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ABSTRACT: 

This paper addresses the remote sensing challenging field of urban mixed pixels on a medium spatial resolution satellite data. 

The tentatively named Normalized Difference Built-up and Surroundings Unmixing Index (NDBSUI) is proposed by using 

Landsat-8 Operational Land Imager (OLI) bands. It uses the Shortwave Infrared 2 (SWIR2) as the main wavelength, the 

SWIR1 with the red wavelengths, for the built-up extraction. A ratio is computed based on the normalization process and the 

application is made on six cities with different urban and environmental characteristics. The built-up of the experimental site 

of Yaoundé is extracted with an overall accuracy of 95.51% and a kappa coefficient of 0.90. The NDBSUI is validated over 

five other sites, chosen according to Cameroon’s bioclimatic zoning. The results are satisfactory for the cities of Yokadouma 

and Kumba in the bimodal and monomodal rainfall zones, where overall accuracies are up to 98.9% and 97.5%, with kappa 

coefficients of 0.88 and 0.94 respectively, although these values are close to those of three other indices. However, in the cities 

of Foumban, Ngaoundéré and Garoua, representing the western highlands, the high Guinea savannah and the Sudano-sahelian 

zones where built-up is more confused with soil features, overall accuracies of 97.06%, 95.29% and 74.86%, corresponding 

to 0.918, 0.89 and 0.42 kappa coefficients were recorded. Difference of accuracy with EBBI, NDBI and UI are up to 31.66%, 

confirming the NDBSUI efficiency to automate built-up extraction and unmixing from surrounding noises with less biases.   

 

1. INTRODUCTION 

 

Every urban area is heterogeneous, mixing diverse land 

cover types and materials, such as road, rooftop, vegetated 

area, bare soil, water, which are quite different from rural 

and natural environment (Schueler, 1994). This usually 

leads to mixed pixels, known as a picture element that has 

a digital number representing the average energy emitted 

or reflected from several different surfaces occurring 

within the area represented, by the pixel (Bangira et al., 

2017). Urban remote sensing offers several solutions to 

address these issues, mainly using spectral indices-based 

algorithms and decomposition methods.  

Some simple indices based on ratio or algebraic crossings 

of basic spectral bands enable to automate the mapping of 

human settlements. It is the case of the urban index, UI 

(Kawamura et al., 1996), the normalized difference built-

up index, NDBI (Zha et al., 2003) and the new built-up 

index, NBI (Chen et al., 2010). Some other focus on built-

up and bare soil differentiation, as the Enhanced Built-Up 

and Bareness Index, EBBI (As-syakur, 2012), and the 

normalized difference tillage index, NDTI (Ettehadi et al., 

2019).  

 
* Corresponding author (stats.n.maps.expertise@gmail.com)  

Further, the composed indices based on thematic index-

derived bands and existing algorithms modifications are 

interested in noise reduction. Amongst them are the index-

based built-up index, IBI (Xu, 2008) and the dry built-up 

index, DBI (Rasul et al., 2018). To address this issue in 

terms of imperviousness, the normalized difference 

impervious surface index, NDISI (Hanqiu, 2010) and its 

derivatives were proposed.  

 

All the above indices are helpful to highlight built-up 

areas. However, uncertainties and biases remain in 

separating bare land from built-up. The main reason is that 

spectral signatures of ISAs are like those of soils, sands 

and rocks. In developing countries, the extent of built-up 

in makeshifts and raw material, as well as unpaved 

(dusty/muddy) roads (Fig.1) inside and near cities, added 

to the use of freely available satellite images of coarse or 

moderate spatial resolution (MODIS, Landsat) in 

unfunded researches emphasize these issues. 

Consequently, there is a high spatial and spectral diversity 

of surface materials that are more challenging for remote 

sensing analysis (Herold et al., 2003). 
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Figure 1. A mixed built-up environment. A=Bright 

aluminum roof; B= Rusted aluminum roof; C=Unpaved 

(Dusty/Muddy) road/Soils/Stones; D=Bright and rusted 

aluminum roofs mixed with bananas plants; 

E=Pavements mixed with stones and bare soils; 

F=Natural vegetation. 

