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ABSTRACT: 

3D road mapping is essential for intelligent transportation system in smart cities. Road features can be utilized for road maintenance, 
autonomous driving vehicles, and providing regulations to drivers. Currently, 3D road environment receives its data from Mobile Laser 
Scanning (MLS) systems. MLS systems are capable of rapidly acquiring dense and accurate 3D point clouds, which allow for effective 
surveying of long road corridors. They produce huge amount of point clouds, which requires automatic features classification 
algorithms with acceptable processing time. Road features have variant geometric regular or irregular shapes. Therefore, most 
researches focus on classification of one road feature such as road surface, curbs, building facades, etc. Machine learning (ML) 
algorithms are widely used for predicting the future or classifying information to help policymakers in making necessary decisions. 
This prediction comes from a pre-trained model on a given data consisting of inputs and their corresponding outputs of the same 
characteristics. This research uses ML algorithms for mobile LiDAR data classification. First, cylindrical neighbourhood selection 
method was used to define point’s surroundings. Second, geometric point features including geometric, moment and height features 
were derived. Finally, three ML algorithms, Random Forest (RF), Gaussian Naïve Bayes (GNB), and Quadratic Discriminant Analysis 
(QDA) were applied. The ML algorithms were used to classify a part of Paris-Lille-3D benchmark of about 1.5 km long road in Lille 
with more than 98 million points into nine classes. The results demonstrated an overall accuracy of 92.39%, 78.5%, and 78.1% for 
RF, GNB, and QDA, respectively. 

1. Introduction

Light Detection and Ranging (LiDAR) is becoming a leading 
technology in data acquisition, LiDAR is significant with its 
rapid, direct and accurate technique in capturing different objects 
with point density that covering each object with a sufficient 
number of points. In the past years, mobile mapping scanning 
(MLS) has taken a lot of interest and importance due to its 
advantages over airborne and terrestrial scanning systems. MLS 
is distinguished with a high point density and cover the vertical 
structures such as buildings’ facades. Mobile LiDAR scanning 
has a contribution in many applications that serve the government 
and private sectors such as city modelling, roadway detection, 
autonomous vehicles, etc.  The point cloud extracted from MLS 
is meaningless and has no information about classes of objects. 
Therefore, an effective processing should be applied, especially 
in roadways design and management (Yadav et al., 2015). The 
point clouds classification is essential step for any MLS data-
based application. Thus, the classification step has a great interest 
in several researches (Munoz et al., 2009; Weinmann et al., 2015; 
Xiong et al., 2011).  

The contribution of mobile point cloud in the extraction of road 
features such as ground surface, curb stone and light poles is a 
crucial and still under developing. The extraction went from 
individually search for each feature without considering any 
other features (Guan et al., 2014; Wang et al., 2015; Yan et al., 
2016), to extraction of all features using machine learning (ML) 
classifiers (Hackel et al., 2016; Weinmann et al., 2017, 2014, 
2013) . ML is the ability of the classifier to learn the experience 
from a pre-classified dataset automatically, and improves the 
classification ability of unknown dataset. It is also the process of 
solving any problem through getting known dataset, learning 
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from it and building a model that is able to expect unknown 
dataset (Burkov, 2019).  In most cases, automatic labelling any 
point cloud through ML classifiers is based on three main stages; 
neighbourhood selection, features extraction and the 
classification stage.  

In this paper, we evaluate three ML classifiers for mobile LiDAR 
point clouds data classification. A cylindrical neighbourhood 
selection method is first utilized to extract sufficient geometric 
LiDAR point features. The extracted features are then used an 
input to ML classifiers and finally, accuracy assessment of the 
three classifiers is presented. 

2. METHODLOGY

Our proposed methodology is divided into four steps as shown in 
Fig. 1. The methodology starts with data pre-processing followed 
by features extraction based on cylindrical neighbourhood 
selection. These features could be 3D or 2D geometric features, 
and are utilized for the classification process using three ML 
classifiers. Finally, an evaluation of the three classifiers is 
conducted to check the applicability of each classifier. 

2.1 Data Pre-processing 

A pre-processing step is first conducted to handle the huge 3D 
point cloud dataset in the training and testing processes. 
Unclassified points are removed as they affect the processing 
time and classification results. In addition, this step is required in 
case of creating the model with any known dataset. Another pre-
processing step is slicing of the dataset. Slicing is to divide the 
dataset into equal slices. The idea behind the slicing concept is 
reducing the processing time while finding neighbours of any 
point as described in the next section. Dataset slicing is based on 
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either equal distance along the longitudinal direction of the road 
or equal number of points especially in the case of organized data 
structure. Dataset slicing has a disadvantage at edge points as 
they do not have sufficient neighbour points. Therefore, to best 
find the neighbours of edge points of slices, a side overlap is 
provided for each slice. Thus, the neighbourhood selection 
algorithm searches for all points within the slice, in addition to 
two sides overlap.      

