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ABSTRACT: 

 

Sagebrush ecosystems (Artemisia spp.) face many threats including large wildfires and conversion to invasive annuals, and thus are 

the focus of intense restoration efforts across the western United States. Specific attention has been given to restoration of sagebrush 

systems for threatened herbivores, such as Greater Sage-Grouse (Centrocercus urophasianus) and pygmy rabbits (Brachylagus 

idahoensis), reliant on sagebrush as forage. Despite this, plant chemistry (e.g., crude protein, monoterpenes and phenolics) is rarely 

considered during reseeding efforts or when deciding which areas to conserve. Near-infrared spectroscopy (NIRS) has proven 

effective in predicting plant chemistry under laboratory conditions in a variety of ecosystems, including the sagebrush steppe. Our 

objectives were to demonstrate the scalability of these models from the laboratory to the field, and in the air with a hyperspectral 

sensor on an unoccupied aerial system (UAS). Sagebrush leaf samples were collected at a study site in eastern Idaho, USA. Plants 

were scanned with an ASD FieldSpec 4 spectroradiometer in the field and laboratory, and a subset of the same plants were imaged 

with a SteadiDrone Hexacopter UAS equipped with a Rikola hyperspectral sensor (HSI). All three sensors generated spectral patterns 

that were distinct among species and morphotypes of sagebrush at specific wavelengths. Lab-based NIRS was accurate for predicting 

crude protein and total monoterpenes (R2 = 0.7-0.8), but the same NIRS sensor in the field was unable to predict either crude protein 

or total monoterpenes (R2 < 0.1). The hyperspectral sensor on the UAS was unable to predict most chemicals (R2 < 0.2), likely due to 

a combination of too few bands in the Rikola HSI camera (16 bands), the range of wavelengths (500-900 nm), and small sample size 

of overlapping plants (n = 28-60). These results show both the potential for scaling NIRS from the lab to the field and the challenges 

in predicting complex plant chemistry with hyperspectral UAS. We conclude with recommendations for next steps in applying UAS 

to sagebrush ecosystems with a variety of new sensors.  

 

 

1. INTRODUCTION 

Sagebrushes (Artemisia spp.) are the dominant vegetation 

covering over 40 million ha of the western United States 

(Renwick et al., 2018), but have declined due to increased 

wildfires, conversion to cheatgrass (Bromus tectorum), and 

juniper (Juniperus spp.) encroachment. Sagebrush are an 

important source of food and cover for wildlife and livestock. 

For example, Greater Sage-Grouse (Centrocercus 

urophasianus) and pygmy rabbits (Brachylagus idahoensis) 

specialize on sagebrush, consuming as much as 99% for their 

winter diet (Wallestad and Eng, 1975; Green and Flinders, 

1980). Sagebrush leaves contain a complex mixture of plant 

chemicals to protect against herbivory, including volatile 

monoterpenes and phenolics, but are also a good source of 

crude protein. This chemistry is highly variable among and 

within sites (Robb, 2020, Olsoy et al., 2020) and influences diet 

and habitat selection by wild herbivores at varying spatial scales 

(Frye et al., 2013; Ulappa et al., 2014; Fremgen-Taratino et al., 

2020). 

To better understand plant-herbivore interactions, we need to 

map this plant chemistry across the landscape. The broad 

distribution of sagebrush across the western United States has 

been coarsely mapped (e.g., LANDFIRE, GAP, NLCD), but 

these maps are at 30-m to 500-m spatial resolution and do not 

track finer-scale patterns in distinct species with phytochemical 

traits that matter to herbivores (Fremgen-Tarantino et al., 2021). 

Several remote sensing techniques show promise in filling the 

gap between broad-scale distribution maps and plant-scale 

chemistry. One sensor technology for predicting plant and leaf-

scale chemistry is near-infrared spectroscopy (NIRS). The 

spectral signatures measured with NIRS depend on the number 

and type of C—H, N—H, and O—H chemical bonds, and can 

be related to plant defensive and nutritional chemistry (Foley et 

al., 1998; Moore et al., 2010; Robb, 2020). 

