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ABSTRACT: 

 

Surveying an area with small, unoccupied aerial systems (UAS) equipped with a lidar mapping payload—absent permanent, stable, 

geometrical reference surfaces—demands accurate, repeatable data collection procedures. While relative error within a single UAS 

lidar dataset may reveal itself in strip misalignment, absolute error (particularly horizontal error) can prove more difficult to detect, 

casting doubt upon the quality of both individual surveys and time change analyses of multiple surveys of the area. To gain insight on 

the UAS lidar error budget, this study presents an analysis of multiple UAS lidar surveys over a set of accurately surveyed geometric 

checkpoints.  Each flight’s trajectory was processed multiple times using multiple static GNSS base observations, both autonomous 

and set over surveyed monuments, at varying distances from the study site. Custom algorithms were used to mensurate the geometric 

targets detected in each UAS lidar survey's point cloud, allowing for precise comparison of both absolute horizontal and vertical 

accuracy of each survey against the rigorous ground survey. The results of the analysis suggest that high horizontal accuracy can be 

achieved under a variety of conditions, whereas vertical accuracy is sensitive to the quality of ground control. and a discussion of the 

results explores the ultimate goal of isolating and understanding the sources and magnitudes of error in the UAS lidar error budget. 

 

 

1. INTRODUCTION 

The popularity of UAS lidar mapping continues to grow, 

implying a growing reliance upon the method in both research 

and industry. For many UAS lidar surveys, two of the main 

components used are considered survey-grade (i.e highly 

accurate, tactical-grade IMUs and geodetic-grade GNSS 

receivers); however, some of the commonly used lidar sensors, 

such as the Velodyne family of rotating multibeam sensors, are 

relatively inexpensive and known to researchers as noisy and 

unstable to a degree which may preclude one from asserting that 

a UAS lidar mapping product is survey grade. While the main 

source of error may be the sensor, ascertaining the absolute 

accuracy of a UAS lidar system must be approached holistically, 

examining the effects of the static GNSS base station, the 

trajectory solution, and the resulting point cloud characteristics. 

Analyzing the accuracy of a lidar point cloud typically relies 

upon flat, rigid surfaces visible in the study area, such as roofs or 

paved surfaces. But as the prevalence of UAS lidar grows, so too 

does the scope of the surveys undertaken by practitioners. As the 

method gains popularity in forestry, geomorphology, and 

ecology, to name a few, the likelihood decreased of human-made 

reference structures existing in the scene. 

 

While vertical-only checkpoints on non-geometrical surfaces 

(assuming they are not occluded, e.g. by vegetation or tree 

canopy cover) can be surveyed in the field and checked against a 

point cloud with relative ease, the problem of checking the 

horizontal accuracy of the point cloud remains. The solution to 

this issue in the natural environment is to deploy geometrical 

targets in the scene. A few approaches using intensity-based, flat 

targets have been proposed with some success (Csanyi and Toth, 

2007; Wallace et al., 2016). These approaches are less reliable in 

the horizontal than the vertical due to the geometry of the flat 

targets (Wallace et al., 2012), and their reliance upon intensity is 

problematic considering the observed low quality of intensity 
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readings in the popular Velodyne family of rotating multibeam 

sensors (Kidd, 2017). 

 

A recent solution for an artificial geometrical target for use in a 

natural scene is a lightweight, foldable pyramid that allows 

mensuration in the point cloud based on structure alone. The 

pyramid also has a reference point—the apex—which can be 

both mensurated and surveyed in the field to obtain not only its 

vertical but also its horizontal position (Wilkinson et al, 2019). 

Thus a true 3D assessment of the point cloud can be undertaken, 

which is not often practiced (Kim et al., 2019). 

 

One method of robust assessment of the accuracy of a point cloud 

would be to compare the positions of mensurated geometrical 

features to their ground surveyed positions. Such an assessment 

would be limited in scope by the accuracy of the ground survey. 

Many studies of UAS lidar accuracy use RTK GNSS (Bakuła et 

al., 2017) or terrestrial laser scanning (TLS) of unknown 

provenance (Jozkow et al., 2016) as the basis of comparison; 

however, best practices dictate that the reference data be at least 

four times more accurate than the data product whose accuracy 

is being assessed. 