Figure 1. The workflow of the proposed methodology 

2.2 Neighbourhood Selection Method 

   Cylindrical neighbourhood selection is used to identify the 
surrounding points of a query point x in order to extract the 
required features as input of ML algorithms. The radius of the 
cylinder is defined in the 2D projection, while its height contains 
all points below and above the point x. (Zheng et al., 2018, 2017) 
implemented variant values of radius between 0.25 and 1.05 m. 
However, slight differences in results occurred between those 
different radius values. Increasing the radius would take more 
time to find the neighbours, and then more processing time which 
is not preferable.    

Figure 2. Cylinder neighbourhood selection definition; “r” is 
the radius of cylinder. The query point is in red colour, while 
the blue points are its neighbour points. 

2.3 Features Extraction 

From each point’s neighbourhood, the covariance equation is 
formatted from whole points within the neighbourhood, 
constructing a 3x3 covariance matrix C as defined in Equation 
(1). Both Eigen values and Eigen vectors are calculated from the 
covariance matrix. First subset of features is the covariance 
features as shown in Table (1). Those features are defined by 
(Weinmann et al., 2014, 2013)  using the normalized eigenvalues. 
The sum feature, in this research, is calculated from the raw 

values of Eigen values as deriving it from the normalized values 
is meaningless. The verticality feature, defined by (Demantké et 
al., 2011), is also considered and added to covariance subset. 
Another subset of features, derived previously by (Hackel et al., 
2016), is the moment subset. The third features subset is derived 
from height of points including the maximum difference in height 
within the neighbourhood as well as the standard deviation of the 
height values of whole points.   

𝐶 = ቀ 
ଵ

௄
∑ (𝑝௜ − 𝑝̅)(𝑝௜ − 𝑝̅)்௄

௜∈ே ቁ  (1) 

Where  K = number of points 
𝑝௜ = coordinates array of point I within the 
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Pi = the average coordinates array 
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Table 1. Point feature 

DATASET

PRE-PROCESSING

POINT FEATURES 
EXTRACTION

CLASSIFICATION

ASSESSMENT

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-3-2021 
ASPRS 2021 Annual Conference, 29 March–2 April 2021, virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-113-2021 | © Author(s) 2021. CC BY 4.0 License.

 
114



2.4 Classification 

Three ML classifiers, namely Random Forest (RF), Gaussian 
Naïve Bayes (GNB), and Quadratic Discriminant Analysis 
(QDA) are applied in this research. RF is an ensemble algorithm 
consisting of multiple tree decisions (Breiman, 2001), which 
combines multiple of weak learners to the sake of a stronger one 
(Weinmann et al., 2015). The simple and powerful GNB 
classifiers are predictive modelling and used for continuous data 
where the mean and standard deviation of the training data are 
used to show the distribution of the data. GNB algorithm also 
requires the same number of predictors and descriptors for linear 
parameters in a learning problem (Bishop, 2006; Gatziolis and 
Andersen, 2008). QDA detects a quadratic boundary between 
classes to isolate each class with single boundary. Shape of 
classes is also determined using the covariance of the classes, 
while their centre is the mean. Each classifier is used to construct 
a model from known dataset. The model is then evaluated using 
another part of the dataset which is not included in the training. 
The dataset is divided into two equal parts; training and testing. 
The training part is randomly divided into four equal portions and 
with equal contribution of each class in each portion. Four 
models are created with the four portions and they are locally 
evaluated using the rest of the training part. The best model is 
used to classify the testing part and evaluate the ML classifiers.  

3. STUDY AREA AND DATASET

The used dataset in this research is a part of Paris-Lille-3D 
benchmark belonging to NPM3D Benchmark suite research 
project which is available at http://npm3d.fr/paris-lille-3d. Paris-
Lille-3D dataset was acquired with the MLS prototype of the 
centre for robotics of Mines Paris Tech: L3D2. It is a Citroën 
Jumper equipped with an IMU (Ixsea PHINS in LANDINS 
mode), a GPS receiver (Novatel FlexPak 6), and a Velodyne 
HDL-32E LiDAR mounted at the rear of the truck with the axis 
of rotation with angle 30 degrees to the horizontal (Roynard et 
al., 2018).   