Unoccupied aerial systems (UAS) have emerged as a viable 

option for habitat mapping of vegetation and chemical traits at 

moderately large extents (Anderson and Gaston, 2013; 

Manfreda et al., 2018). Additionally, UAS can mount a variety 

of sensors such as multispectral, thermal, and hyperspectral 

cameras (Adão et al., 2017, Gerhards et al., 2019, Messina and 

Modica 2020), and are flexible, cheap, and mobile to deploy 

across the landscape (Koh and Wich, 2012). Previous work has 

shown UAS-based sensors can map shrub structure (Cunliffe et 

al., 2016; Olsoy et al., 2018), but relatively little work has been 

done to predict phytochemicals in sagebrush. Recent attempts at 

landscape mapping of diet quality involved classifying 

sagebrush structural morphotypes with unique chemical 

profiles, but relied on regression kriging (Olsoy et al., 2020), a 

type of spatial interpolation requiring a large amount of leaf 

sampling and laboratory analysis that does not directly predict 

plant chemical concentrations. NIRS (Olsoy et al., 2016; Robb, 

2020) and airborne hyperspectral sensors (Mitchell et al., 

2012b) have potential to link near- and short-wavelength 

infrared signals to plant chemistry. Recent technological 

advances have miniaturized hyperspectral sensors and allowed 
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for UAS platforms to capture high-resolution imagery at these 

longer wavelengths. 

In this study, our objective was to evaluate NIRS and 

hyperspectral UAS for predicting plant chemistry in sagebrush 

and classifying sagebrush species and morphotypes. To 

accomplish this, we generated equations for plant chemistry 

with near-infrared spectroscopy collected in both the lab and the 

field. Next, we tested whether a UAS-based hyperspectral 

sensor could predict those same plant chemicals across 

landscapes. 

 

2. METHODS 

2.1 Study Site 

We conducted research at the “Cedar Gulch” study site (lat 

44°41’57”N, long 113°17’12”W, elevation 1885-1925 m), a 

~155 ha area near Leadore, Idaho, in Lemhi County (Figure 1). 

Average temperatures in January were –6.9 °C, 14.9 °C in June, 

and the site received 32.8 cm precipitation annually (WRCC, 

2016). The dominant vegetation at Cedar Gulch was Wyoming 

big sagebrush (A. t. wyomingensis), which occurs both on 

mounds with relatively deeper soils (on mound) where 

individual plants are large and short-statured “dwarf” patches of 

sagebrush in the matrix between mounds where the soil is 

shallower. The dwarf patches were primarily low-growing 

Wyoming big sagebrush (dwarf Wyoming) mixed with black 

sagebrush (A. nova). These morphotypes differed in both 

structural characteristics (Olsoy et al., 2018), thermal properties 

(Milling et al., 2018) and forage quality (Olsoy et al., 2020). 

 

 
 

Figure 1. Flight footprints with inset map showing location in 

Idaho, USA. 

  

2.2 Near-infrared Reflectance Spectroscopy 

The ASD FieldSpec 4 spectroradiometer was used to measure 

continuous near infrared wavelength reflectance from 350 nm to 

2500 nm in all the sagebrush samples under both laboratory and 

field conditions. In the lab, each ground dried sagebrush sample 

was placed in a sealed clear plastic bag and spread 

homogeneously on a black countertop with no countertop 

surface visible through the biomass. After calibrating and 

optimizing the ASD FieldSpec 4 to a pure white reflectance 

spectralon plate according to standard protocol in the user 

manual, it was then used to measure the reflectance of each 

sagebrush sample. Thirty replicate scans were collected for each 

sample. The instrument was recalibrated and optimized every 

15 samples. In the field, we used an 8-degree FOV attachment 

held 0.5 m above the plant during each scan leading to a 

footprint of approximately 7 cm with white reflectance 

calibration every 5 scans or after every other scan if light 

conditions were changing. 

 

2.3 Unoccupied Aerial System Flights 

A portion of the study area was flown using a SteadiDrone 

Hexacopter UAS (SteadiDrone, Cape Town, South Africa) in 

June 2016. Four flights were conducted with a flight height of 

25 m for approximately 20 minutes each covering 0.36-0.45 ha 

(Figure 1). We collected hyperspectral imagery of each flight 

area using the Rikola HSI (Senop Oy, Oulu, Finland) 

hyperspectral camera. The Rikola HSI camera collects spectra 

for each pixel within the range of 500-900 nm with 16 

programmable bands for any increment within that range 

(Mozgeris et al., 2018a). For this study, we used a band 

combination from 550-849 nm (~20 nm increments).  

Images acquired from the flights were pre-processed using the 

camera manufacturer software. Noise and vignetting were 

removed for image clarity, and digital number values (DN) were 

converted to radiance (W/(m2 x srad x µm)) (Jakob et al., 2017; 

Mozgeris et al., 2018a). The Rikola HSI software aligns each 

image, but we found that the imagery had too much shift in 

between each band for the images to align properly (Mozgeris et 

al., 2018b). This shift was caused by the movement in the drone 

and an approximately 10 ms delay in shooting each band by the 

camera. Therefore, we photogrammetrically processed each 

band individually by flight using Agisoft Metashape (Agisoft 

LLC, St. Petersburg, Russia). Processing for each flight 

included ground control placement, image mosaicking, point 

cloud generation, digital surface model generation, and aligning 

chunks to create a 16-band orthomosaic. 

