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ABSTRACT: 

 

Green energy is increasingly used due to the lack of traditional resources and the increase in environmental pollution, which badly 

affects our planet in all aspects of life including air, plant life, seas, oceans, etc. In this context, buildings’ rooftops extraction 

approach for photovoltaic (PV) potential estimation is presented into two main phases. First, rooftops detection from satellite images 

using image pre-processing techniques and a machine learning algorithm. The pre-processing steps include gamma correction, 

shadow, vegetation masking, kmeans, and connected components. Support Vector Machine (SVM) algorithm is then applied to 

extract rooftops. Second, using two GIS-based methods, PVGIS and Solar Analyst Tool in ArcGIS, for PV estimation. Satellite 

images for a part of Madinaty city in Egypt were used to evaluate our approach. The accuracy assessment of SVM expressed by the 

precision and recall were 95.7% and 90%, respectively. The identifiable rooftops in the image were 112 rooftops with a total area of 

26,131 m2. The annual PV potential area was estimated to be 9.3 and 8.7 MWh/year using PVGIS and Solar Analyst Tool, 

respectively. PVGIS was more accurate as it uses more recent data from solar databases that exist in Africa. On the other hand, Solar 

Analyst Tool was less accurate as it depends on a digital elevation model with a resolution of 30 m. According to our calculations, 

the electric energy and the amount of CO2 emission were compensated by an annual average value of 48% for using solar panels 

instead of the traditional sources of energy. 

 

1. INTRODUCTION 

1Coal, Oil, natural gas, and other fossil fuels were the main 

pillars in the industrial revolution all over the world. However, 

using fossil fuels led to global warming that affects our planet 

harmfully in all aspects of life. Fossil fuel is becoming scarce in 

many countries including Egypt, while the rate of population 

growth is continuously increasing. Annual population growth in 

Egypt is currently at a rate of 2% per year as of 2019 according 

to the World Bank collection of development indicators 

(Worldometers, 2020). More than 90% of Egypt’s main sources 

of energy are natural gas or oil. Therefore, with this annual 

population growth rate and increasing demands, Egypt faces a 

very fast declining rate of traditional resources. According to 

the Cairo Demographic Centre: Egypt’s population is expected 

to reach 110 million by 2031 and 128 million by 2051 (Comsan, 

2010), while the rate of increase in fossil fuel production is very 

slight. 

 

Besides, CO2 emission in Egypt in 2015 was ranked 27th of the 

world, the share of CO2 emission per capita was 2.7 tons and a 

percentage of 48.3% of the total CO2 emissions in Egypt was 

due to the electrical power generation (Abdallah and El-

Shennawy, 2017). Thus, green energy in the form of solar 

energy, wind energy, and other forms contribute to solving both 

issues in Egypt by increasing the dependence on renewable 

energy sources and decreasing the production of CO2. Egypt is 

a country with high solar energy potential. It belongs to the 

global Sun Belt and is in an advantageous position with solar 

energy. According to the solar atlas (Panagiotis Kosmopoulos, 

Stelios Kazadzis, 2018), Egypt enjoys Direct Normal Irradiance 

of 1970- 2800 kWh/m2 with sunshine hours of 9 to 11 hours a 

day all year. 

 

As a means of harnessing solar energy, the use of photovoltaic 

panels (PV) is the most popular way to obtain solar energy 

which can be collected and converted to electricity. PV panels 

have become the cheapest source of electrical power in regions 

with high solar potential. A photovoltaic system employs solar 

 
* Corresponding author 

modules, each of which consists of several solar cells, which 

generate electrical power. PV installations may be ground-

mounted, rooftop mounted, wall-mounted, or floating. The 

mount may be fixed or use a solar tracker on a single or dual-

axis to follow the sun across the sky.  

 

To get the PV potential, the areas of the rooftops, on which the 

PV panels will be mounted, are first calculated from the 

downloaded satellite image. Some methods depend on the 

manual digitizing of rooftops using GIS software packages. For 

instance, Chow, Li and Fung (2016) digitized buildings’ 

rooftops and then multiplied the gross areas of rooftops by 

different PV factors to obtain the usable area based on the roof 

type, structural adequacy, shading, and other factors. Carl 

(2014) digitized a sample of the rooftops to build a relationship 

with the tax map key parcel data, which were available for the 

author together with the buildings’ shapefiles in the study area 

using ArcGIS. The results were then introduced to the Solar 

Analyst tool in ArcGIS to obtain the average solar radiation on 

the rooftops.  

