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ABSTRACT: 

 

Satellite images are widely used for assessing the areal extent of flooded areas. However, presence of clouds and shadow limit the 

utility of these images. Numerous digital algorithms are available for enhancing such images and highlighting areas of interest. These 

algorithms range from simple to complex, and the time required to process these images also varies considerably. For disaster 

response, it is important to select an algorithm that can enhance the quality of the images in relatively short time. This study 

compared the relative performance of five traditional (Histogram Equalization, Local Histogram Equalization, Contrast Limited 

Adaptive Histogram Equalization, Gamma Correction, and Linear Contrast Stretch) algorithms for enhancing post-flood satellite 

images. Flood images with different levels of clouds and shadows were enhanced and output generated were evaluated in terms of 

processing time and quality as measured by Blind/Reference less Image Spatial Quality Evaluator (BRISQUE), a no-reference image 

quality metric. Findings from this study will provide valuable information to image analysts for selecting a suitable algorithm for 

rapidly processing post-flood satellite images. 
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1. INTRODUCTION 

Satellite images provide invaluable information on post-disaster 

conditions to emergency management agencies. Images 

collected by remote sensors have been effective for evaluating 

post-disaster conditions (Brivio et al., 2002). Repeat coverage 

of the affected areas from multiple satellites enable us to track 

changes over time (Gianinetto et al., 2005), in hard to reach 

areas at a relatively lower cost, robustness, and with the 

availability of data preprocessing techniques (Kussul et al., 

2008). Satellite-based remote sensing systems offer a bigger 

potential for assessment of disasters and in their management 

(Kerle, Oppenheimer, 2002).  

 

Floods are one of the major disasters that impact natural- and 

built-ecosystems worldwide. Every year flooding events result 

in the loss of lives, and damages to infrastructure and natural 

ecosystems. Images collected by active (RADAR) and passive 

(optical) sensors (Figure 1) on-board satellites are used for 

mapping and monitoring the extent of floods and changes over 

time.  Optical sensors are limited in terms of collecting data 

when thick clouds are present. RADAR signals can penetrate 

cloud cover and collect data on the aerial extent of floods. 

However, there are relatively more optical sensors than those 

that collect RADAR data. Hence more optical images are 

available for monitoring post-flood conditions. 

 

The visual quality of many post-flood optical images can be 

poor due to factors such as presence of haze, aerosols, and thin 

clouds and associated shadows (Lee, Lin 2016; Luscombe, 

Hassan, 1993). Differences in the spectral reflectance from 

features such as water, forest, vegetation etc. result in poor 

quality (Singh et al., 2019). Presence of these factors limit the 

use of optical images for monitoring post-flood conditions.  

 

 

 

 
 

Figure 1. Landsat 5 Thematic Mapper acquired on 10 May 2011 

shows the flooding in the Mississippi River, USA (Image credit: 

USGS/NASA) 

 

Digital enhancement methods can be used to improve the 

quality of these optical images to extract useful information 

from them. Most of these methods focus on manipulating 

intensity and contrast, de-blurring, de-noising, and edge 

detection (Bidwai, Tuptewar, 2015). These digitally enhanced 
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images provide additional data to the emergency management 

agencies for planning rescue and recovery missions.     

 

Numerous image enhancement methods such as Histogram 

Equalization (Stark, 2000), Linear Contrast Stretching 

(Gillespie, 1992), Brightness Preserving Bi-Histogram 

Equalization (Moniruzzaman et al., 2014), Local Histogram 

Equalization (Kim et al., 1998), Gamma Correction (Huang et 

al., 2016), Adaptive Histogram Equalization (Pizer et al., 1987), 

Contrast Limited Adaptive Histogram Equalization (Pizer et al. 

1990), Minimum Mean Brightness Error Bi-histogram 

Equalization (Chen, Ramli, 2003), Dualistic Sub-image 

Histogram Equalization (Wang et al., 1999) are available for 

processing low visual quality images. These methods use either 

spatial or frequency domain for enhancing the quality of the 

images. To maximize the utility of poor-quality images, 

emergency management agencies have to enhance those using 

methods that will produce a quality output in relatively less 

time.  The primary objective of this study was to evaluate the 

resultant image quality and associated processing time of five 

frequently used enhancement methods. Post-flood satellite data 

collected from actual flood events were used to test the 

performance of Histogram Equalization (HE), Local Histogram 

Equalization (LHE), Contrast Limited Adaptive Histogram 

Equalization (CLAHE), Gamma correction (GC), and Linear 

Contrast Stretch (LCS) methods. 