After the hyperspectral orthomosaics were created, we used 

GPS points acquired from previous field surveys to identify 

individual plants and species from the images. Only plants with 

associated chemical data were used in the analysis. We 

extracted pixels representing unmixed spectral signatures of 

leaves and averaged by plant. After spectra were extracted, the 

values were standardized. Minimum values for each flight were 

calculated using the values closest to the lower 0.05%, and 

maximum values were calculated using the values closest to the 

upper 0.05% of the range of values. After maximum and 

minimum values were determined for each flight, the spectra 

were standardized with (x-min)/(max-min), where x is the value 

of the spectra. 

 

2.4 Lab Chemistry 

After field NIRS scans and UAS flights were completed, we 

clipped leaf samples from each plant and kept the samples on 

ice until stored at –20 °C in the lab for later analysis. Leaves 

and stems were ground in liquid nitrogen (~2 mm) and 

immediately subsampled for crude protein and monoterpene 

analysis. For crude protein, a subset of 1-2 g of ground sample 

was dried at 64 °C to a constant dry weight (at least 48 h) and 

analysed for total nitrogen content at Dairy One Forage Labs 

(Ithaca, NY). Total nitrogen (%) values were converted to crude 

protein by multiplying each value by 6.25 (Robbins, 1983). For 

monoterpenes, a subset of 100 mg of sample was transferred to 

a headspace vial and analysed using headspace gas 

chromatography (Agilent 7694 Headspace Sampler, Agilent 

6890 Series GC). See Robb (2020) and Olsoy et al. (2020) for 

more details on chemical analysis. 

 

2.5 Statistical Analyses 

We performed all statistical analyses with Camo Analytics 

Unscrambler chemometric software (Montclair, NJ, USA). For 

the laboratory and field collected NIRS dataset, the thirty 
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replicate reflectance scans were checked for outliers with 

Unscrambler’s outlier detection algorithm and averaged to one 

spectral profile per sample. For laboratory samples, we 

converted each spectrum to absorbance values using a 

log10(1/R) transformation, where R is reflectance. Spectral 

absorbance values were transformed by taking a 1st gap 

derivative every 1 nm. Laboratory spectra were truncated from 

450 nm to 2350 nm. The distributions of response variables 

were checked for normality for all field and laboratory ASD 

samples. Unscrambler was then used to analyse spectra using 

partial least squares regressions (PLSR) between NIR spectral 

values (i.e., predictor variables) and plant chemistry (i.e., 

response variables) to produce NIRS-predicted chemistry. Each 

model was independently calibrated and validated using 20-fold 

cross-validation and results were downweighted to prevent 

overfitting of the models. The UAS samples were not 

downweighted, and leave-one-out cross-validation was utilized 

for the PLSR validation instead of 20-fold cross validation. 

 

 
 

Figure 2. Cross-validation results from (a,b) lab-based near-

infrared reflectance spectroscopy (NIRS), (c,d) field-based 

NIRS, and (e,f) unoccupied aerial system (UAS)-acquired 

hyperspectral predictions of crude protein (a,c,e) and total 

monoterpene concentration (b,d,f) at the Cedar Gulch  

study site in Idaho, USA. 

 

3. RESULTS 

Overall, lab-based NIRS predicted plant chemistry more 

accurately than field-based NIRS. Crude protein was predicted 

best with lab-based NIRS (r2 = 0.79), but poorly with field-

based NIRS (r2 = 0.03) and UAS-based hyperspectral (r2 = 

0.00). For both lab-based NIRS and UAS-based hyperspectral, 

total monoterpenes were predicted better than individual 

monoterpenes (Table 1, Figure 2).  

Hyperspectral UAS showed promise in differentiating species 

(black sagebrush from Wyoming big sagebrush) and 

morphotypes within a species (dwarf Wyoming big sagebrush 

from large Wyoming big sagebrush) (Figure 3). There was 

consistent distinction between morphotypes within a species 

(large and dwarf Wyoming) and between species (Wyoming 

and Black) at specific wavelengths (Figure 3f, R1-R3). Where 

Wyo more similar than black. Consistent differentiation of 

species with similar morphotype in shared spatial context 

(between mounds). 

 

 
 

Figure 3. SteadiDrone Hexacopter UAS with a Rikola HSI 

camera (a). Examples of hyperspectral UAS imagery at a dwarf 

sagebrush patch (b) and on-mound big sagebrush (Artemisia 

tridentata) patch (c). Comparison of NIRS collected in the lab 

(d), NIRS in the field (e), and hyperspectral UAS (f). Colour of 

boxes and spectra represent species and patch type for black 

sagebrush (A. nova) in a dwarf patch (black lines), small 

morphotype of Wyoming big sagebrush in a dwarf patch (dotted 

orange lines), and large morphotype of Wyoming big sagebrush 

in an on-mound patch (red lines). Gray boxes in (f) showcase 

possible regions for classifying Wyoming from black (R1), 

large Wyoming from dwarf (R2), and all 3 classes from one 

another (R3). 

