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ABSTRACT: 
 
The deep learning (DL) models require timely updates to continue their reliability and robustness in prediction, classification, and 
segmentation tasks. When the deep learning models are tested with a limited test set, the model will not reveal the drawbacks. Every 
deep learning baseline model needs timely updates by incorporating more data, change in architecture, and hyper parameter tuning. 
This work focuses on updating the Conditional Generative Adversarial Network (C-GAN) based epiphyte identification deep learning 
model by incorporating 4 different generator architectures of GAN and two different loss functions. The four generator architectures 
used in this task are Resnet-6. Resnet-9, Resnet-50 and Resnet-101.  A new annotation method called background removed annotation 
was tested to analyse the improvement in the epiphyte identification protocol. All the results obtained from the model by changing the 
above parameters are reported using two common evaluation metrics. Based on the parameter tuning experiment, Resnet-6, and Resnet-
9, with binary cross-entropy (BCE) as the loss function, attained higher scores also Resnet-6 with MSE as loss function performed 
well. The new annotation by removing the background had minimal effect on identifying the epiphytes.  
 
 

1. INTRODUCTION 

Neural network (NN) algorithms are used in many digital data 
analysis (Tefas et.al., 2013). Advancements in computational 
hardware, storage and software are fueling progress in digital 
data analysis. Deep learning-based data analysis are a part of NN 
algorithms and are robust for applications with data generated by 
numerous sources (Jia et.al., 2017 and Najafabadi et.al., 2015). 
These deep learning (DL) algorithms are capable of 
understanding data and its pattern from an experiential learning 
and derive the features from input data and generate learned 
models (Harshvardhan et.al., 2020). The performance of DL 
algorithms are highly dependent on the quantity and quality of 
data used for learning and its mathematical modelling.  
 
DL algorithms are used for prediction and classification tasks in 
several disciplines (Rory et.al., 2019; Iqbal et.al., 2019). DL 
algorithms consist of deep neural network components and their 
organisation collectively referred as their architecuture. Several 
state of the art DL architectures are used for image classification, 
object detection, and image segmentation tasks (Zhao et.al., 
2019; Nida et.al., 2015).  
 
Performance of DL or any NN algorithms varies over time when 
the requirements change. Changes to the structure, parameters, 
and mathematical modelling of DL architecture are necessary for 
improving their performance. There are several DL architectures 
like VGG16, GoogleNet, ImageNet etc (Chen et al, 2018; 
Szegedy et.al., 2015 and Krizhevsky et.al., 2012) used for various 
image processing applications. The DL algorithms are not self-
adaptive to the new requirements and sometimes they are 
computationally intensive. Hence updated concepts to DL and 
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other NN algorithms are necessary for better learning and 
effective utilisation of computational resources. There are many 
examples like introduction of different types of convolutions in 
convolutional NN algorithms (Ding et.al., 2018) to improve the 
feature extraction with reduced computational cost. The DL 
architectures like Unet (Ronneberger et.al., 2015) and generative 
adversarial networks (GAN) (Goodfellow et.al., 2014) are 
specifically designed for image-to-image translation by 
innovative architectural components. The deep learning 
algorithm updates in their components aims to produce better 
output, improved performance and effective utilization of 
computational resources.   
 
Shashank et.al., (2020) used Conditional-GAN algorithm (C-
GAN) introduced by Philip et.al., (2017) for identifying the 
epiphytes (Werauhia kupperiana) in the drone acquired images. 
That study modelled the target identification task as an image-to-
image translation problem and applied adversarial concepts. C-
GAN identified 80% of the epiphytes from the test set. This study 
was not able to produce good output labels in many scenarios. 
Also, the algorithm was not able to perform well when the target 
plant differs in distance at which target is imaged, lighting 
conditions and distance at which the target is imaged. This 
motivated the current study to experiment and explore the 
performance of C-GAN algorithms by changing its hyper 
parameters and architecture components to improve the 
performance of the algorithm. 
 
This study builds on the work completed by Shashank et al. 
(2020). First, a new annotation method was used for generating 
the images needed to train the algorithm. Next, the performance 
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four generator architectures were evaluated with two different 
loss functions. The objective of this study is to update the DL-
based epiphyte identification model used by Shashank et al., 
(2020). The proposed model underwent an architectural change 
to the existing C-GAN (Philip et.al., 2017). Results from this 
study will provide valuable information for developing more 
robust DL algorithms to identify epiphytes in digital images. 

 
 

2. MATERIALS AND METHODS 

The experiment were organized in two stages where binary cross 
entropy (Shie et.al., 2005) was set as the loss function with 4 
different residual networks. In the second stage all residual 
networks were coupled with MSE (Zahra et al., 2014) as the loss 
function. The above experiments trained the C-GAN model with 
the epiphyte dataset. The phython program trained the model for 
200 epochs and saved the final model to the local system. The 
testing was done separately with 12 images which are not seen 
by the network during the training phase. 
 