From the above, the main goal of this research is to unmix 

built-up and surrounding land cover features, i.e. bare 

soils, vegetation and water. The two specific goals are the 

following: i) extract the built-up features from a spectral 

bands ratio in mixed-housing and built-up material 

context; ii) dissociate interweaved spectral signals of 

built-up and natural surrounding features to map the 

urban area with the highest accuracy.  

2. METHODOLOGY 

2.1. Research location  

The experiments were conducted in Cameroon (Central 

Africa), located between latitude 2°00'0" - 13°00'0"N and 

longitude 8°00'0" - 16°00'0"E (Fig.2a.). The experimental 

site is Yaoundé, the political capital. This city belongs to 

the humid forest zone with bimodal rainfall, it is located 

between latitude 3°52'00.0"N and longitude 11°31'00.0"E 

(Fig. 2b.), its population is 2.5 million inhabitants and its 

area covers approximately 31750 hectares. Yaoundé is 

subject to urban sprawl due to an outdated master plan and 

a lack of further planning as other cities in Cameroon. 

Three areas of interest (AOIs) extracted in Yaoundé 

enable a good view of the sprawl as well as mixture. 

(Fig.2b) 

 

For the purpose of cross validation, five other cities are 

inserted in the study. The cities of Yokadouma, Kumba, 

Foumban, Ngaoundéré and Garoua are selected according 

to Cameroon’s bioclimatic zoning (Fig. 2.c to 2.g). 

Indeed, the specific conditions of high or low forest cover 

and consequently the related soil exposure, as well as 

altitude, should help to validate the suitability of the 

proposed index application.  

 

2.2. Datasets acquisition and pre-processing 

The data used are satellite images from Landsat 8 

Operational Land Imager-Thermal infrared sensors 

(Tab.1). The scenes used were downloaded for the dry 

season from the United States Geological Survey website 

and displayed under false colour composite NIR-Red-

Green (see fig.2b-g) (Tabl.1). For the purpose of pre-

processing, bands blue, green, red, near infrared, and both 

shortwave infrareds were stacked. Applying the Cosine 

Solar TAUZ (COST) radiometric calibration model of 

Chavez (1996), the DNs were converted from at-sensor 

radiance to top-of-atmosphere (TOA) reflectance. 

Atmospheric corrections and haze reduction have helped 

to remove other noises and then approximate values of 

land surface reflectance. The last step concerned the 

topographic correction to lower altitude artifacts. 

 

 

Figure 2. The study area 

Site Scene ID Center 

Time 

Yaoundé LC81850572018004LGN00 09 : 26 

Yokadouma LC81820582019002LGN00 09 : 14 

Kumba LC81870572019005LGN00 09 : 38 

Foumban LC81860562019030LGN00 09 : 32 

Ngaoundéré LC81840552019064LGN00 09 : 19 

Garoua LC81850542019087LGN00 09 : 25 
   

Table 1. Scenes information 

2.3. Processing 

2.3.1. The spectral separability efficiency of SWIR2 

According to the experiences of Herold et al. (2003) and 

the USGS spectral library (Kokaly et al., 2017), there are 

several visible and infrared windows of the 

electromagnetic spectrum where manmade settlements 

and artificial surfaces reflect the best.  The most suitable 

for the built-up separability from surroundings are in the 

A 

B 

C 

D 

E 

F 
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SWIR region located at 1710, 1740, 1960, 2000, 2040, 

2200, 2340 and 2460 nanometers. To assess this statement 

on the study sites, spectral curves of main land cover 

objects were extracted, i.e. built-up, vegetation, wet 

soils/Swamps, dry soils/rocks and water bodies. (Fig.3)   

 

Figure 3. Spectral curves in Yaoundé 

It can be noticed that the high unmixed reflectance of 

built-up takes place in the SWIR2 band (2107-2294 nm), 

its highest reflectance is in the SWIR1 band (1566- 1651 

nm), but covered by the soil features ; while the red band 

(636-673 nm) shows the best built-up reflectance in the 

visible wavelengths despite the water bodies noise.  A 

thorough assessment was performed through pixels 

sampling on the three areas of interest. Regardless of the 

dominating land cover class, on 10,000 pixels and from 

the stretching approach, the lower frequencies (counts) of 

the red band and the medium for the SWIR1 correspond 

to higher for SWIR2. (Fig.4 left column). While on 2,500 

pixels, the values of SWIR2 digital numbers, DNs, are 

discriminated from the two other bands that are higher or 

lower (Fig.4; right column)     

Figure 4. Status of red, SWIR1 and SWIR2 

discrimination. 

