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ABSTRACT: 

 

Accurate maps of building interiors are needed to support location-based services, plan for emergencies, and manage facilities. 

However, suitable maps to meet these needs are not available for many buildings. Handheld LiDAR scanners provide an effective tool 

to collect data for indoor mapping but there are no well-established methods for classifying features in indoor point clouds. The goal 

of this research was to develop an efficient manual procedure for classifying indoor point clouds to represent features-of-interest.  

 

We used Paracosm’s PX-80 handheld LiDAR scanner to collect point cloud and image data for 11 buildings, which encompassed a 

variety of architectures. ESRI’s ArcGIS Desktop was used to digitize features that were easily identified in the point cloud and 

Paracosm’s Retrace was used to digitize features for which imagery was needed for efficient identification. We developed several tools 

in Python to facilitate the process. We focused on classifying 29 features-of-interest to public safety personnel including walls, doors, 

windows, fire alarms, smoke detectors, and sprinklers.  

 

The method we developed was efficient, accurate, and allowed successful mapping of features as small as a sprinkler head. Point cloud 

classification for a 14,000 m2 building took 20-40 hours, depending on building characteristics. Although the method is based on 

manual digitization, it provides a practical solution for indoor mapping using LiDAR. The methods can be applied in mapping a wide 

variety of features in indoor or outdoor environments. 

 

 

1. INTRODUCTION 

1.1 Introduction 

Maps of building interiors provide critical information that 

allows public safety personnel to pre-plan responses to disasters, 

building managers to efficiently manage their facilities, and 

visitors to find their destinations. Accurate building maps will be 

key for indoor navigation and tracking systems that improve the 

safety and effectiveness of first responders as well as improve 

convenience of visitors to public buildings (Kunhoth et al. 2020). 

However, accurate “as-built” floor plans that are suitable for 

current and future needs are not available for many buildings. 

 

Efforts to map indoor environments face some unique challenges 

caused by limited sight lines, rapid changes in elevation (i.e. 

stairs), inability to use global positioning systems (GPS), and 

inability to use mechanized platforms for carrying remote sensing 

instruments. Indoor mapping systems must be highly mobile to 

avoid blind spots and compact and lightweight enough to be 

carried comfortably by a human. Light detection and ranging 

(LiDAR) scanners create point clouds which can represent 

features in 3D space. The recent emergence of handheld LiDAR 

scanners provides a practical solution to indoor mapping by 

combining LiDAR with high mobility. These scanners use 

inertial mapping units (IMU) with simultaneous localization and 

mapping (SLAM) algorithms (Droeschel and Behnk 2018; Diosi 

and Kleeman 2005; Thrun et al. 2004; Castellanos et al. 1998) to 

generate point cloud data as the unit is carried through the 

 
1 Environmental Systems Research Institute, www.esri.com 

 

building. These scanners also typically integrate a wide angle or 

spherical RGB camera to collect images simultaneously with the 

LiDAR data and which can be used to colorize the point cloud.  

 

LiDAR-based systems are rapidly advancing to improve data 

collection capabilities; however, there are no established 

procedures for classifying point cloud data or extracting features-

of-interest for indoor environments. Software that is commonly 

used in GIS and remote sensing focuses on classification of data 

that represent outdoor environments. These software tend to be 

poorly suited to the massive datasets and unique characteristics 

of point clouds created for indoor environments. 

 

This research aims to develop techniques for classifying features-

of-interest for indoor LiDAR point clouds. We present an 

efficient manual process based on ESRI’s1 ArcGIS Desktop and 

Paracosm’s2 Retrace software along with custom tools developed 

in Python. The process combines the advantages of using 

imagery for feature identification with the precise positioning 

provided by the point cloud. We focus on mapping features of 

interest to first responders including walls, doors, windows, fire 

alarms, sprinkler heads, etc. The procedure and tools we 

developed will help establish effective methods of classifying 

point clouds and mapping indoor environments. The tools and 

products developed in this research will be made available for 

download at https://www.edc.uri.edu/indoor-mapping-project. 