Lille part is a scanning of 1.5 km long road in Lille with more 
than 98 million points and available as two parts; Lille 1 and Lille 
2. It consists of nine classes including ground, building, pole,
bollard, trashcan, barrier, pedestrian, car and vegetation. Table 
(2) provides the percentage of each class. The point clouds 
density is between 1000 and 2000 points per square meter.   

Figure 3. Paris-Lille-3D dataset 

Label Class 

Ratio w.r.t 
whole data 

(%) 

0 Unclassified points 0.77 

1 Ground 58.01 

2 Building 28.08 

3 Pole 0.59 

4 Bollard 0.052 

5 Trashcan 0.26 

6 Barrier 2.79 

7 Pedestrian 0.042 

8 Car 3.63 

9 Vegetation 5.77 

Table 2. The percentage of each class to the dataset 

4. RESULTS AND DISCUSSION

Dataset slicing was implemented using equal number of points 
(250,000 pts./slice) in addition to two sides overlap with 50,000 
points each and a cylindrical neighbourhood was carried out 
through whole points to find their neighbours within a 0.20 m 
radius. The three subsets of features were then derived from the 
neighbourhood of each point and replaced the raw coordinates of 
points. The whole dataset with the new features was divided into 
two equal parts (i.e., training and testing). The training part was 
divided into the four portions as explained in the methodology to 
obtain the best model, while the testing part was used to evaluate 
that model for the three classifiers. 

For the evaluation process, four scores were used including the 
overall accuracy, precision, recall and f1-score. Overall accuracy 
was used as a primary score for the models. Other scores 
(precision, recall and f1-score) were used to individually evaluate 
the results of each class. Mobile LiDAR point clouds data of road 
environments are usually imbalanced, and two or three classes 
may consist more than 90% of the whole dataset. Consequently, 
any ML model may be confused and tend to classify most of 
points to the major class or classes. Therefore, the role of using 
precision, recall and f1-score is to evaluate the classifiers with 
datasets that have low percentages of classes.    In the three 
classifiers, the overall accuracy of RF, GNB and QDA was 
92.39%, 78.47% and 78.18%, respectively. Figure 4 shows the 
precision, recall and f1-score of the three different classifiers for 
each class.  

The three classifiers revealed, in terms of precision, recall and f1-
score close scores for ground class and relatively close scores for 
building class. This is attributed to that the ground and buildings 
classes contain the most LiDAR points. For instant, the precision 
of ground class was 98.11%, 96.66% and 97.68%, while the 
recall was 91.35%, 88.1% and 87.95% and f1-score was 94.61%, 
92.18 and 92.56% for RF, GNB and QDA, respectively. For 
building class, the precision was 95.60%, 76.27% and 81.21%, 
while the recall was 92.65%, 90.25% and 87.14% and f1-score 
was 94.1%, 82.67 and 84.07% for RF, GNB and QDA, 
respectively.  
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Figure 4. Precision, recall and f1-score of the three ML 

classifiers. 
 
Generally, the results showed that RF is much more effective 
than other classifiers. RF is also suitable to classes with less 
number of points such as poles, barrier, and trashcan. Therefore, 
classes with variant geometric characteristics require large scale 
of features to best distinguish between them. However, not all 
classifiers are able to handle all classes with huge number of 
samples as well as a lot of features. GNB and QDA classifiers 
were not able to achieve high scores for all classes. Only ground 
and building classes achieved close results for different 

classifiers. Ground and building were clearly distinguished due 
to their geometric shapes 2D planes, which were determined 
using Verticality feature. Thus, this is helpful for any classifier to 
best find most of points that belong to those classes.      
 

5. CONCLUSIONS 

The use of machine learning in 3D mobile LiDAR point cloud 
classification is still interesting to many researchers. In this 
research, we used a cylindrical neighbourhood selection method 
to identifying surrounding LiDAR points for features extraction. 
Three sets of point features, based on data geometry, were then 
extracted. Three different ML classifiers were finally evaluated 
for mobile LiDAR data classification. 
 
The RF, GNB and QDA revealed an overall accuracy of 92.39%, 
78.47% and 78.18%, respectively. Machine learning classifiers 
achieved outstanding results in extraction of multiple road 
features at the same time, coming over the traditional researches 
that focused on one road feature. Although they achieved 
relatively close scores for ground and building classes, RF 
achieved the highest scores for all classes. Taking the great 
difference in the amount of points between different classes into 
consideration, we evaluated the three classifiers using accuracy 
measures for each class, including precision, recall and f1-score. 
RF showed sufficient results especially for classes with low 
points' portion in the whole dataset.  
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