2.3.2. Built-up features extraction from the red and 

SWIR1 bands 

The built-up information in the red and SWIR1 is 

important, but highly mixed with other features. The intent 

is to create a new pixel representing the built-up in these 

two bands and add it to the SWIR2 built-up information. 

The approach through the geometric mean was chosen, 

because in image processing, the geometric mean filter is 

meant to smooth and reduce noise (Gonzalez, 2002). The 

output image G(x,y) is given by: 

𝑮(𝒙, 𝒚) = [∏ 𝑺(𝒊, 𝒋)

𝒊,𝒋𝝐𝑺

]

𝟏

𝒎𝒏

(1) 

Where S(x,y) is the original image, and the filter mask is 

m by n pixels. Each pixel of the output image at point (x,y) 

is given by the product of the pixels within the geometric 

mean mask raised to the power of 
𝟏

𝒎𝒏
 (Gonzalez, 2002). 

The graphical representation and mathematical expression 

of the geometrical mean that eases the red and SWIR1 

implementation is the following: (Fig.5) 

 

Figure 5. The geometric mean illustration 

In addition, while proposing the EBBI algorithm, As-

syakur (2012) recognized that a root function enables to 

cluster the numbers that contrast identical objects based 

on the different levels of reflectance values. Therefore, the 

equation for the new pixel was posed as follows: 

𝑮(𝑹𝒆𝒅, 𝑺𝑾𝑰𝑹𝟏) = √𝑹𝒆𝒅 ∗ 𝑺𝑾𝑰𝑹𝟏                          (2) 

Where Red is 𝒍𝟏, according to its lower built-up 

information than SWIR1 which considered 𝒍𝟐. 

The sampling of built-up pixels on the stacked images 

confirms the value of the pixel created to be newly 

informative. (Fig.6) 

 
Figure 6. Three built-up pixels (left) and their 

informative values (right). 
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When the SWIR2 is regressed by the red, SWIR1 and the 

new band, the determination coefficients, 𝒓𝟐 are 

respectively 0.83, 0.88 and 0.93. (Fig.7)  

 

 

 
Figure 7. Linear regressions assessment 

 

2.3.3. Technical assumptions and proposed method 

The tests and approaches above have helped to formulate 

three technical assumptions justifying the proposed 

process: 

i) the SWIR2 is the main spectral band for built-up 

extraction with less noises; 

 ii) the square root band is the best value to extract the 

built-up from red and SWIR1 bands with less noise; 

 iii) the addition of the two previous, and the subtraction 

of the whole red and SWIR1 bands will minimize the 

mixed-pixel noise. 

The statements on the built-up extraction and noise 

reduction led to the formulation of the Normalized 

Difference Built-up and Surroundings Unmixing Index, 

NDBSUI as the following ratio: 

𝑵𝑫𝑩𝑺𝑼𝑰 =
(𝑺𝑾𝑰𝑹𝟐+√𝑹𝒆𝒅∗𝑺𝑾𝑰𝑹𝟏)−(𝑹𝒆𝒅+𝑺𝑾𝑰𝑹𝟏)

(𝑺𝑾𝑰𝑹𝟐+√𝑹𝒆𝒅∗𝑺𝑾𝑰𝑹𝟏)+(𝑹𝒆𝒅+𝑺𝑾𝑰𝑹𝟏)
            (3) 

Its efficiency in mapping the built-up was assessed using 

the overall accuracy and the kappa coefficient (USGS, 

1990). 

3. RESULTS AND DISCUSSIONS 

3.1. Visual patterns and accuracy assessment  

The NDBSUI map is positively stretched [0.08-0.245] and 

its visual trends match the built-up on the stacked image. 