 

The calibration of the hardware on the lidar mapping payload is 

a crucial component of the UAS lidar error budget (Habib), 

particularly the position and attitude of the lidar sensor with 

respect to the INS frame. The boresight and leverarm parameters 

of the components of the lidar mapping payload are nominally 

unchanging, but experience with Velodyne sensors has shown 

that the position and attitude of the scanner head can change over 

time. 

 

The primary objective of this study is to present a method of 

analysing the absolute accuracy of a UAS lidar point cloud which 

accounts for the issues mentioned above, and to apply the method 

to the UAS lidar mapping system on hand (Section 2.2). The 
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absolute accuracy is deduced from a comparison of the 

mensurated position of geometric targets within the UAS point 

cloud to the conventionally surveyed position of those same 

targets. The validity of this comparison is supported by rigorous 

analysis of the accuracies of the conventional survey and the 

ground control upon which it is based, and the UAS lidar system, 

i.e. the trajectories (or navigation solutions) and the static GNSS 

base stations used to solve for them, the boresight and leverarm 

components of the payload, and characteristics of the laser 

returns. The comparison takes place the ground survey of the 

geometric targets and a total of 18 UAS lidar datasets were 

compiled from three flights and six independent static GNSS 

base stations.  

 

2. METHODS 

2.1 Study site 

The study was conducted at the University of Florida/IFAS Plant 

Science Research and Education Unit near Citra, Florida, USA. 

The site was chosen for safety of operations, ease of access, open 

skies for quality of GNSS observations, and the large available 

area. (One of the study objectives was to ascertain the absolute 

accuracy of a typical UAS lidar survey; therefore, the flights were 

designed to have flight lines of reasonable length.) 

 

 
Figure 1. Overview of study site. Control points A-F (magenta) 

labelled, and target locations shown as white triangles. The area 

in the southeast corner was avoided so as not to disturb another 

experiment in progress. (Base imagery courtesy Google Earth) 

 

2.2 Materials 

The UAS lidar mapping payload used for this study was the 

Phoenix LiDAR Systems SCOUT-32, an integration of a 

Velodyne HDL-32E laser scanner and a NovaTel GNSS/INS 

navigation system. The HDL-32E is a rotating multibeam sensor 

with a 41.33° field of view which rotates 360° with respect to its 

vertical axis, with typical ±2 cm range accuracy and 0.1 – 0.4° 

angular resolution. The NovaTel navigation system provides 1 

cm horizontal and 2 cm vertical accuracy and 0.1 mrad (roll, 

pitch) and 0.33 mrad heading accuracy (RMS). 

 

All static GNSS observations were made with one of six identical 

Topcon HiperLite+ GNSS receivers. The HiperLite+ is a dual-

frequency, GPS+GLONASS receiver with multipath mitigation, 

and exhibits a static survey accuracy of 3 mm + 0.5 ppm (× 

baseline length) horizontal and 5 mm + 0.5 ppm vertical. 

 
2 NGS OPUS, the service used for the adjustment of the GPS survey, uses 

only GPS observations. 

The horizontal ground control and target surveys were conducted 

with a Topcon GPT-3005 total station and retroreflector prism. 

The GPT-3005 touts a 3 mm + 2 ppm range accuracy and angle 

measurement capabilities of 1” precision and 5” accuracy. The 

vertical ground control and target surveys were conducted with 

the Leica Sprinter 200 digital level with aluminum barcode staff 

for electronic readings, which exhibits height measurement 

accuracy of 1.5 mm/km (1𝜎) and 0.6 mm per electronic reading. 

 

The targets used for the study were corner-cube, trilateral 

pyramids approximately 1.1 m along each base and about 0.4 m 

above ground at the apex. The function of these targets is to allow 

for precise mensuration of the position of the reference point—

the apex—both from a dense, 3D point cloud and from a ground 

survey with total station and digital level. 

 

 
Figure 2. The geometric targets with approximate dimensions 

when deployed (figure courtesy Wilkinson et al., 2019). 