 

The quality of enhanced images generated by these methods 

were evaluated using Blind/Reference less Image Spatial 

Quality Evaluator (BRISQUE) metric. This metric operates in 

the spatial domain and calculates the loss in naturalness of the 

image due to distortions by computing locally normalized 

luminance coefficients using statistics from the enhanced image 

(Mittal et al., 2012) Results from this study will provide 

valuable information to emergency management agencies or 

their partners to select appropriate enhancement methods that 

will increase the overall quality of the post-flood images in a 

relatively short amount of processing time. 

 

 

2. MATERIALS AND METHODS 

2.1 Post-flood satellite images 

Seven scenes acquired by Landsat 5 Thematic Mapper and 

Landsat 8 Operational Land Imager were subset to generate 16 

multispectral images. These images had poor visual quality due 

to the presence of thin clouds, haze, and aerosols (Figure 2).  

 

Figure 2. Two of the sixteen post-flood Landsat images used for 

comparison of the image enhancement algorithms. All images 

had clouds and haze that reduced their contrast. 

First, blue, green, and red bands from these multispectral 

images were combined to generate 18 true-color images. Next, 

green and two infrared bands were combined to generate 18 

natural or false-color images, resulting in 36 images. 

 

2.2 Image-enhancement methods 

Five frequently used image enhancements were selected for this 

study. One of the criteria used for selecting is their availability 

in image processing and geospatial software. Brief description 

of each method is included in the following subsections.  All 

images were processed in Python 3.6 installed in a Windows 10 

computer with Intel core i5 (7th generation), 2.71 GHZ, 64-bit 

processor with 8 GB RAM. Time taken to process each image 

was recorded and later converted to seconds per megabytes. 

 

2.2.1.  Histogram Equalization (HE) 

Histogram Equalization (HE) is a spatial domain-based 

enhancement method that increases the global contrast of an 

image. For a given input image, HE method automatically 

determines the transformation function based on the probability 

density function and maps the grey scale values in the input 

image to a uniform histogram which is widely spread 

throughout the available range of radiometric values. For an 8-

bit image, the values will be spread from 0 (minimum) to 255 

(maximum). Images enhanced by HE can be severe washed out 

effects due to saturation issues. Also, HE can ignore local 

details and might not preserve the brightness. Further details on 

HE method can be found in Stark (2000). 

 

2.2.2.  Local Histogram Equalization (LHE) 

Local Histogram Equalization (LHE) method uses a sliding 

window and modifies the values of the central pixel based on 

the histogram of the subset area. LHE, also known as Adaptive 

HE, was proposed to overcome one of the limitations of HE 

method while relies on the histogram for computing the 

transformation function. The window is moved around the 

image in both horizontal and vertical direction and in every step 

the value of the central pixel is modified. A window size has 

been selected in order to generate an optimal enhanced image. 

In this study, five window sizes (8x8, 16x16, 32x32, 64x64, and 

128x128) were tested. LHE method is computationally intensive 

and therefore time consuming. Also, LHE can lead to over 

amplification of noise in the relatively homogeneous areas of 

the image. Further details on LHE method can be found in Kim 

et al., (1998). 

 

2.2.3.  Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) 

CLAHE is a modification of the LHE method aimed to 

overcome the problem of over amplification of noise. In this 

method, the analyst must define a limit for clipping the local 

histogram and maximum enhancement factor. In the first step, 

the algorithm divides the input image into non overlapping 

blocks of equal size. In the second and final step, the algorithm 

clips the histogram for each block based on the user defined 

limit, and the cumulative density function is calculated for 

linearly mapping the pixel intensities. CLAHE method is also 

computationally intensive. Further details on CLAHE method 

can be found in Pizer et al. (1990). In this study, 1/8th of the 

image height and weight was set as the window size. In this 

study, four clipping threshold values (0.01, 0.02, 0.03 and 0.09) 

were tested. 
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2.2.4.  Linear Contrast Stretch (LCS) 

LCS linearly stretches the contrast of an image by spreading the 

pixel intensity values over the entire dynamic range. The pixel 

values in low contrast images cover a limited range of intensity 

values. LCS stretches the intensity values over the entire range 

of the histogram. After LCS, bright areas in the image become 

brighter and the dark areas become darker. One of the 

disadvantages of assigning equal intensity values to both rarely 

and frequently occurring pixels, some important details might 

be lost. Also, LCS cannot improve the contrast if the pixel 

intensity values cover the entire available range. Further details 

on LCS method can be found in Gillespie (1992). 