Using the Support Vector Machine algorithm, the stacked 

image as well as the NDBSUI were classified. Then after, 

the stratified random sampling technique experimented by 

Congalton (2009) was used to assess the index accuracy 

displaying 300 locations. From that, the NDBSUI was 

proven efficient in matching the built-up area with an 

overall accuracy of 95.5% and a kappa coefficient of 

0.908. (Fig.8) 

When zooming into the AOIs, the index image has shown 

ability to clearly discriminate the others land cover 

categories from the built-up (Fig.9). The accuracy 

assessment was performed on 100 locations (pixels) for 

each AOI. The OA are 100%, 96.59% and 96.58%, with 

KC of 1, 0.92 and 0.93, respectively, in the built-up, wet 

soil and dry soil/rocky dominating AOIs. It gives an 

average OA of 97.8%, for a KC of 0.95. 

Figure 8. Visual results of the built-up extraction. From 

left to right and top to down, the stacked image (a), the 

binary classification image highlighting built-up (b), the 

NDBSUI stretched (c) and binary views (d). 
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Figure 9. The NDBSUI unmixing suitability. 1, 2 and 3 

represent the three AOIs while a, b, c and d are the 

stacked, binary classification, NDBSUI stretched and 

binary views. 

 

3.2. Comparative efficiency with existing methods 

Further, the suitability of the NDBSUI in highlighting 

built-up features was assessed in comparison to the EBBI, 

NDBI and UI (Fig.10). The choice of these three indices 

is justified by their utilization of SWIR1 or SWIR2 as 

main wavelengths for built-up extraction. The built-up 

extraction trends are generally the same. However, from 

its stretching [0.08-0.245], the NDBSUI extract the built-

up only in positive ranges, conversely to the EBBI [-

0.41817-0.659394], NDBI [-0.204301-0.340909] and UI 

[0.4-0.491228] (Fig.10, Top line). To compare their 

accuracies, 300 locations were also displayed using the 

binary images. They gave OA of 93.5%, 92.86% and 

92.81%, with KC of 0.87, 0.8564 and 0.8561 respectively 

for EBBI, NDBI and UI (Tabl.2). 

 

 
Figure 10. Indices maps. The top line shows stretched 

maps and bottom binary ones. 

 
Index Built-up Non-built-up OA KC  

PA UA PA UA 

NDBSUI 91 98.39 98.8 93.62 95.51 0.9076 

EBBI 100 88.51 87 100 93.51 0.8701 

NDBI 97.5 89.6 87.8 97.01 92.86 0.8564 

UI 93.5 92.4 92 93.24 92.81 0.8561 

Table 2. Compared accuracies 

 

At larger scales of AOIs, the visual patterns show that the 

three others indices had helped to highlight built-up from 

other land cover categories, especially in the built-up and 

wet soil dominating AOI (Fig.11). Moreover, in the third 

AOI mixing built-up, dry soils, rocks and stones, the 

discrimination is more effective and there is low confusion 

than in the three other indices. Table 3 gives the details of 

the accuracies in the AOIs. 

 
Index AOI 1 AOI 2 AOI 3 Average AOIs 

OA KC OA KC OA KC OA KC 

NDBSUI 100 1 96.5 0.92 96.8 0.93 97.8 0.95 

EBBI 98.9 0.97 96.5 0.93 91.7 0.84 95.7 0.91 

NDBI 96.8 0.93 94.1 0.88 95.7 0.91 95.6 0.91 

UI 97.8 0.95 94.2 0.88 93.6 0.87 95.2 0.90 

Table 3.  Compared accuracies in the AOIs 

 

Figure 11. The binary indices maps on the AOIs. From 

top to bottom, 1, 2 and 3 represent the AOIs. From the 

left to the right, a, b, c, d and e refer to Landsat-8 OLI 

original image, NDBSUI, EBBI, NDBI and UI. The 

circles represent the areas with different detection 

patterns. 

 

The last assessment of the NDBSUI efficiency was 

comparing the statistics of land cover category areas. 

Using the binary classified image, the built-up areas 

extracted were compared (Tabl.4). According to the 

classified image, the built-up is extended over 13531.32 

hectares and the other land cover categories cover 

18218.97 hectares, for a total of 31750.29 hectares. The 

NDBSUI on its side detects built-up on 15943.95 hectares, 

and the non-built-up over 15806.25 hectares, for a total of 

31750.2 hectares. This area is higher by 2412.63 hectares 

from classified image built-up area (Fig.12). When 

extending statistical analysis to other indices, the built-up 

areas of EBBI, NDBI and UI are higher by, respectively, 

5035.41 hectares, 4583.34 hectares and 3328.29 hectares 

from the classified reference image. This confirms the 

efficiency of the NDBSUI to reduce the confusion 

between classes, better than the three other indices. 