 

On the other hand, rooftops automatic extraction methods have 

been widely used instead of manual digitizing. These methods 

depend on data segmentation and using machine learning 

techniques to successfully extract the object of interest from 

different segments (Baluyan et al., 2013; Ghanea, Moallem and 

Momeni, 2014; Joshi et al., 2014). For instance, Ghanea, 

Moallem and Momeni (2014) used k-means clustering for 

segmentation, where k value was chosen to be 2 to get a binary 

image with the ‘semi-building’ and ‘non-building’ layers. Sub 

clustering is then conducted using fuzzy c-means to segment the 

‘semi-building’ layer into ‘buildings’ and ‘non-buildings’. After 

that, region growing was used to form buildings and a decision 

tree classification algorithm was applied to divide the layers and 

extract the ‘buildings’ with an overall accuracy of 80%. 

Baluyan et al. (2013) carried out some pre-processing 

algorithms, including bilateral filtering to remove the noise. 

Thus, the edges could be preserved for facilitating the 

segmentation process using k-means clustering Support vector 

machine (SVM) was then used to extract the buildings with a 

precision of 93%.  
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Besides ArcGIS that was used for the modeling of solar 

radiation for the study area as mentioned in (Carl, 2014), 

PVGIS is used by several studies as it is a reliable free web 

application that can be used to estimate the average solar 

radiation over a specific study area. Tarai and Kale (2016) used 

PVGIS to produce a rasterized image of PV potentials for the 

region of Odisha in India with an accepted accuracy to be used 

for decision-making for individual PV projects and policy-

making of the state. Konstantinos Mardikis et al. (2014) studied 

many locations including Cairo in Egypt, whereas the obtained 

PV potential using PVGIS was compared to a real operational 

PV station with a variation of only 10%. 

 

Our goal in this study is to use PV panels mounted on rooftops 

for energy estimation that can be produced from solar energy 

available in the study area by the following two stages: 

(1) Estimating available rooftops areas through the automatic 

extraction of rooftops from satellite images using Google Earth 

Pro.  

(2) Modelling solar radiation and calculating PV potential for 

the entire study area using two popular approaches: PVGIS and 

Solar Analyst tool in ArcGIS. 

 

2. STUDY AREA AND DATA 

A part of Madinaty city in Cairo, Egypt is used as the study area 

in this research. Madinaty was specifically chosen as it is one of 

the first cities in Cairo to be well planned and organized and has 

the potential to reach our goal of the first green city in Egypt. 

Besides, the good planning of this city was the basis for the 

planning of other new residential cities and compounds in 

Egypt. Its coordinates are Latitude: 30° 04’ 53.81’’ N and 

Longitude: 31° 38’ 21.62’’ E. The image of the study area is an 

RGB image downloaded using Google Earth Pro as indicated in 

Figure 1. The resolution of the image is 4800*3463 pixel2 

which corresponds to 697*500 m2. The total area of the study 

image is about 348,500 m2 including the streets and other non-

building objects. 

 

 
Figure 1. The image of the study area. 

 

3. METHODOLOGY 

Our methodology is divided into two main phases; buildings’ 

rooftops extraction and PV potential estimation. PV potential 

depends on rooftops usable areas which are used for the 

mounting of the PV panels after subtracting the shadows from 

neighbouring buildings, trees, and obstructions already existing 

on rooftops; and global, direct, and diffused solar radiation on 

monthly periods to determine the annual average irradiation. 

The following subsections explain the methodology in details. 

 

3.1 Data Preparation 

The satellite image was prepared to extract all buildings’ 

rooftops. A sample of the rooftops pattern was used as a training 

dataset for the machine learning (ML) technique, to be applied 

for the testing process. All buildings’ rooftops were first 

digitized using ImageJ software. A sample was then taken from 

the ‘buildings’ patterns available in our study area and five 

features for each digitized building were calculated as follows. 

• Area: indicates the area of a building in pixels.  

