratio Index (R/NIR) of the edge water class for three pre-

processing levels (DN, TA, SR) across six years. Letters denote 

significant difference (p<0.05) between pre-processing levels 
within a given index. Average index values for pre-processing 

levels were not compared across different indices. 
 

 
Figure 8. Modified Normalized Difference Water Index (MDW) 

and Normalized Difference Water Index (NDW) of the edge 
water class for three pre-processing levels (DN, TA, SR) across 
six years. Letters denote significant difference (p<0.05) between 

pre-processing levels within a given index. Average index 
values for pre-processing levels were not compared across 

different indices. 

 
Figure 9. Average values of the Water Impoundment Index 
(WII), Modified Water Impoundment Index (MWII), Water 

Index (WI), and Modified Water Index (MWI) of edge water for 
three pre-processing levels (DN, TA, SR) across six years. 
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Letters denote significant difference (p<0.05) between pre-
processing levels within a given index. Average index values 
for pre-processing levels were not compared across different 

indices. 
 

4. DISCUSSION AND CONCLUSIONS 

4.1 Vegetation  

There was a significant difference in average index values 
across year, sensor (Landsat 5 TM, Landsat 8 OLI), index, 
vegetation cover class (MC, NMGP), and pre-processing level 
(DN, TA, SR). Users need to be aware that different levels of 
pre-processing in vegetation could have higher or lower average 
index values due to pre-processing effects rather than due to 
vegetation characteristics and conditions. All average index 
values exhibited consistent, highly significant differences 
(p<0.001) between different levels of pre-processing. Therefore, 
individuals who are employing indices to create maps need to 
be careful when comparing products generated from different 
levels of pre-processing in order to make accurate conclusions 
about ground conditions. Further research into the effects of 
pre-processing on spectral indices using additional vegetation 
cover classes, more indices, and a larger sample size is needed.  
 
4.2 Water 

Overall, average index values from different levels of pre-
processing for Landsat satellites 5 and 8 for all three water 
cover classes (DW, SW, EW) were not consistently affected by 
pre-processing. Significant difference in average index values 
varied by year, by sensor, by index, by water feature, and by 
pre-processing level (DN, TA, SR).   
 
Pre-processing did not systematically affect average index 
values across all years. For some images, all average index 
values were significantly different whereas other images from 
other years had multiple average index values that were not 
significant from one another. Even across images from different 
years that were collected by the same sensor, significance 
between average index values of the three levels of pre-
processing was not always consistent.  
 
Moreover, data acquired by both sensors were not affected by 
pre-processing equally. Landsat 8 OLI data had less significant 
differences than did Landsat 5 TM data for both EW and SW. 
However, Landsat 5 data had fewer significant values for DW 
than Landsat 8 data. Average index values of edge water from 
Landsat 8 data had fewer significant differences between levels 
of pre-processing in comparison to index values of edge water 
from Landsat 5 data, or deep and shallow water from Landsat 8 
or Landsat 5 data.  Furthermore, the average index values of the 
WII, MWII, WI, and MWI calculated from the DN level of pre-
processing were very high in comparison to the average index 
values calculated from TA and SR for scenes acquired by 
Landsat 8 in 2014 and 2016. This large difference in values 
from Landsat 8 may not only be due to the differences in pre-
processing levels and requires further investigation.  
 
Additionally, some index values were not consistently 
significantly different across all years. However, out of the six 
water indices that were calculated, MNDWI and NDWI had at 
least one insignificant difference between index values of the 
varying pre-processing levels for each water cover class. This 
lack of predictability in whether or not MNDWI or NDWI 
values significantly differ between pre-processing levels is 
important for users to be informed of as MNDWI and NDWI 

are widely used. Additional research should evaluate why 
specific bands that have been pre-processed to a certain level 
are resulting in average index values being significantly 
different from one another.  
  
Pre-processing effects also appeared to decrease along a 
gradient that occurred with the lake’s physical characteristics. 
Deep water was the most impacted by pre-processing and edge 
water was the least impacted by pre-processing effects. Shallow 
water was intermediately affected.  
 
Furthermore, there was not a pre-processing level that 
consistently exhibited the highest or lowest average index value 
across all indices nor within an index for all years. Significant 
differences in the average index values between the pre-
processing levels (DN-TA, DN-SR, TA-SR) was also not 
consistent across all years or indices. Further research to 
evaluate why a significant difference exists between average 
index values from DN-SR, but not between DN-TA or TA-SR 
is needed. 
 
The lack of consistency in the significance between levels of 
pre-processing and the lack of consistency in size of average 
index values across the three pre-processing levels demonstrates 
the need for further research to be performed into the effects of 
pre-processing on spectral indices used with water. A larger 
sample size, additional water indices, and use of further 
satellites should be investigated.  
 
Users of Landsat satellite data need to be aware of the effects of 
pre-processing on spectral indices calculated from water classes 
are not predictable. This lack of predictability also demonstrates 
the importance of specifying what level of pre-processing was 
used to generate derived products, such as maps, in addition to 
specifying what indices are being used. Additionally, users 
should be aware of what pre-processing level was used in the 
creation of threshold values for image classification. Due to the 
differences in index values within the same index for different 
levels of pre-processing, index values could be falling above or 
below the threshold as a result of pre-processing rather than 
actual ground conditions. Caution should be exhibited when 
trying to compare derived products that are generated using 
different indices or different pre-processing levels due to the 
current lack of predictability in the effects that pre-processing 
has across satellites and indices on waterbodies. 
 
In conclusion, levels of pre-processing have varied effects on 
spectral index values calculated for vegetation and water 
features. Users need to exercise caution in selecting a level of 
pre-processing for their data or when comparing data products 
derived from different levels of pre-processing.  
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