 

2.2.5.  Gamma Correction (GC) 

GC which is also known as Power Law Transform is a spatial 

domain contrast enhancement method where the value of each 

pixel in the input image is mapped to a new value based on a 

transformation function. The transformation function is based 

on scaling (c) and positive (γ) constants that are specified by the 

analyst. When γ values are set below 1, narrow range of dark 

input pixel values are transformed to a wide range of bright 

output values. When γ values are set above 1, the bright input 

pixel values are transformed to a narrow range of dark output 

values. Further details on GC method can be found in Huang et 

al. (2016). In this study, five potential γ values (0.1, 0.3, 0.5, 

0.7, and 0.9) were tested. The value of c was chosen as 1. 

 

2.3 Non-reference Evaluation Metric 

Output images generated from each enhancement method was 

evaluated using the Blind/Reference less Image Spatial Quality 

Evaluator (BRISQUE). BRISQUE is an assessment metric that 

calculates the loss in naturalness of the image due to distortions 

(35). The value of BRISQUE score ranges between 0 and 100 

and lower scores indicate better quality output image. Further 

details on BRISQUE can be found in Mittal et al. (2012). 

 

 

3. RESULTS 

3.1 Window size for LHE 

BRISQUE scores of the output images generated with different 

window sizes are listed in Table 1. Output image generated with 

a window size of 128 x 128 pixels had the lowest BRISQUE 

score. Hence this window size was selected to process the rest 

of the images.  

 

Window size BRISQUE 

8 x 8 43.41 

16 x 16 30.84 

32 x 32 29.73 

64 x 64 30.06 

128 x 128 26.98 

Table 1. BRISQUE scores of the output images generated with 

Local Histogram Equalization algorithm using five different 

window sizes.  

 

3.2 Threshold value for CLAHE 

BRISQUE scores of the output images generated with different 

clipping threshold values are listed in Table 2. The output image 

generated with a clipping threshold of 0.03 had the lowest 

BRISUE score of 27.48.  Hence this clipping threshold value 

was selected for processing the rest of the images. 

 

 

 

 

Clipping threshold BRISQUE 

0.01 30.87 

0.02 30.86 

0.03 27.48 

0.09 28.23 

Table 2. BRISQUE scores of the output images generated with 

Contrast-Limited Adaptive Histogram Equalization algorithm 

with four clipping threshold values. 

 

As the threshold value increased, the contrast of the output 

image also increased. However, over enhancement problems 

were noticed when the clipping threshold value of 0.09 was 

selected. 

 

3.3 Quality Assessment of Output Images 

Based on the BRISQUE scores of the output generated from 

true color Landsat images (Table 3), no one enhancement 

method consistently outperformed the rest. The mean 

BRISQUE value for the LHE generated images were lower than 

those obtained for other enhancement methods (Table 3). 

BRISQUE scores of the output images generated by the GC 

method was highest in comparison to other methods. 

 

 

Image HE LHE CLAHE LCS GC 

1 19.99 22.17 22.32 30.88 42.19 

2 28.77 31.50 33.77 32.46 44.19 

3 23.29 28.85 32.30 28.70 43.06 

4 32.75 38.82 30.87 39.66 35.41 

5 30.37 26.98 22.65 35.29 50.28 

6 24.34 28.52 28.72 25.67 35.93 

7 26.30 21.28 31.89 31.32 45.84 

8 30.47 19.87 33.49 36.34 45.29 

9 29.98 31.44 28.20 34.85 46.40 

10 32.39 33.29 37.22 31.78 41.61 

11 30.68 13.40 30.26 30.88 54.67 

12 37.34 12.09 33.98 40.60 48.02 

13 38.07 31.18 36.51 40.39 43.73 

14 33.86 24.71 31.72 35.16 46.40 

15 27.71 7.73 27.72 28.71 30.32 

16 30.82 14.85 32.04 25.78 43.95 

17 17.28 13.90 27.55 26.81 45.74 

18 31.59 27.21 34.35 36.31 42.18 

Mean 29.22 23.77 30.86 32.87 43.62 

Std. Dev 5.26 8.37 4.00 4.63 5.40 

Table 3. BRISQUE scores of the output generated from true 

color post-flood Landsat images using five enhancement 

algorithms. Lower BRISQUE score indicates higher output 

quality. 
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Figure 3. Output generated for two of the sixteen post-flood 

images using five image enhancement algorithms: Histogram 

Equalization (HE), Local Histogram Equalization (LHE), 

Contrast Limited Adaptive Histogram Equalization (CLAHE), 

Linear Contrast Stretch (LCS), and Gamma Correction (GC).  