• Mean grey value: represents the mean grey value for a 

‘building’. 

• Standard deviation: indicates the variance in the mean grey 

values of a ‘building’. 

• Roundness: represents the ratio between the area to the square 

of the perimeter of the area. According to (Sirmaçek and 

Ünsalan, 2009), the following equation describes the 

roundness: 

 

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =
4 ∗ 𝜋 ∗ 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑒𝑖𝑚𝑒𝑡𝑒𝑟2
 

(1) 

 

The value of the roundness ranges between 0 and 1. The 

roundness value of ‘buildings’ is expected to be close to 1. 

• Major_minor axis ratio: indicates the width to length ratio 

defined for the ‘buildings’. It is expected to be close to 1, 

while elongated objects are expected to be close to 0. Figure 2 

indicates the data preparation process. 

 

 
Figure 2. Preparation of the reference data by digitizing using 

ImageJ software. 
 

3.2 Rooftops Extraction  

Figure 3 shows rooftops extraction workflow. First, extensive 

image enhancements were introduced. K-means clustering was 

then used to perform the segmentation task by dividing the 

pixels into different classes. After that, polygon formation was 

carried out by the connected components algorithm. Finally, 

SVM was applied to extract the ‘buildings’ polygons from the 

different object polygons in the image after training it with the 

reference dataset. SVM was used in this research due to its high 

ability to introduce an optimum hyperplane that can separate 

between inliers and outliers. It also can deal with multi-

dimension spaces. Besides, it contains many kernel functions to 

facilitate the separation. Lastly, it is memory efficient compared 

to other techniques. 

 

3.2.1 Image Segmentation: Before image segmentation, 

some enhancements were conducted sequentially as described 

below. 

• Gamma correction was applied to enhance the contrast 

difference between different objects in the image. The image 

was converted to the LAB colour space. LAB color space is a 

3-axis color system with dimension L for lightness regardless 

of the color properties, while A and B are the color property 

dimensions. Working with the LAB colour space includes all 

colours in the spectrum, as well as colours outside of human 
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perception (Lab Color - MATLAB & Simulink, no date; 

Bertalmío, 2020). When L is separated, the difference in 

brightness becomes clearer. 

• Shadow masking was applied, whereas shadow regions were 

enhanced using a shadow index given by the following 

formula. 

 

𝑅hadow index =  
B − G

B + G
 (2) 

 

Where B is the pixel value in the blue channel and G is the pixel 

value in the green channel. The enhanced shadow regions were 

masked to optimize the processing time and facilitate the 

extraction of objects of interest. 

• Gaussian blur was used as a noise reduction and smoothing 

filter followed by mean-shift segmentation that blends the 

color of the same object.  

• Vegetation masking was applied to the results of the mean-

shift segmentation. This was conducted based on the HSV 

color space where the range of the vegetation hue was 

detected and was masked after that to decrease the detection 

errors by focusing on our object of interest ‘buildings’ and to 

decrease the processing time. 

 

 
Figure 3. Rooftops extraction workflow. 

 

 

These enhancements were essential for the segmentation step 

using k-means clustering, which was used to cluster the image 

into different classes. K was chosen to be 5 after many trials and 

errors in which k=5 provided the best results. Therefore, the 

chosen number of classes was five classes. The segmentation 

results are shown in Figure 4. 

 

3.2.2 Features Extraction: After the segmentation, the 

connected components algorithm was used to form polygons for 

each candidate region in all classes. Two sequential steps were 

applied which are the seed point generation followed by region 

growing. The seed point generation was done first in regions 

with similar intensity using the following equations: 

 

𝑆𝑥 =  
∑ 𝑥𝑖𝐼(𝑥𝐼 , 𝑦𝑖)𝑖∈𝑟𝑔𝑛

∑ 𝐼(𝑥𝐼 , 𝑦𝑖)𝑖∈𝑟𝑔𝑛
 

(3) 

𝑆𝑦 =  
∑ 𝑦𝑖𝐼(𝑥𝐼 , 𝑦𝑖)𝑖∈𝑟𝑔𝑛

∑ 𝐼(𝑥𝐼 , 𝑦𝑖)𝑖∈𝑟𝑔𝑛
 

 

Where ‘rgn’ is a test region and I(xi, yi) is the intensity value of 

the i-th point of that region. 