  

2.3 Ground survey of control and targets 

To survey the targets accurately and reliably for comparison 

against the UAS lidar survey, a network of ground control was 

established first. A total of six 60 cm × 1.25 cm iron rods with 

scored tops were each set about 3 cm below the surface of the 

natural ground around the perimeter of the study area (Figure 1). 

A rigorous GPS2 network survey was then conducted to obtain 

the initial positions of these six control points. Three sets of five-

hour, co-temporal static observations over each monument were 

collected 2020 August 12, 13, and 14, for a total of 18 static 

sessions. 

 

For each observation on each day, the same receiver was used 

over the same monument. The tripods were left in place, and the 

antennas and tribrachs were reset at the beginning of each 

session. This resulted in the same slant height (therefore the same 

antenna reference point height) for each observation over each 

monument, which was verified at the beginning and the end of 

each session.  

 

The set of static sessions were adjusted using the Online 

Positioning User Service (OPUS), a tool developed by the 

National Geodetic Survey (NGS) to allow users to receive via 

email the geodetic coordinates of a static GPS observation. 

OPUS-Projects is a more sophisticated software that allows 

processing and adjustment multiple static sessions while 

allowing the user to interact with, visualize, and manage the 

adjustment process. Adjustment of the static observations is done 

with respect to Continually Operating Reference Stations 

(CORS) in the immediate area of the study site, providing both a 

network of baselines to known points and a means of applying 
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tropospheric corrections. A total of nine CORS were suggested 

by OPUS-Projects as suitable and thus used for the adjustment. 

 

The control points were also surveyed via total station and digital 

level on 2020 August 19 and 20. Together with the solutions 

provided from OPUS-Projects, two unified, weighted least 

squares (WLS) adjustments—one horizontal and one vertical—

were conducted to determine the final coordinates to be held for 

the control points. The weights for each observation were derived 

from the OPUS-Projects solution (GPS) and the manufacturer 

specifications for the total station and digital level. The 

adjustments were conducted via custom Python code and 

Microsoft Excel spreadsheets. 

 

On 2020 August 18, the day of the UAS lidar collections, a total 

of 28 geometric targets were placed in the scene and secured in 

place with steel spikes. The horizontal location of each target was 

measured via total station (angle and distance) from at least two 

setups, and a series of level runs from one control point to the 

next were run through the targets such that each target’s elevation 

was measured at least twice. The final held coordinates of each 

target was solved by averaging these observations.  

 

2.4 UAS lidar data collection and processing 

2.4.1 Collection. On 2020 August 18, three UAS lidar data 

collections were conducted over the study area at nominal heights 

above ground level (AGL) of 40 m, 50 m, and 60 m. Each of the 

three flights were flown in a typical boustrophedonic pattern with 

two perpendicular flight lines, at 6 m/s forward speed and 50% 

swath overlap at 90° downward field of view. 

 

 
Figure 3. Overview of the 60 m AGL flight plan. 

 

Flying height above 

ground level (AGL) 
40 m 50 m 60 m 

Swath overlap 

(90° downward FOV) 
50% 

Forward speed 

[m/s] 
6 m/s 

Nominal point density 

[pts/m2] 
1000 850 700 

Table 1. UAS lidar flight parameters. 

 

Based on correspondence with NovaTel, the GNSS/INS 

equipment manufacturer, and Phoenix LiDAR Systems, the 

payload integration company, the typical UAS lidar collection 

flight is initiated by flying the payload in a particular calibration 

pattern. This pattern consists of (1) a five-minute period of static 

alignment after powering on the payload, and (2) a kinematic 

alignment that consist of (a) flying in a straight, horizontal line at 

cruising speed for at least six seconds, and (b) conducting a series 

of figure-eights until the reported attitude uncertainty covariance 

(which can be monitored in real time via wifi) reaches an 

empirically derived level of <0.009°, which has been found to be 

optimal for high-quality trajectory solutions. This process is 

repeated in reverse order at the end of data collection to facilitate 

a forward and reverse, tightly coupled, multi-pass trajectory 

solution. The three flights were conducted consecutively, each  

 