 

4. DISCUSSION 

Our lab-based NIRS results predicting crude protein were 

comparable to Olsoy et al. (2016) (r2 = 0.79 compared to r2 = 

0.93) and Mitchell et al. (2012a) (r2 = 0.76-0.86). The poor 

results with field-based NIRS and UAS hyperspectral are likely 

due to small sample size (< 50 samples). However, Mitchell et 

al. (2012b) had more success with airborne hyperspectral 

(HyMap, r2 = 0.56) by minimizing the influence of bare ground, 

suggesting further processing of the data and a smaller field-of-

view attachment on the NIRS could improve results. In the lab, 

extrinsic factors are controlled for by providing an external light 

source and drying and grinding the leaf samples to reduce the 

impact of particle size and water absorption features (Mitchell 

et al., 2012b; Olsoy et al., 2016). In the case of the 

hyperspectral sensor, previous studies have found the important 

wavelengths to be above 1000 nm for predicting nitrogen 

(Mitchell et al., 2012b), while the Rikola HSI camera has a 

range of 500-900 nm. A sensor matching more closely to the 

ASD such as the Headwall VNIR+SWIR (400-2500 nm) 

(Headwall Photonics, Inc., Fitchburg, MA, USA) would likely 
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have more success predicting crude protein and other plant 

chemistry across the landscape. 

Total monoterpenes were predicted well by lab-based NIRS (r2 

= 0.69), and the UAS hyperspectral camera (r2 = 0.24) 

performed better than regression kriging at Cedar Gulch 

reported by Olsoy et al. (2020) (r2 < 0.1). Kokaly and Skidmore 

(2015) detected an absorption feature at 1.63 μm and attributed 

that to C—H bonds on phenols and aromatics such as 

terpenoids, suggesting that a camera with SWIR capabilities 

could better detect and predict sagebrush plant chemistry and 

could explain the better prediction with lab-based NIRS. The 

signal was weaker in wet leaves compared to dry leaves 

(Kokaly and Skidmore 2015), matching up with the results seen 

here with lab versus field-based NIRS and previous work in the 

lab by Olsoy et al. (2016).  

Despite our finding that the Rikola HSI camera was unable to 

predict crude protein or total monoterpenes, it showed potential 

for classifying sagebrush species and morphotypes. These 

sagebrush species may be hard to distinguish based on structure 

from the ground or in the air and are often misclassified in land 

cover maps from satellite images (Fremgen-Tarantino et al., 

2021), however, these species have important differences in 

phytochemicals and potential use by herbivores (Frye et al., 

2013). 

Next steps involve testing a hyperspectral sensor with 274 

bands over a similar wavelength (Headwall NIR + LiDAR), and 

another sensor with bands into the SWIR (Headwall NIR + 

SWIR). Future work should take advantage of larger sample 

size, sites with more chemical diversity, and a better balance 

between species and chemo-types. Additionally, the continued 

success of NIRS in lab environments shows potential for scaling 

to the field to classify sagebrush and predict chemistry (Robb, 

2020). We recommend using existing datasets (either NIRS or 

lab-based chemistry) to set up which bands are more important 

for the goal in hand (i.e., differentiation between chemotypes or 

predicting chemistry of interest) to select the sensor best suited 

to that purpose. Alternatively, UAS could be used by managers 

in exploratory work to determine what is differentiable from the 

air and to decide what should be sampled on the ground to test 

whether these spectral differences are chemical or physical 

(e.g., soil related), or whether sites may contain hybrid zones. In 

this way, UAS could iteratively serve as a tool for adaptive 

management in a changing world. 
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APPENDIX 

Table A1. UAS flight and orthomosaic information. 

Flight Photos Altitude  

(m) 

Resolution 

(cm) 

XY error 

(cm) 

Coverage 

(ha) 

1 238 25.6 1.58 3.89 0.499 

2 212 24.1 1.48 3.86 0.446 

3 198 25.2 1.55 3.68 0.426 

4 241 24.1 1.48 3.88 0.484 

 

 

Table A2. Descriptive statistics for reference phytochemistry. 

Phytochemical Sensor n mean sd range 

Crude protein 

(%) 

Lab NIRS 236 13.6 2.3 8.2-21.5 

Field NIRS 42 12.8 2.2 9.2-18.2 

UAS 25 13.4 2.5 9.2-19.8 

Total monoterpenes 

(AUC/mg DW) 

Lab NIRS 232 409 191 44.1-970 

Field NIRS 45 346 216 44.1-846 

UAS 28 451 223 46.2-846 
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