After that, region growing began from the seed, followed by a 

connectivity value chosen to be Cv = 8. The polygons were 

formed with their features specified as the reference data to 

contain (area, mean grey value, standard deviation, major-minor 

axis ratio, and roundness). 

 

 
Figure 4. Image enhancements and segmentation; (a) The 

original image, (b) Gamma correction, (c) Shadow masking, (d) 

Gaussian Blur and Mean-shift segmentation, (e) Vegetation 

masking, and (f) k-means clustering. 

 

3.2.3 Machine Learning: Having both the polygons formed 

after the segmentation and the polygons for the ‘buildings’ in 

the reference data, which were introduced to the ML as the 

training dataset. SVM was applied for rooftops detection as 

mentioned before. The performance of SVM is highly 

influenced by the choice of the kernel function. Based on the 

characteristics of our data, the Gaussian radial basis function 

(RBF) kernel function revealed the best results (Shashua, 2009). 

Thus, this was the best kernel in our case. The RBF kernel is 

given by the formula below. 

 

𝐾(𝑥, 𝑦) = 𝑒
−

(𝑥2−𝑦2)
2𝜎2  (4) 

 

Where (x-y)2 is the Euclidean distance between x and y, σ is the 

variance, and the term 
1

2𝜎2 is equal to Ɣ which is a 

hyperparameter that can be changed in the RBF kernel. 

 

The k-fold cross-validation was conducted on the training 

dataset to represent the performance accuracy for the training 

dataset, which in turn was used to fit the final model. The 

training dataset was split into k smaller sets. Then, the model 

was tested on the k-1 percentage of the training dataset and the 

resulting model was validated on the rest of the data. The cross-

validation output was written in the form of a scoring parameter 

with a confidence interval. The scoring parameter can be easily 

explained as the mean of all the accuracies saved for each split 

and the confidence interval is the standard deviation of the mean 

accuracy. 

 

                   (a)         (b) 

        (c)         (d) 

        (f)         (e) 
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The output rooftops were assessed using the precision and recall 

metrics as follows: 

Precision =
TP

TP + FP
 

(5) 

Recall =
TP

TP + FN
 

 

Where, True positive (TP), False Positive (FP), True Negative 

(TN), and False Negative (FN) represent the number of 

correctly identified rooftops, number of incorrectly identified 

rooftops, number of correctly rejected rooftops, and number of 

incorrectly rejected rooftops, respectively. 

 

3.3 Solar PV Potential Estimation 

This section focuses on the estimation of PV potential by 

mounting the PV panels on rooftops using the available 

rooftops’ area. The estimation of the PV potential mainly 

depends on two steps: (1) the rooftops’ areas available for the 

PV array installation and (2) the inputs required for the 

calculation of the PV potential.  

 

3.3.1 Rooftops Areas Preparation: The final result of the 

ML stage is a spreadsheet with the areas of the detected 

rooftops. Some obstructions were present in the form of the 

elevator’s rooms and the inter-row shading between the PV 

rows. A sample of the rooftops’ areas and their corresponding 

elevators rooms were digitized. It was found that the elevator 

room areas represent an average of 3% of the total rooftop area. 

Therefore, 3% of the total areas of the rooftops were subtracted. 

The inter-row shading between the rows of PV modules was 

considered to reduce the losses induced from shadows on the 

PV potentials. The effective distance covered by PV arrays was 

determined by a ratio between the active area (service area) to 

the ground area called ground coverage ratio (GCR). The GCR 

was calculated knowing the tilt angle of the PV modules, which 

was chosen to be equal to the local latitude of the study area to 

ensure the most optimum average annual PV potential for a 

fixed module. Knowing the tilt angle of the modules and the 

default shading derate factor (from 2~3%), the GCR could be 

calculated from Figure 5 below (Seminole Financial Services, 

2010). 

 

 
Figure 5. The relation between GCR and derate factor caused 

by inter-row shading graph (Seminole Financial Services, 

2010). 

 

3.3.2 PV Module Parameters: The parameters of the PV 

module were set as follows. 