1. Power on 

2. 5 min static alignment 

3. Take off 

4. Kinematic alignment (alignment then figure-eights) 

5. 40-m AGL mission 

6. 50-m AGL mission 

7. Landing and swapping of batteries, using redundant 

battery power to keep continuous power to the payload 

8. 60-m AGL mission 

9. Kinematic alignment in reverse order 

10. Landing 

11. 5 min static alignment 

12. Power off 

 

2.4.2 Processing. On the day of the flights, a total of six static 

GNSS receivers were operated to use for the subsequent 

trajectory processing. One was set over control point A, and the 

other five were set arbitrarily at distances of 0 km, 1 km, 5 km, 

10 km, and 20 km from the study site. This allowed for the 

processing of six trajectory solutions in Waypoint Inertial 

Explorer v8.70 for each flight. Using these trajectory solutions, 

each of the three flights was then georeferenced in Phoenix 

LiDAR Systems’ SpatialExplorer v4.0.3, keeping only those 

returns (1) within a 90° downward field of view. This process 

resulted in a total of eighteen UAS lidar point clouds. 

 

2.4.3 Boresight calibration. To evaluate the accuracy of the 

boresight calibration of the lidar payload, a custom algorithm 

utilizing an iterative closest point (ICP) variant (Rusinkiewicz 

and Levoy, 2001) was applied to one of the eighteen point clouds 

(under the assumption that the boresight parameters did not 

change during collection) to capture significant corrections to the 

boresight parameters. The process used to identify these 

corrections consists of three steps: 

 

1. Interpolation of point time data. A number of the 

geometric targets in the scene were isolated and, 

through interpolation, the isolated points’ GPS times 

were correlated with the trajectory solution. 

2. Separation of data by swath.  

3. Use of ICP on conjugate features. Finally, a least 

squares adjustment based on the ICP method 

minimized the point-to-point distance of each isolated 

target’s like points. These closest points were used to 

solve for the corrections to the initial boresight rotation 

matrix in the INS frame, from with the three boresight 

angles are derived. The RMSE of conjugate points and 

the standard deviation of unit weights per boresight 

parameter were examined to assess their significance 

for each correction identified. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-3-2021 
ASPRS 2021 Annual Conference, 29 March–2 April 2021, virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-105-2021 | © Author(s) 2021. CC BY 4.0 License.

 
107



 

2.5 Geometric target mensuration 

2.5.1 Template fitting. Initially, a template matching the 

physical construction of the geometric targets are fitted to the 

targets present in the point cloud. An iterative least-squares 

solution is used to fit the template to the target in the point cloud. 

The full algorithm is presented in (Wilkinson et al., 2019); a brief 

outline is presented here. 

 

1. The section of the point cloud containing the target is 

manually identified and isolated. 

2. The template is initialized on the isolated points. The 

reference point of the template, its apex, is initialized 

as the highest point present in the isolated set. The 

template is oriented as level, with one of its three facet 

edges aligned in the east-west direction. 

3. The iterative least squares solution, which minimizes 

point-to-plane distances, is used to solve for the 

corrections to the template’s initial position and 

attitude described in step 2.  

4. Upon convergence, the final position of the apex is held 

as the position of the mensurated target, and each point 

in the solution is assigned to one of the three facets of 

the template. 

 

Prior experiments indicate that typical UAS lidar flight 

parameters with the HDL-32E and similar sensors provide 

enough returns from the geometric targets to mensurate the 

reference point (the apex) with an estimated uncertainty of ≤1 

cm (1𝜎) in X, Y, and Z (Wilkinson et al., 2019). 

 

 
Figure 4. Overview of the pyramid template fitting algorithm. 

 

2.5.2 Fitting and intersection of planes. To further verify the 

results of the template fitting, a plane was fit to each facet’s point 

set, and the resulting intersection of the three facet’s planes was 

held as a second solution for the reference apex. The method used 

to find the best-fit planes for each fact point set, and the resulting 

intersection of the three planes, is not explicitly stated in the 

reference material used for this study, so the methods are 

explained below. 