 

2 Paracosm is an Occipital Company (https://occipital.com). 
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2. METHODS 

2.1 Study Area Description 

The study area consisted of 11 buildings located in Enfield and 

Storrs, Connecticut. The buildings consisted of 6 schools, 1 office 

building, 1 industrial building, and 3 university buildings. The 

buildings had a combined floor space of approximately 130,000 

m2. Nine of the buildings had multiple stories. The buildings were 

constructed between 1960 and 2017 and represented a variety of 

architectures and features including high atrium ceilings, 

gymnasiums, classrooms, offices, and garages.  

 

2.2 Equipment and Data Collection 

LiDAR and spectral image data were collected with Paracosm’s 

PX-80 scanner (Figure 1). The scanner collects LiDAR and 

image data simultaneously using a Velodyne VLP-16 LiDAR 

puck integrated with a 250⁰ RGB camera (Paracosm 2018). The 

LiDAR sensor collects up to 300,000 pts/sec with a maximum 

range of 80 m and a reported relative point accuracy of ±2 cm. 

The Lidar sensor has a 360⁰ horizontal field-of-view (FOV) and 

a ±15⁰ vertical FOV. The camera captures RGB images at a 3.2 

MP resolution and 50 frames per second with a 360⁰ horizontal 

FOV and a 250⁰ vertical FOV. The user interface for the PX-80 

is an iPad running Paracosm’s Capture software. The software 

provided a real-time preview of the point cloud so that scanning 

problems could be found and addressed while on site. The 

outputs of the PX-80 included a colorized point cloud in an .las 

v1.2 format, a point cloud in a .ply format, and photos from the 

camera in .jpeg formats. 

 

Data were collected by carrying the PX-80 through the data 

collection area at a medium walking speed (e.g. 2.5 kph). Scan 

durations were limited to 30 minutes or less, per Paracosm’s 

recommendations, to minimize progressive error accumulation 

(i.e. drift) in the unit’s inertial mapping unit (IMU). Whenever 

possible, we closed scan loops by ending the scan where we 

started to allow the SLAM software to compensate for drift. 

 

We followed several practices, recommended by Paracosm, to 

minimize the occurrence of “tracking loss” in which the SLAM 

algorithm fails and causes major misalignments of features in the 

scan. Given the scanner’s 360⁰ horizontal field-of-view, the goal 

of these practices was to help ensure the SLAM algorithm was 

able to use previously mapped areas to maintain orientation when 

entering new areas. These practices included moving smoothly 

with no sudden changes in motion, limiting motion to 2 axes at a 

time, pausing in doorways for 3-5 seconds, and walking down the 

center of hallways especially when going around corners. The 

scanner was particularly prone to tracking loss after exiting small, 

cluttered rooms (e.g. closets and utility rooms) and when 

scanning narrow stairwells. Thus, we avoided entering small 

rooms by scanning them from the door and tipping the scanner 

into the room to collect points along the wall and ceiling just 

inside the doorway. This technique provided good point cloud 

representation but did not consistently provide good image 

representation of the room. We scanned stairwells as separate 

scans so that the data could be quickly recollected if a problem 

was observed in the scan preview. Stairs were scanned starting at 

the top and working downward. At the top of each flight of stairs, 

the scanner was tipped forward to scan the stairs below before 

proceeding down. When moving down the stairs, the scanner was 

held vertically. Following these practices helped to reduce 

 
3 https://liblas.org/ 

occurrences of major misalignments but did not eliminate them 

entirely.  

 

 
 

 
Figure 1: Spherical imagery (top) and colorized point cloud 

(bottom) viewed in Paracosm’s Retrace and Rapidlasso’s 

LasTools software, respectively. 

 

2.3 Software 

The PX-80 used Paracosm’s Capture v2.0 at the time of data 

collection. We used ESRI’s ArcGIS Desktop v10.7 software to 

digitize features from the .las point cloud data and quality check 

results. We used Paracosm’s Retrace v1.3 software to map 

features based on the RGB imagery and a heavily thinned .ply 

version of the point cloud. Retrace provided an immersive view 

of the spherical imagery and point cloud. Our procedure required 

the use of several custom scripts that we developed in Python 

v2.7. We used the liblas module for Python3 to process the .las 

point clouds in scripts. 