 

BRISQUE scores of the output generated from false color 

images (Table 4) showed a similar pattern.  Like the true color 

images, the mean BRISQUE value for LHE generated images 

were lower than those obtained for other enhancement methods 

(Table 4). Among all methods, the output images generated by 

GC had the highest BRISQUE scores. 

 

 

Image HE LHE CLAHE LCS GC 

1 23.02 36.23 24.62 31.96 32.47 

2 29.54 17.66 30.57 22.35 36.94 

3 30.97 21.61 30.70 29.27 33.62 

4 21.86 21.21 24.08 31.26 25.11 

5 28.48 23.17 16.13 31.86 39.76 

6 24.15 19.13 20.53 18.75 27.28 

7 20.79 26.36 30.60 27.50 44.46 

8 14.60 22.32 30.98 25.54 36.95 

9 30.83 29.76 18.25 28.32 33.92 

10 31.55 21.14 33.07 22.17 35.09 

11 16.99 13.86 28.06 29.59 40.31 

12 23.94 19.26 25.61 32.03 50.83 

13 31.00 23.47 29.78 37.25 44.34 

14 22.34 23.49 33.39 25.56 46.23 

15 27.52 6.88 25.66 21.51 28.52 

16 25.19 25.26 25.18 23.65 27.40 

17 21.59 25.99 14.65 25.64 32.56 

18 33.83 32.59 39.62 32.68 42.87 

Mean 25.46 22.74 26.75 27.61 36.59 

Std Dev 5.19 6.44 6.28 4.69 7.07 

Table 4. BRISQUE scores of the output generated from false 

color post-flood Landsat images using five enhancement 

algorithms. Lower BRISQUE scores indicate higher output 

quality. 

 

Pair-wise comparison (one tailed, paired T-test) of the 

BRISQUE scores indicate that the output generated from each 

method was statistically different from the rest (Table 5). 

Output quality of LHE generated images are significantly 

different from those generated from other methods. 

 

 
 LHE LCS CLAHE GC 

HE < 0.01 <0.01 N.S. <0.001 

LHE  <0.001 <0.001 <0.001 

LCS   N.S. <0.001 

CLAHE    <0.001 

Table 5. Probability values obtained from pair-wise comparison 

of the BRISUE scores of output images (n = 36) generated by 

five image enhancement techniques. N.S.: Not significant. 
 

LHE divides the input image into blocks or tiles and 

redistributes the intensity level of the pixels by computing the 

histogram of each tile. Hence the overall contrast and edges of 

the image are enhanced even in the presence of noise, such as 

clouds (Figure 3). This resulted in lower BRISQUE scores and 

better overall performance by LHE method. However, this 

method is sensitive to the window size specified by the analyst. 
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Output from the HE method had the next lowest BRISQUE 

scores. Unlike LHE, this method does not require any input 

parameters such as specifying the window size. However, the 

pixels in the output images can be saturated due to the clipping 

effect, which results in loss of information. Hence the 

BRISQUE scores of HE were higher than that of LHE. 

 

CLAHE method requires the analyst to specify the window size 

as well as a clip limit. The algorithm limits the contrast of the 

output image based on those values, which might lead to noise 

amplification and artifacts along the edges. Areas covered under 

thin clouds are not distinguishable (Figure). These factors 

resulted in higher average BRISQUE scores. 

 

LCS increases the contrast of the input images by linearly 

spreading the histogram over the entire range. As a result, both 

frequently and rarely occurring pixels are assigned equal 

intensity values which results in poor quality output image 

Figure). Hence the output generated by LCS had relatively 

higher BRISQUE scores than LHE, HE and CLAHE. 

 

Among the five enhancement techniques, GC produced lowest 

quality images for all images. BRISQUE scores for 36 output 

images were higher than the corresponding scores obtained for 

the other 4 methods. The gamma value specified in this study 

did not spread the histogram over the entire dynamic data range. 

Based on the results obtained for the 36 images, LHE method 

generated higher quality images, followed by HE method. 