 

The nonlinear least squares adjustment used to solve for the best-

fit plane to a facet point set is expressed as 

 

[A
TA CT

C 0
] [
Δ1
Δ2
] = [

ATL1
L2

] (1) 

 

whose terms and solution steps, as described in (Ghilani and 

Wolf, 2017), are defined below. 

 

To fit a plane to a set of 𝑛 points, one may choose to minimize 

the sum of squares (least squares) of distances from each point to 

the solved plane. The adjustment is built from the observation 

question 

 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (2) 
 

which is the equation of a plane in 3-space. The adjustment also 

introduces the constraint equation 

 

𝑎2 + 𝑏2 + 𝑐2 = 1 (3) 
 

which constrains the solution for the plane’s normal vector 𝐧 =
〈𝑎, 𝑏, 𝑐〉 to unit length. 

 

While the observation equation is linear, the constraint equation 

is second-order, therefore necessitating the use of a nonlinear 

least squares adjustment. A nonlinear least squares adjustment 

solves for a nonlinear system of equations by using a first-order 

Taylor series approximation where some observed value 𝑙 is 

related to a function of the unknown parameters in the model. In 

this case, the unknown parameters are the plane coefficients 

𝑎, 𝑏, 𝑐, 𝑑 and the observed value 𝑙 = 0 (and 𝑙 = 1 for the 

constraint equation).  

 

The first-order Taylor series approximation of both the 

observation equation and the constraint equation can be 

expressed as 

 
𝑙 = 𝑓(𝑎, 𝑏, 𝑐, 𝑑) ≈ 𝑓(𝑎0, 𝑏0, 𝑐0, 𝑑0) +

(
𝜕𝑙

𝜕𝑎
)𝑑𝑎 + (

𝜕𝑙

𝜕𝑏
)𝑑𝑏 + (

𝜕𝑙

𝜕𝑐
)𝑑𝑐 + (

𝜕𝑙

𝜕𝑑
)𝑑𝑑 (4)

 

 

where 𝑎0, 𝑏0, 𝑐0 , 𝑑0 are the initial approximations of the 

unknowns. (For the constraint equation, because the unknown 𝑑 

is not present, 𝜕𝑙/𝜕𝑑 = 0.) After selecting initial 

approximations, the remaining unknowns are the correction 

terms 𝑑𝑎, 𝑑𝑏, 𝑑𝑐, 𝑑𝑑. 

 

The above is then expressed in matrix form. First, the Jacobian 

matrix A is formed from the partial derivatives of the set of 𝑛 

observation equations with respect to the unknown plane 

parameters: 

 

A = [

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
⋮ ⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛 1

] (5) 

 

where the ith observed point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). 
 

The L1 vector contains the constant values of the observation 

equations minus their values as computed using the initial 

approximations, which is formed from rearranging EQUATION 

##: 

 

L1 = [

0 − (𝑎0𝑥1 + 𝑏0𝑦1 + 𝑐0𝑧1 + 𝑑0)

0 − (𝑎0𝑥2 + 𝑏0𝑦2 + 𝑐0𝑧2 + 𝑑0)
⋮

0 − (𝑎0𝑥𝑛 + 𝑏0𝑦𝑛 + 𝑐0𝑧𝑛 + 𝑑0)

] (6) 

 

Finally, the correction vector which houses the correction terms 

is expressed as  

 

Δ1 = [𝑑𝑎 𝑑𝑏 𝑑𝑐 𝑑𝑑]T (7) 
 

The Jacobian matrix C is formed from the partial derivatives of 

the constraint equation: 

 

𝐶 = [2𝑎0 2𝑏0 2𝑐0 0] (8) 
 

Because there is only one constraint equation, L2 is of size 1 × 1: 

 

Coarse snip 

Initial fit 
Iter. 

LS w/ 

RANSAC 

Solution 
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L2 = [1 − (𝑎0
2 + 𝑏0

2 + 𝑐0
2)] (9) 

 

The value Δ2 is an unused variable that is added only to preserve 

the dimension property of matrix multiplication; its resulting 

value in the solution is arbitrary and useless. 