• Rooftop area determination: Rooftops areas from the image 

were extracted after using a series of image pre-processing 

and SVM and after removing the obstructions as 

aforementioned. 

• Solar irradiance: Solar resource data is needed to obtain the 

solar radiation for our area. The choice of the databases that 

will be used as the resource data is determined by the input 

location of the study area and the method used for solar 

modelling (i.e., PVGIS and ArcGIS). The solar irradiance 

across the expanse of the study area was kept uniform because 

of the relatively small size of the study area. 

• Module and array type: Renesola JC320S-24, a Chinese 

manufactured monocrystalline solar panel, was chosen in our 

work. The PV array was chosen to be fixed as it has low 

associated acquisition and maintenance costs. The efficiency 

of the module is 19.67% at standard test conditions (STC). 

STC is defined as the solar irradiation of one kilowatt (kW) 

per square meter (1000 W/m2), a module temperature of 25 

degrees Celsius, and standard light spectrum air mass 1.5 

(AM 1.5) where AM is the ratio between the path length 

through the atmosphere to the path length of the solar 

radiation at zenith (normal to the earth’s surface at sea level) 

(Würfel, 2016). 

• Array tilt: The tilt angle is the angle of the inclination of the 

PV module array measured from the horizontal direction. 

According to (Amin S., Hanania J., Stenhouse K., Yyelland 

B., 2018), the optimum tilt angle for a fixed array is equal to 

the local latitude of the location to optimize the average 

annual production of solar irradiance. Also according to 

(Masters, 2004), choosing the tilt angle of a fixed PV module 

to be equal to the local latitude of the study area produces the 

best average annual production of solar radiation. The tilt 

angle was chosen to be equal to the location’s latitude which 

is 30° to produce a better average annual yield. 

• Array orientation (azimuth): A solar panel can collect more 

energy when the sun rays are perpendicular to it. In terms of 

annual potential, an average direction was chosen to get the 

optimum average annual PV potential. Based on practical 

recommendations according to the energy education section 

by the University of Calgary (Amin S., Hanania J., Stenhouse 

K., Yyelland B., 2018): in the northern hemisphere, the 

general rule for solar panel placement is that: Solar panels 

should face true south (and in the southern, true north) for flat 

rooftops. Usually, this is the best direction because solar 

panels will receive direct light throughout the day.  

• System size: The current produced from using PV panels is 

direct current DC. The DC system power rating in kW, at 

STC, was determined using the following equation (Ntsoane, 

2017):  

 

System Size = Array Area ∗  1
kW

m2
∗  module efficiency (6) 

 

Where the total area occupied by the array is the usable 

rooftops’ areas in m2 and the module efficiency is 19.67%. 

 

The output is calculated using an equation that was primarily 

deduced from Súri et al. (Šúri, Huld and Dunlop, 2005). The 

equation depends on the average annual solar radiation based on 

the entered parameters and produces a near estimation of the 

electrical potential. This equation is given below as follows: 

 

E =  365 ∗  Pk  ∗  rp  ∗  Hh,i (7) 

 

Where: 

E: is the yearly potential for electricity production in kilowatt-

hours (kWh),  

Pk: is the peak power of the equipment installed in kilowatts 

(kW)  

rp: is the system performance ratio or derating factor 

Hh,i: is the yearly average of daily global radiation in kWatt-

hours (kWh/year). 

The system losses produced from various effects were 

considered in the form of a factor that decreases the output AC 
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rating of the PV. This factor is a derate factor and can be 

referred to as performance ratio or conversion coefficient that 

decreases the total output of the PV module based on the 

induced losses. The total system losses chosen here was 14% 

with an inverter efficiency of 96% to convert from DC to AC.  

 

3.3.3 Solar Radiation Modelling: Two methods were used 

to obtain the solar radiation over the study area; Photovoltaic 

Geographical Information System (PVGIS) and Solar Analyst 

Tool available in the ArcGIS software package. PVGIS is a web 

application that offers the ability to get information about solar 

radiation and PV performance based on the location provided 

by the user. PVGIS can be used to calculate the energy mainly 

in Europe and Africa where its main databases exist but also it 

can be used to calculate the energy in nearly any location in the 

world. The solar radiation database is based on the estimation of 

the surface solar irradiance from satellite images (Huld, Müller 

and Gambardella, 2012). PVGIS-SARAH database is the most 

recommended to work with for Africa (EU SCIENCE HUB, 

2020). Therefore, for our location in Egypt, we chose to work 

with the PVGIS-SARAH database. 