2.1 Epiphyte dataset and annotation   

The epiphyte dataset used in this study was acquired in Costa 
Rica (Sajithvariyar et.al., 2019). The epiphyte dataset consisted 
of 115 drone-aquired images of which 98 were used for training, 
12 for testing and remaining 5 for validation. The validation set 
were used during training to tune the parameters and the test set 
were used to assess the trained network’s ability to identify the 
target plant. 
 
The C-GAN architecture was implemented using python and 
trained in an i7 processor with 8 GB RAM and NVIDIA Quadro 
P5000 GPU. All the input images and labels had a dimension of 
256 x 256 x 3. 
 

  
 

  
Figure 1. The input image (A) and corresponding annotation 

image (B) generated by the first study. The input image (C) and 
the annotation image (D) generated by the present study. 

 
The new annotation method removed the background black 
pixels and kept the target as a true colour images. In the earlier 
study, the target plant was identified as red pixels (Figure 1). The 
annotation images generated by Shashank et al., (2020) were 

used to remove the background pixels and retain the original, 
true-colour image of the target plant (Figure 1). Retaining the 
RGB values of the target plant will help C-GAN to concentrate 
more on the foreground pixel and generate better output labels. 
 
2.2 CGAN Generator and Discriminator 

The C-GAN deep learning architecture used for epiphyte 
identification consists of two competing networks called 
generators and discriminator with two loss functions.  The 
previous study used the UNET encoder-decoder architecture 
(Ronneberger et.al., 2015). The encoders will map the input data 
to a lower dimension and the decoder maps this back to original 
information. The dimensionality reduced data will be scale 
invariant and translation invariant which is very important for 
object identification tasks. C-GAN is a variant of GAN where it 
enforces the input data to derive the features based on a condition, 
which is our annotated image. This conditional enforcing will 
ensure that the algorithm will focus on the target region in the 
input image by referring to the annotation images.  
 
In the present study, we evaluated four different types of deep  
convolutional neural architecture for the generator networks. The 
following subsection gives the details of the deep neural 
networks used for constructing the generator network. 
 
2.2.1 Residual Generator Networks 
 
The Generator networks architecture was replaced with a deep 
convolutional neural architecture called Residual networks (He 
et.al., 2016). The residual networks were designed by a group of 
researchers in Microsoft during 2015. The major contribution of 
the network is to remove the vanishing / exploding gradient 
problem in deep networks. The residual networks are 
implemented with shortcut connections between layers and 
exhibit efficient training from residual functions as shown in 
(Figure 2).  
 

 
Figure 2. The Residual network learning residual functions by 

referring input layers (He et.al., 2016). 

 
The residual networks are designed in various layer depths and 
they are named in such a way that the decimal number indicates 
the layer depth. In this study we tested four different variants of 
the Resnet architectures after replacing the C-GAN generator 
with following variants a) Resnet-6, b) Resnet-9, c) Resnet-50, 
and d) Resnet-101.  
 
The generator network plays an important role in C-GAN 
algorithms. The generator network is responsible for generating 
the fake sample by looking at the conditional parameter that is 
the annotated image. The performance of generator is good when 
it can produce fake samples as close to the original images. At 
this stage, the discriminator network will fail to differentiate the 
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original and from the fake samples. Since this study is mainly 
focused on the generator networks, we retained the original 
discriminator network that was used in the previous study. The 
discriminator network is a patchGAN architecture with a patch 
size of   which is the best window size experimentally proved by 
(Isola et.al., 2017). 
 
Most of the studies and research in deep convolutional networks 
states that “the deeper the better” (Bekele et.al., 2019). Hence we 
attempted to improve the performance of deep CNN networks by 
adding more layers. On the other hand, by making the networks 
deeper the computational cost and run time will increase. The 
major issue in a deep neural network is the vanishing Gradient 
problem. This occurs when the network is not able to learn 
anything from the input data. When the network is too deep, the 
gradients from the loss functions will map the values to zeros. 
This will result in no further updates to the weight matrix of the 
model and the learning rate of the network will decline. To 
overcome this huddle we need an architecture which is deeper 
but also free from the vanishing gradient problem. 

 
The residual networks enforce efficient learning by mapping 
residual functions between layers and there improve the training 
process. The residual network learns the residuals to match the 
input with the predicted weights. This process makes sure that 
the deeper networks will learn better without degrading the 
process.  
 
2.3 The CGAN loss functions 
 
The loss functions are vital in any neural network training to keep 
track of the model’s learning of the weights. The proposed 
methods consist of a binary classification where the C-GAN must 
classify the background and target pixels. Generator loss depends 
on the ability of the discriminator to identify fake as real samples. 
Discriminator loss penalizes itself for misclassifying a real 
instance as fake and vice versa. In this study, we used two loss 
functions a) Mean Squared Error (MSE) b) Binary cross Entropy 
(BCE) for the generator network. The experiments were 
conducted for all four generator networks with two loss 
functions. The output generated by 4 different generator 
networks with two loss functions are reported using structural 
similarity index (SSIM) and intersection over union score (IoU). 