 

2.4 Pre-processing for Point Cloud Classification 

After data collection, the PX-80 processed the data using its on-

board processer to “reconstruct” RGB colorized point clouds and 

images tied to the point cloud’s local reference system. The 

reconstruction process was automatic once it was initiated. The 

point clouds downloaded from the scanner were colorized and 

ready for classification.  

 

We pre-processed the point cloud data output from the PX-80 to 

improve the efficiency of mapping with the point cloud data. The 

full resolution point clouds for a typical 20-minute scan 

contained well over 100 M points and could not be rendered 

efficiently in ArcGIS even when displayed with the lowest 
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resolution options available. To improve rendering time and 

mapping efficiency, we used custom Python scripts to create low- 

and medium-resolutions version by sampling 1 point in 500 and 

100, respectively. In addition to improved rendering, thinning the 

point cloud had the added benefit of making walls stand out more 

prominently because it greatly reduced the point density of 

ceilings and floors but had little noticeable effect on the point 

densities for walls when viewed from directly overhead. The low-

resolution point cloud (i.e. 1 point in 500) was adequate for 

mapping walls, doors, and windows whereas the medium-

resolution point cloud was typically adequate for mapping all 

other features-of-interest (Figure 2). 

 

 
Figure 2: Point cloud thinned to 1 point in 500 (left) of original 

density (right) emphasizes walls, doors, windows while greatly 

improving rendering speed. 

 

2.5 Point Cloud Classification 

For the classification process, we aimed to map 29 types of 

features that were relevant to public safety including walls, doors, 

windows, fire detection and suppression system components, 

utility shut-offs, first aid, and hazardous materials (Table 1). 

Large features (i.e. walls, doors, and windows) could typically be 

digitized easily from the point cloud using ArcGIS. Smaller 

features (i.e. smoke detectors, fire alarms, sprinkler heads, etc.) 

were most efficiently mapped using the Retrace software.  

 

Feature types Mapping method 

Wall, railing Digitize as lines in ArcGIS 

Exit door, non-exit door, fire 

door, window, high window 

(i.e. >1.5m above ground), 

elevator, roof access 

Digitize as lines, primarily 

in ArcGIS; digitize in 

Retrace only if imagery 

needed for identification. 

Stairs 
Digitize as polygons in 

ArcGIS 

Smoke detector, fire alarm, 

fire alarm pull station 

Digitize as points in Retrace; 

correct positions in ArcGIS. 

Sprinkler heads, HVAC vent 
Digitize as points in Retrace; 

no correction possible 

Fire extinguisher, standpipe, 

sprinkler riser, electrical 

panel, AED, first aid 

equipment, hazardous 

materials, large furniture, fire 

alarm control panel, exit sign 

Digitize as diagonal lines in 

Retrace from lower corner to 

opposite upper corner; 

correct positions in ArcGIS. 

Table 1: Target feature types and mapping methods. 

 

We manually interpreted and digitized walls, doors, and windows 

as line features in ArcGIS and used Retrace to view the imagery 

to assist interpretation where features could not be clearly 

identified. On-screen digitizing in ArcGIS was done in a 2D view 

from an overhead perspective. The walls were digitized as closed 

loops by snapping the loop start and end points, whenever 

possible. Doors and windows were mapped as lines spanning the 

full opening of the door or window and snapped to the walls. The 

types for digitized features were recorded in the attribute table of 

the shapefile. The elevations of the bottom and tops of doors and 

windows were measured using ArcGIS’s LiDAR Profile Tool. 

The minimum and maximum elevations were recorded for each 

feature in the attribute table. Doors and windows had standard 

heights and elevations for a given scan so it was only necessary 

to measure elevations for a few representative features. 