 

The corrections to the approximations are then found by  

 

[
Δ1
Δ2
] = [A

TA CT

C 0
]
−1

[
ATL1
L2

] (10) 

 

The corrections in Eq. 10 are applied to the initial 

approximations, the updated approximations are applied to Eq. 8, 

and the process is iterated until convergence. 

 

Once converged, once each point used in the adjustment has an 

associated residual, the z-score of each residual with respect to 

the standard deviation of all residuals is found. Those points with 

a z-score >3 are removed, and the adjustment is repeated without 

the offending points. This process is repeated until no outliers are 

found. 

 

It bears noting that there are faster and more robust methods of 

plane fitting (e.g. singular value decomposition or RANSAC), 

but the above method was chosen to facilitate classical error 

propagation. 

 

3. RESULTS 

3.1 Ground control and target survey 

Selected results of the WLS adjustments for both the horizontal 

and vertical networks are provided in Table 2. Recall from 

Methods that both the horizontal and vertical WLS adjustments 

took as input the OPUS-Projects solutions for the control points. 

For each of the six control points, the reported precision of the 

results were about 1 mm horizonal and 2 mm vertical (1𝜎). 

 

Observation 

type 
Horizontal Vertical 

Vertical 

(deweighted) 

GPS obs. 0.30 mm 10 mm 12 mm 

Distances 4.0 mm - - 

Angles 5.4” - - 

Elevations - 3.7 mm 2.5 mm 

𝜒2 test Pass Fail Pass 

Table 2. RMSE of residuals of observations after WLS 

adjustments. The deweighted vertical adjustment indicates that 

the a priori standard deviations of the OPUS-Projects elevations 

were increased, thus given less weight. 

 

Both adjustments were further verified with a 𝜒2 goodness-of-fit 

test (Ghilani and Wolf, 2007). The horizontal adjustment passed 

the goodness-of-fit test, but the vertical adjustment failed in the 

upper bounds when holding the weights of observations provided 

by OPUS-Projects. Failure of the goodness-of-fit test may 

indicate a failure of the stochastic model; in other words, the 

residuals of some observations are higher than their a priori 

standard deviations. Indeed, the residuals of the OPUS-Projects 

GPS solution observations were higher than expected. While the 

digital level loop closed at 2 mm, the residuals of the 

adjustment—when holding the reported standard deviations of 2 

mm for the elevations of the control points—are 7, 8, and 14 mm 

for points D, E, and F, respectively. Increasing the a priori 

standard deviations of the OPUS-Projects observations to 10 mm 

brings the goodness-of-fit test within the acceptance region. This 

indicates a larger source of error in the OPUS-Projects solution, 

which is likely expected error from GPS observation, although 

the possibility of instrument error in the setups of the GPS 

receivers should not be dismissed. Regardless, considering these 

results, the final elevations for the survey control held the OPUS-

Projects elevation of control point A and the level loop 

differences; the vertical WLS adjustment was discarded (see 

Discussion). 

 

The ground survey of the targets was adjusted to the held 

coordinates above. As mentioned previously, each target was 

measured at least twice each with the total station (angle and 

distance) and with the digital level, and their final coordinates 

were the average of the observations. No blunders were detected 

in either the total station or digital level observations collected. 

 

3.2 Trajectory solutions 

The estimated standard deviation of position accuracy for the 

trajectory solutions as reported by Waypoint Inertial Explorer are 

presented in Table 3. For all trajectory solutions, the estimated 

standard deviation of attitude accuracy was about 0.004° (roll and 

pitch) and 0.015 – 0.020° (heading/azimuth). 

 

 40 m 50 m 60 m 

A 3.1/3.7/6.9 3.6/4.0/6.5 3.8/3.8/6.3 

0km 3.0/3.5/6.7 3.6/4.0/6.5 3.8/3.8/6.3 

1km 3.1/3.7/6.9 3.6/4.0/6.5 3.8/3.8/6.3 

5km 3.1/3.8/7.0 3.6/4.0/6.5* 4.2/4.2/8.0* 

10km 4.7/5.6/9.5 5.2/6.0/10.5* 5.5/5.7/9.8 

20km 5.6/6.7/14.5 5.3/6.0/10.5* 6.0/6.0/11.0** 

Table 3. Estimated standard deviation of position accuracy 

(E/N/U) [mm] as reported by Waypoint Inertial Explorer for 

each flying height and baseline distance. One asterisk (*) 

indicates an atypical range of variability in the estimated 

standard deviation; two asterisks (**) indicates a much greater 

range of variation, caused by a loss of fixed ambiguity. 