 

 

Image HE LHE CLAHE LCS GC 

1 0.05 0.36 0.06 0.02 0.02 

2 0.14 1.33 0.26 0.08 0.07 

3 0.05 0.42 0.08 0.02 0.02 

4 0.08 0.82 0.22 0.21 0.07 

5 0.30 1.07 0.20 0.06 0.07 

6 0.12 0.77 0.15 0.05 0.05 

7 0.11 0.95 0.16 0.06 0.06 

8 0.15 0.78 0.74 0.22 0.11 

9 0.18 1.08 0.16 0.09 0.07 

10 0.10 0.74 0.19 0.04 0.06 

11 0.14 1.00 0.16 0.06 0.11 

12 1.82 0.65 0.35 0.02 0.10 

13 0.10 0.83 0.19 0.05 0.06 

14 0.10 0.72 0.17 0.06 0.08 

15 0.10 0.74 0.20 0.06 0.05 

16 0.12 0.91 0.13 0.05 0.06 

17 0.11 0.82 0.13 0.04 0.05 

18 0.13 0.58 0.29 0.03 0.03 

Mean 0.22 0.81 0.21 0.07 0.06 

Std. Dev 0.39 0.23 0.14 0.05 0.03 

Table 6: Time required (seconds/megabytes) by each 

enhancement algorithm (columns) to process the 18 true color 

images. LHE required most time in comparison to LCS and GC. 

 

3.4 Processing Time 

Standardized time taken (seconds/Megabytes) for processing 

each true color image was lower for GC and LCS in comparison 

to the other methods (Table 6). LHE which produced higher 

quality images, i.e., lower BRISQUE scores, needed most time 

to process the images. 

 

Standardized time taken (seconds/Megabytes) for processing 

each false color image was lower for GC and LCS in 

comparison to the other methods (Table 7). Like the previous 

batch, LHE which produced higher false quality images, i.e., 

lower BRISQUE scores, needed more time to process the 

images. 

 

Image HE LHE CLAHE LCS GC 

1 0.04 0.30 0.05 0.02 0.02 

2 0.13 0.78 0.16 0.05 0.07 

3 0.04 0.29 0.05 0.02 0.03 

4 0.08 0.51 0.39 0.04 0.03 

5 0.11 0.95 0.13 0.06 0.05 

6 0.13 0.85 0.13 0.04 0.06 

7 0.12 0.88 0.15 0.04 0.05 

8 0.15 0.63 0.30 0.04 0.04 

9 0.11 1.03 0.18 0.48 0.56 

10 0.14 0.75 0.17 0.04 0.06 

11 0.10 0.87 0.16 0.12 0.08 

12 0.10 0.77 0.20 0.02 0.05 

13 0.11 0.68 0.17 0.04 0.05 

14 0.13 1.24 0.15 0.04 0.05 

15 0.11 0.73 0.15 0.04 0.05 

16 0.12 0.82 0.14 0.05 0.05 

17 0.12 0.81 0.13 0.04 0.05 

18 0.10 0.61 0.29 0.03 0.03 

Mean 0.11 0.75 0.17 0.07 0.08 

Std. Dev 0.02 0.23 0.07 0.10 0.11 

Table 7: Time required (seconds/megabytes) by each 

enhancement algorithm (columns) to process the 18 false color 

images. LHE required most time in comparison to LCS and GC. 

 

LHE method divides the input image into tiles and processes 

each one separately, it takes the most amount of time.  Though 

the CLAHE method also divides the input image into tiles, it 

did not require the same amount of processing time. Time 

required by LHE to process images could be a limitation during 

emergency response, especially when the file size of the input 

image is large. Under these circumstances HE could be used for 

enhancing the post-flood satellite images.  However, the quality 

of the output images generated by HE was lower than those 

generated by LHE. Further studies must process data collected 

by other remote sensing satellites for other regions with 

different characteristics.  
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4. CONCLUSIONS 

Based on the BRISQUE scores of the output images, LHE 

algorithm will be suitable for enhancing post-flood images 

covered by thin-clouds and haze. There was no difference in 

quality of the output generated from the true color or false color 

images. However, LHE method needed most time to process the 

images. 

 

If numerous images have to be rapidly processed, HE method 

could serve as the alternative method. The quality of the output 

generated from HE algorithm was slightly lower than those 

generated by the LHE algorithm. 

 

LCS and GC algorithms needed relatively the least amount of 

time to process the images however their output quality was 

much lower. The output images generated for both true and 

false color images had higher BRISQUE scores.  

 

CLAHE required relatively less time than LHE, the quality of 

the output images was lower due to the presence of artifacts. 

The methods that required relatively less processing time did 

not generate quality output. 
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