 

ArcGIS provided by Esri is one of the most popular geographic 

information system (GIS) software packages used by many 

researchers and engineers all over the world. The Solar Analyst 

Tool in ArcGIS can be used to calculate Watt-Hours/meter2 at 

the earth’s surface at a local scale. The data required are a 

digital elevation model (DEM) and the local latitude of the 

study area. The calculation of the global solar radiation over a 

certain location with its different forms is equal to the sums of 

the direct and diffuse solar radiation over the specified location. 

Direct solar radiation is considered the largest component of 

global radiation, and then diffuse radiation is considered the 

second-largest component.  

 

A series of equations are defined on Esri’s website in the 

ArcGIS section, which is used to calculate the direct and diffuse 

solar radiation (How solar radiation is calculated—ArcGIS Pro 

| Documentation, 2020). The radiation can be greatly affected 

by the topography and surface features; the calculations of the 

solar radiation depend mainly on the generation of an upward-

looking hemispherical viewshed for every cell in the DEM. A 

Shuttle Radar Topography Mission (SRTM) DEM was 

downloaded with 30m resolution and clipped to fit the study 

area as shown in Figure 6. Then, the DEM was used as an input 

for the area radiation tool in ArcGIS to obtain estimated solar 

radiation. 

 

 
Figure 6.(a) The total footprint of DEM available online and (b) 

DEM clipped to fit the study area. 

 

The output potential was calculated using equation (7) 

mentioned above, the performance ratio rp was chosen to be 

0.75 which is recommended by Suri in (Šúri, Huld and Dunlop, 

2005) as an accepted value for a derating factor to account for 

all the losses in a PV system and was also very close to the 

value of rp used by PVGIS. 

 

3.3.4 Carbon Emissions: The amount of CO2 emission that 

would be prevented due to replacing fossil fuel with solar 

energy, and hence the value of CO2 reduced that depends on the 

potential of solar panels were calculated using the following 

equation (Ntsoane, 2017). 

 
Carbon emissions = grid emission factor ∗ electricity production (8) 

 

The grid emissions factor is the ratio between the CO2 amount 

emitted to the electricity produced. A grid emissions factor of 

0.533 (tCO2/MWh) was the factor we chose to work with for 

Egypt. It was used to relate the rooftop electricity generated 

with the accompanying quantity of carbon dioxide emissions, as 

referred to by the Institute for Global Environmental Strategies 

(2020), List of Grid Emission Factors version 10.8, available at 

(Takahashi and Louhisuo, 2021). According to (Reich et al., 

2007), the maximum amount of CO2 emitted from using solar 

panels is 6 gCO2/kWh. The output of the equation is expressed 

in tCO2e/kWh which is very small compared to the emitted 

CO2 from using the traditional energy sources. 

 

4. RESULTS AND DISCUSSION 

Extensive image enhancements were applied, followed by 

image segmentation and finally, SVM was conducted. A sample 

buildings’ rooftops extraction is shown below in Figure 7. 

 

 
Figure 7. Sample output after applying Support Vector 

Machine. 
 

The cross-validation results after using the k-folds cross-

validation were in the form of a scoring value that represents the 

average accuracy of all folds with a confidence interval. The 

scoring value of fitting the reference data using the SVM was 

0.917 with a confidence interval of +/- 0.07. The detection 

accuracy assessment using both the precision and recall metrics 

after obtaining the results of the SVM was 95.7% and 90% for 

precision and recall respectively. The detection accuracy was 

relatively high as SVM is effective in multi-dimension spaces 

and provides the ability to choose the kernel type where the 

RBF kernel best represents our data. 

 

After calculating the GCR in the previous chapter, the GCR 

value was chosen as 50% to consider the effect of inter-row 

shading. Thus, after subtracting these obstructions, the usable 

areas for the rooftops were ready for the PV potential 

estimation. The usable area of the total study area was about 

29,381.51 m2 with an average usable area for a building of 

264.5 m2. An example of the output rooftops’ areas before and 

after removing all the obstructions is shown in Table 1. 