 

The held position of each static base receiver was solved using 

OPUS. The overall RMS for all six static solutions ranged from 

0.020 – 0.023 m. 

 

3.3 Boresight calibration 

The results of the boresight calibration procedure yielded 

insignificant corrections to the initial boresight parameters. 

While this was a valuable verification of the quality of the 

dataset, no corrections to the initial boresight parameters were 

applied to the point clouds in this study. 

 

3.4 Target comparison 

The template fitting followed by the subsequent step of fitting 

and intersecting three planes (see Section 2.5) yielded favorable 

results for all targets in the scene except for one: pyramid 24. The 

cause of the consistent failure of template fitting to this target is 

not known; regardless, this target has been excluded from the 

following results. A single pyramid from the 60 m AGL, 20-km 

baseline flight, pyramid 17, was removed as well (see Table 3). 

Overall, the RMSEs of the plane fit residuals for all targets range 

from 1 – 2 cm over an average of about 100 points per facet. 

While this can possibly be interpreted as a proxy for the 

individual point accuracy, the following results do not reflect 

individual point accuracy. 

 

The horizontal error of the mensurated targets to their ground 

surveyed positions is presented in Table 4. The results are 
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simplified to include all target sets from all 18 flights because of 

low variation among the sets.  

 
 Mean [m] Stdev [m] RMSE [m] 

n E N E N E N 

485 0.002 -0.006 0.031 0.023 0.029 0.018 

Table 4. Summary statistics of the horizontal error between 

mensurated and ground surveyed targets. Each target 

mensurated from each point cloud is included in the summary. 

 

The vertical error between the mensurated and ground surveyed 

targets is presented in Tables 5 and 6 and Figure 5. Much of the 

variability in the mean height error is likely a result of using the 

ad hoc positions of the various static base receivers. There is also 

an apparent positive height bias in the 40 m AGL set of point 

clouds (see Discussion). The 40 m AGL flight aside, the flights 

whose trajectories were processed holding the rigorously solved 

coordinates of control point A yielded the best results. 

 

AGL Base Mean [m] Stdev [m] RMSE [m] 

40m 

A 0.031 0.015 0.034 

0km 0.072 0.013 0.073 

1km 0.088 0.018 0.090 

5km 0.017 0.020 0.026 

10km 0.104 0.037 0.110 

20km 0.094 0.047 0.105 

50m 

A -0.004 0.012 0.013 

0km 0.039 0.013 0.041 

1km 0.041 0.014 0.044 

5km -0.033 0.013 0.035 

10km 0.021 0.022 0.030 

20km 0.039 0.016 0.042 

60m 

A 0.003 0.009 0.009 

0km 0.037 0.026 0.045 

1km 0.046 0.010 0.047 

5km -0.007 0.019 0.020 

10km 0.056 0.015 0.058 

20km 0.042 0.048 0.063 

Table 5. Summary statistics of the vertical error ΔH between 

mensurated and ground surveyed targets. The target count for 

each row n=27 except for the 60 m AGL, 20-km baseline flight 

(n=26). 

 

Base n Mean [m] Stdev [m] RMSE [m] 

A 54 -0.001 0.011 0.011 

0km 54 0.038 0.021 0.043 

1km 54 0.044 0.012 0.045 

5km 54 -0.020 0.021 0.029 

10km 54 0.038 0.026 0.046 

20km 53 0.040 0.036 0.054 

Table 6. Summary statistics of the vertical error summarized by 

static baseline. Because of the detected bias in the 40 m AGL 

dataset, their statistics are excluded from this table. 

 

 

 
Figure 5. Mean vertical error by baseline. The error bars 

indicate standard deviation. 