Representative features were chosen at opposite ends of the scan 

in case there was any significant vertical drift in point cloud 

elevations. If no significant drift was observed (i.e. < 30 cm), the 

elevations for representative features were copied to the attributes 

for all features of the same type. Elevations did not need to be 

measured for walls because they were assumed to extend from 

floor to ceiling.  

 

We used Retrace to map small objects and other features that 

could not be easily located and identified with the point cloud 

alone (Figure 3). Retrace’s Measure Tool uses the point cloud to 

determine the 3D coordinates of the locations clicked with the 

cursor. These coordinates can be labelled and exported as an .obj 

file, read in Python, and converted into a GIS vector format. The 

tool allowed us to identify the locations of features-of-interest 

using an immersive view of the imagery and obtain relatively 

accurate coordinates of the features based on the point cloud. We 

used the Measure Tool to obtain point coordinates corresponding 

to the centers of smoke detectors, fire alarms, fire alarm pull 

stations, sprinkler heads, heating and air conditioning (HVAC) 

vents. Exit signs, windows, fire extinguishers, standpipes, first 

aid items, utility shut-offs, and furniture were mapped by 

drawing a line diagonally from a lower corner to the opposite 

upper corner. The line represented the horizontal span and the 

upper and lower elevations of the feature. Doors were mapped by 

drawing a line across the top of the door jamb which was always 

visible in the imagery. The line represented the horizontal span 

and the uppermost elevation of the door; the lowest elevation was 

assumed to be at floor level. We only mapped windows and doors 

in Retrace if they were difficult to identify from the point cloud 

in ArcGIS. This included windows that were covered by closed 

blinds and doors that were closed and flush to the wall. We 

developed a script to convert the sets of coordinates, exported 

from Retrace to an .obj file, to either point or line shapefiles 

depending on how the feature was represented by the Measure 

Tool. The features were checked in ArcGIS to ensure accurate 

horizontal and vertical placement. 

 

   
 

Figure 3: Representation of example feature types as lines or 

points (yellow) in Retrace including door (left), fire alarm 

(middle), and smoke detector (right). 

 

We developed another script to create polygons based on the 

point and line features obtained through digitization in ArcGIS 

or Retrace (Figure 4). The polygons represented the 3D spaces 

occupied by each feature. For point features, 3D cylindrical 

buffers were created based on our estimates of the horizontal and 

vertical dimensions of each type of feature. The vertical 

dimension of the buffer was represented by adding a minimum 
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and maximum elevation to the attributes for each feature. The 

vertical component of buffers of ceiling-mounted features were 

exaggerated (e.g. +/- 40 cm) to account for minor elevation drift 

across the scan. A given scan never included multiple floors, 

except in the case of stairwells, so there was little concern of the 

vertical buffer encompassing points not associated with the 

feature. For line features, the script snapped the features to the 

nearest walls to ensure they were parallel to their associated wall. 

Then rectangular buffers were created around each line out to a 

perpendicular distance that we estimated to correspond to the 

depth of each type of feature. For line features (i.e. doors, 

windows, etc.), the vertical extents were represented by the 

minimum and maximum elevations measured with ArcGIS’s 

Profile Tool and recorded in the attribute table. We avoided 

relying on elevations obtained from Retrace as they often had 

errors >30 cm which were large enough to cause failures to 

classify corresponding points in the point cloud. The polygons 

were checked in ArcGIS to ensure accurate placements. 

 

We used the polygons to classify points in the point cloud that 

were contained within the 3D space represented by each polygon. 

The classification was done using a script that we developed 

which created a new .las file with the updated point classification. 

Each point in the point cloud was classified as the feature type 

associated with the polygon in which it was contained. To reduce 

the size of the classified .las file while preserving features-of-

interest, we selectively thinned the point cloud based on the 

physical dimensions associated with the different types of 

features. Point densities for large features, such as walls, were 

thinned heavily (e.g. 1 point in 50) whereas point densities for 

small features like sprinkler heads were not thinned at all.  

 

 
Figure 4: 3D polygons representing features-of-interest. 