 

(a) (b) 
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ID Area (m2) 

Usable areas 

after removal 

of the elevator 

rooms (m2) 

Usable area after 

using the GCR (m2)  

 
1 577.668 560.338 280.16898  

2 309.309 300.0297 150.014865  

3 785.274 761.7158 380.85789  

4 725.487 703.7224 351.861195  

5 866.88 840.8736 420.4368  

         

112 270.963 262.8341 131.417055  

Table 1. An example of the rooftops’ areas before and after 

removing all the obstructions. 

 

Figure  8 shows the summary of the calculations applied to 

areas until reaching the usable area and hence used for the 

calculation of the PV potentials. The total usable area was 

26224.95 m2 and the module efficiency of the monocrystalline 

panels used was 19.67%. Using equation (6), we obtained a DC 

system size of 5158.45 kW. This system size was used as Pk in 

equation (7) to calculate the PV potential. 

 

 
Figure  8. Calculations of areas of rooftops. 

 

Using a field survey, the average consumption of a building 

apartment in the study area is about 500 kW/month. Therefore, 

throughout the year, the average consumption of a building that 

consists of six floors with four apartments each equals 12,000 

kWh/month and hence equals 144,000 kwh/year. For 

approximately 125 buildings in the image of the study area, the 

electric consumption of them using the traditional sources of 

energy equals 18,000,000 kWh/year. The PV potential and the 

corresponding carbon emission are calculated for each method. 

The PV potential, the average compensation of energy, and the 

percentage of prevented CO2 after using PV panels are 

summarized in Table 2. 

 

Method/Estimation PVGIS ArcGIS 

PV potential (kwh/year) 9336217 8712328 

Percentage of energy and CO2 

compensation (%) 
51.87% 48.40% 

Table 2. The results of PV potential using the two methods. 

 

The carbon emitted from using fossil fuels equals 9594 

tCO2e/year, while that produced from using PV panels is very 

minimal. Thus, the CO2 directly emitted from using PV panels 

is negligible. According to (Konstantinos Mardikis, Nikolaos 

Katsikas, Constantinos S. Psomopoulos, 2014), and 

(Psomopoulos et al., 2015), the data of PVGIS is more recent 

for the African database (2005-2016) and it excels in regions 

located in Europe and Africa. ArcGIS on the other hand 

depends on solar radiation estimation based on the DEM used 

for the study area. The DEM we used was downloaded for free 

from the SRTM database with a spatial resolution of 30m. 

Therefore, such accuracy may not provide a very accurate solar 

radiation estimation for our case study. 

 

5. CONCLUSION 

In this paper, the target is reaching a clean and green city for 

one of the most known and well-planned cities in Cairo, Egypt 

called Madinaty. We aim to decrease the harmful environmental 

impact implied by using the traditional energy sources and 

replacing them with more clean and renewable sources. Solar 

energy was the focus here which will be harnessed by PV 

panels. Two popular GIS-based methods were used to estimate 

the PV potential; PVGIS and ArcGIS using the Solar Analyst 

Tool. The two methods were implemented after extracting 

rooftops in the satellite image for the study area downloaded 

from Google Earth Pro.  

 

For the extraction method, pre-processing algorithms were used 

depending on computer vision concepts to enhance the image 

and facilitate the segmentation of the objects in the image. 

Then, a machine learning technique was used which is SVM to 

extract the buildings. The detection accuracy of the SVM was 

determined in terms of precision and recall metrics which were 

95.7% and 90% respectively. The gross area of the detected 

buildings was then extracted considering the effects of losses 

embedded on the gross area in the form of the obstructions and 

shadows on rooftops. The usable area was calculated to be 

26224.95 m2 and used for the estimation of the PV potentials.  

 

PVGIS revealed more reliable results of 9.3 GWh/year due to 

the more accurate database used for the location of our study 

area compared to the Solar Analyst Tool. The impact of Carbon 

dioxide is greatly decreased after considering PV systems on the 

rooftops. Approximately 49% of CO2 emitted from fossil fuels 

is offset due to the use of clean solar energy using the PV 

technology that reduced such harmful effects. 
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