 

4. DISCUSSION 

4.1 Elevation from static GPS observations 

As mentioned in the Results section, the WLS adjustment of the 

OPUS-Projects elevation solutions and digital level loop was 

discarded in favor of holding only the digital level loop and a 

single elevation from the OPUS-Projects solution (point A). This 

decision was based primarily on the statistics presented in the 

Results section. To further confirm this decision, the comparison 

of the mensurated targets to the ground survey of targets was 

conducted twice, once holding the WLS adjusted elevations and 

again with the held level loop coordinates. When holding only 

the level loop, the mean differences between the mensurated 

targets and the ground-surveyed targets decreased favorably (i.e., 

toward zero) by 4 mm. While alone this is not definitive evidence 

that the decision to discard the WLS adjustment was correct, 

when taken together with the statistics of the WLS adjustment 

and the physical nature of GPS observations, it does further 

support the decision. 

 

On the topic of greater variability of the vertical component of 

GPS observations: the day-to-day variability in static solutions 

from OPUS is evident in the sets of static solutions processed 

through the service. Each control point was observed three times 

under favorable conditions (four times in the case of point A, 

counting the day of the flights), and the variation among each 

control point’s set of solutions ranges on the order of 5 cm. The 

roughly 4-cm bias present between the target comparison results 

holding the point A baseline versus the 0-km arbitrary baseline 

(the receiver for which was mere meters away from the receiver 

over point A) encapsulates this variability (Table 6). This 

highlights the need to use a stable monument whenever possible 

when surveying a site with UAS lidar, and to use the same 

monument when revisiting the site when surveying for changes 

in vegetation, topography, or other features of interest. 

 

4.2 Source of bias in laser ranging 

Inspection of the results of the target comparison in the 40-m 

AGL set of flights reveals what appears to be a positive bias in 

the height dimension, when compared with the 50-m and 60-m 
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AGL flights. One possible explanation for this is range bias in the 

scanner as a result of the scanner not being properly warmed up. 

A previous study reported an approximate warm-up time of over 

30 minutes was necessary for most of the HDL-32E’s 32 lasers 

to stabilize in their range measurements (Chan et al., 2013). The 

ranges were biased toward the scanner, which from the UAS pose 

would result in an apparent bias of higher elevation, which is 

what presents in this study. 

 

4.3 Interference in detecting targets 

As stated in Section 3.4, the results used for the mensurated 

targets came from applying the template fitting algorithm with an 

added step of fitting three individual planes to the mensurated 

target and calculating the planes’ intersection to hold as the 

reference point. Under perfect conditions, this extra step would 

yield identical results to the template fitting reference points, but 

this was not the case. The template fitting yielded results that 

exhibited a consistent positive height bias when compared to the 

results from the extra plane-fitting step. After visual inspection 

of both sets of results, the authors decided to hold the plane-fitted 

targets as the mensurated targets. One possible explanation for 

this bias is noisy or false returns from the base of the pyramid 

targets. The grass in the study area had grown to roughly 40 cm 

in height by the day of the flight, and despite efforts to tamp down 

the grass around the targets, visual inspection of the point clouds 

indicates this may not have been fully effective. Most of the 

returns from a pyramid will come from the base; if the base is 

partially or wholly occluded, this could lead to inaccurate 

template fitting. In this scenario, the extra plane fitting step 

appears to have helped counteract this speculated effect.  

 

4.4 Future work 

The authors plan to repeat this study in the near future with 

improvements in the study design made apparent from the study 

presented here. First, a study site devoid of tall grass or other 

obstructions to the targets will be used to avoid the suspected 

interference in the detection of the geometric targets. Also, to 

gain a more thorough understanding of the effect of static 

baseline length on the relative and absolute accuracies of a UAS 

lidar point cloud, a static GPS network survey will be conducted 

for the baseline observation points, such that their solved 

positions can be used in lieu of the arbitrary positions held from 

single, static OPUS solutions. Finally, a temporal analysis based 

on the one presented in (Chan et al., 2013) will be repeated using 

the laser scanner used in this study to verify the warm-up time 

and characterize the temporal range bias. Based on those results, 

the future set of UAS flights will be conducted with a proper 

warm-up period for the scanner. 
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