 

Figure 12. Built-up area per index 
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3.3. Test-validation on the five independents sites 

The first two cities of Yokadouma and Kumba, represent 

the deep rainy season respectively with bimodal and 

monomodal rainfall (see Fig.2a), where soil is less 

exposed, gave the best visual as well as statistical 

appraisal of the built-up area. The visual patterns (fig.13) 

as well as the high overall accuracies and kappa 

coefficients testify the satisfactory application of 

NDBSUI (Yokadouma: OA=98.9%& KC=0.88; Kumba: 

OA=97.5% & KC=0.947), comparatively to EBBI, NDBI 

and UI.  

 

Furthermore, the test was performed for the cities of 

Foumban and Ngaoundéré, representing the bio-climatic 

transition between the wet and the dry lands. They are 

respectively the validation sites for the western highlands 

and the high Guinea savannah, with a low forest cover and 

mixing of soil with the built-up. Visually, the NDBSUI 

has provided a better appraisal of the built-up than the 

other indices have (Fig.13). Statistically, the overall 

accuracies and kappa coefficients scores support the high 

performance of the NDBSUI (Foumban: OA=97.06% & 

KC=0.918; Ngaoundéré: OA= 95.3%& KC=0.89).  

 

The last validation site is the city of Garoua, 

corresponding the sub-saharian bio-climatic zone, mostly 

dominated by sands and transitioning from the shrubs to 

the desert. The NDBSUI after highlighting the built-up 

area according to the stacked image and the classified map 

had shown less confusion with the non-built-up area as 

well as the highest accuracy scores (OA=74.8% & 

KC=0.42).  

The overall accuracies and kappa coefficients are recorded 

in Table 4. 

Inde

x 

Yokadouma Kumba Foumban Ngaoundéré Garoua 

OA KC OA KC OA KC OA KC OA KC 

NDB

SUI 

98.

9% 

0.8

8 

97.

5% 

0.9

47 

97.0

6% 

0.9

18 

95.2

9% 

0.8

94 

74.8

6% 

0.4

21 

EBB

I 

97.

9% 

0.8

22 

92.

2% 

0.8

08 

76.2

5% 

0.4

57 

91.2

% 

0.8

14 

63.6

8% 

0.2

2 

NDB

I 

98

% 

0.8

24 

97.

8% 

0.9

52 

65.4

% 

0.3

0 

88.3

% 

0.7

57 

56.5

% 

0.1

05 

UI 99

% 

0.9

18 

97.

1% 

0.9

38 

75.6

8% 

0.4

94 

91.2

% 

0.7

97 

58.4

% 

0.0

24 

Table 4. Validation sites accuracy 

 Figure 13. Indices maps on the validation sites. The top 

box maps represent the Landsat8-OLI and the indices 

maps in stretched values. Read top-down. Yokadouma 

(a), Kumba (b), Foumban (c), Ngaoundéré (d) and 

Garoua (e). Read left-to-right. Landsat-OLI (1), 

NDBSUI (2), EBBI (3), NDBI (4) and UI (5). The bottom 

maps box represents the classification and the indices 

maps in binary values. Read in the same order. 

 

4. CONCLUSIONS 

This study has addressed the problem of mixed-pixels 

between built-up and other surrounding features. The 

theory related to the red, SWIR1 and SWIR2 wavelengths 

in the built-up extraction, as well as reflectance analysis 

on the AOIs has helped to understand the mixed pixels and 

create the NDBSUI algorithm. The resulting accuracies 

were satisfactory on the experimental site of Yaoundé, as 

well as in the five validation sites. Despite its efficiency in 

extracting and unmixing built-up from surrounding 

features, some uncertainties related to the spatial 

resolution constraints that were part of challenges to 
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overcome, and the bioclimatic and ecological issues that 

emphasize mixed pixels extension remain to be addressed. 

Ongoing improvements are actually conducted to point 

out these noise issues from the brightness temperature and 

darkness approach.  
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