 

 

RESULTS AND DISCUSSION 

 

We were able to successfully map features-of-interest for most 

spaces in the study buildings (Figure 5). However, we were 

unable to consistently map small ceiling-mounted features (e.g. 

sprinklers, smoke detectors) in gymnasiums and other areas with 

high ceilings or excessive ceiling clutter. Our strategy of 

scanning small rooms from the doorway occasionally prevented 

us from using Retrace to map features in those rooms. Retrace 

only provides image viewpoints for locations directly on the track 

of the scanner so the available viewpoints often did not provide 

useful views for rooms that had not been entered. Thus, we 

usually could not map sprinkler risers or electrical panels which 

tended to be in small or cluttered rooms for which entry with the 

scanner was avoided. This problem did not prevent us from 

mapping large features (i.e. walls, windows, doors).  

 

 
 

Figure 5: Example of classified point cloud. 

 

Data collection was done by our fire department collaborators 

who had no related technical experience and minimal training. 

The firefighters were able to independently operate the PX-80 

after only 1-2 hours of supervised training. Scanning a large 

multi-story building of 14,000 m2 took an estimated 3-5 hours 

depending on the characteristics (e.g. number of rooms and 

stairs) of the building. 

 

The data generated for a 14,000 m2 building required roughly 200 

GB of storage space. Point densities were approximately 1 pt/cm3 

for most areas which were collected at a moderate walking pace 

of roughly 2.5 kph. These densities represented objects as small 

as fire alarms and smoke detectors with enough detail to make 

visual detection possible from the point cloud when viewed at 

very large scales. Sprinkler heads were impossible to see in the 

point cloud especially when they were recessed into the ceiling 

but they were easily visible in the imagery.  

 

We explored development of algorithms for automatically 

extracting smoke detectors based on their shape and 3D structure. 

Although we were able to reliably detect smoke detectors in our 

test dataset, we abandoned the effort because of time constraints 

and difficulties in differentiating smoke detectors from the many 

other features (e.g. cameras) with a similar shape, size, and color. 

Automated extraction of wall- and ceiling-mounted features is 

certainly possible but automated identification of those features 

is likely to be a major challenge especially considering the 

structural and spectral variability of these features across 

different buildings. 

 

Retrace was a very useful tool for mapping small features 

including sprinklers, smoke detectors, and fire alarms which were 

impractical to map directly from the point cloud. The locations 

exported from Retrace were usually within 0.5 m of the 

corresponding feature in the point cloud both in terms of 

horizontal and vertical distances. Vendors of handheld and other 

types of LiDAR scanners likely provide software that is 

equivalent to Retrace and may be able to provide a similar 

function in terms of mapping features. 

 

We estimate that it takes 20-40 hours to complete the point cloud 

classification of a 14,000 m2 building when mapping all the target 

features (Table 1). This time is reduced by about 30-50% if only 

walls, doors, and windows are mapped because the Retrace phase 

of the process can be eliminated. Although the process requires 

considerable manual effort, it can be performed by personnel 

with relatively little experience in GIS and it likely provides 

higher quality results than can be achieved with automated 
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methods. The scripts that we developed were key tools for the 

classification process and will be made available along with the 

data on our project website (https://www.edc.uri.edu/indoor-

mapping-project).  

 

CONCLUSIONS 

 

This study developed an efficient manual procedure for 

classifying features-of-interest in indoor LiDAR point clouds. 

The procedure used ESRI’s ArcGIS and Paracosm’s Retrace 

software to digitize features using either the point cloud and 

image data, respectively. We successfully mapped features 

ranging from doors and windows to sprinkler heads and fire 

alarms. The data collection process required little technical skill 

and with the aid of custom scripts we were able to classify the 

point clouds efficiently. We estimate that collecting data and 

classifying the point cloud for a 14,000 m2 building took 20-40 

hours depending on building characteristics. The script tools and 

products developed in this research will be made available for 

download at https://www.edc.uri.edu/indoor-mapping-project. 
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