   

3. RESULT AND DISCUSSION 

The SSIM and IoU scores were computed for the predicted label 
and ground truth label from different models trained in this study. 
The SSIM will look for the structural similarity and IoU will find 
the maximum overlap between the predicted labels and ground 
truth labels. A Python script was developed to iteratively 
compute the IoU and SSIM score for all the test images and their 
average. 
 
The new annotation method proposed in this study contributed 
more towards the predicted label analysis for the analyst. The 
new annotation images are not contributing anything new while 
comparing them to the annotation used in the previous study. 
This reveals that masked annotation with false color will be 
sufficient for epiphyte identification task.  
 
Analyses of the output images generated by various models 
trained with the new annotation method revealed no major 
difference in generated output labels. The major advantage for 
analyst with the new annotation is that after predicting the labels 

it is easy to understand the portion of the epiphyte where the 
model failed to predict. The effect of loss function on predicted 
labels like blurring is evident from the annotation. This also 
helped to understand that the prediction on epiphyte leaf edges 
and overlapped leaves are more blurred.  

 
Replacing the generator networks with residual networks and two 
generator loss functions MSE and BCE generated different 
output labels. Table 1 summarizes the results obtained from 4 
different residual networks with BCE and MSE loss functions. 
From the results obtained, generator networks with Resnet-6, 
Resnet-9 and BCE as the generator loss function scored 
maximum IoU and SSIM score. Also, from Table 1 it is evident 
that when MSE was set as the loss function Resnet-6 generated 
output labels with high SSIM and IoU score. The Resnet-50 and 
-101 underperformed due to a smaller number of training 
samples. The deeper the networks, the more data required for 
training. The Resnet-50 consist of 50 layers and Resnet-101 
consist of 101 layers, when this many layers iterate over fewer 
number of training samples there will not be further improvement 
in training. The performance will be degraded, and the network 
will generate a poor model. This resulted in generating poor 
output labels which gives low SSIM, and IoU scores compared 
to ground truth.   

 
       

Average SSIM and IoU score for 4 different architecture 
with BCE as loss function 

 Resnet-6 Resnet-9 Resnet-50 Resnet-
101 

SSIM 0.60 0.61 0.56 0.56 

IoU 0.38 0.41 0.27 0.25 

Average SSIM and IoU score for 4 different architecture 
with MSE as loss function 

      Resnet-6 Resnet-9 Resnet-50 Resnet-
101 

SSIM 0.74 0.60 0.60 0.60 
IoU 0.56 0 0 0 

Table 1. The average SSIM and IoU score computed for the 
residual networks with two different loss functions. 

         
 
The SSIM scores obtained with Resnet-6 and MSE as the loss 
function was higher for Resnet-6 and remained the same for the 
remaining networks (Table 1). These scenarios indicate the 
limitations of SSIM scores for evaluating the output labels. The 
SSIM score looks for the maximum similarity between the 
predicted and ground truth labels. In this study all label images 
consisted of two classes: 1) all non-target pixels belong to 
background (black), and 2) the target pixels in its original colour 
space. Also, in many test images the target plant occupied a small 
area in each frame compared to background information. Under 
these circumstances, though the model fails to correctly predict 
the target plant, the similarities in the background pixels will lead 
to higher SSIM scores (Figure 3). 
 
The IoU scores associated with Resnet-6 and MSE loss function 
was 0.56 (Table 1) and was 0 for the rest (Table 1). The IoU is a 
method to quantify the percentile of overlap between the 
predicted label and ground truth label. IoU metric measures the 
number of pixels common between the ground truth and 
prediction label divided by the total number of pixels present 
across both labels. The value of IoU score is ranging between 0 
and 1 where value close to 1 indicate predicted label is closer to 
ground truth and 0 indicate they are dissimilar.   
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Figure 3. The high SSIM score of an input image (A) with 
minimal target occupancy and incorrectly predicted label (B) 

due to high overlap between black regions. 
 

The SSIM limitations can be easily replaced while computing the 
IoU score. The SSIM score is helpful when we need to evaluate 
the predicted label with some epiphyte pixels and compare the 
structural similarity. This shows that SSIM score along with IoU 
gives a better clarity on the output labels predicted. 
 
Results obtained from various models evaluated in this study 
shows that the output predicted labels are more blurred when we 
have BCE as the loss function (Table 2). The model trained with 
Resnet-6 and MSE loss produce sharp images with less blurring 
effect. The objective of the BCE loss function is to reduce the 
error to zero. This results in blurring effect. Unlike BCE, MSE 
computes the error based on the squared distance. This results in 
less blurring effect, when compared to the output obtained using 
BCE loss function. 
 
Table 2 gives some sample output labels with high IoU and SSIM 
scores predicted by Resnet-6 and 9 with BCE and Resnet-6 with 
MSE as the loss function. 
 
The results obtained from the experiments also reveals that when 
the network is going deeper from number of layers 6 to 101 in 
residual networks the SSIM and IoU scores are declined. The 
deeper the networks a greater number of images is required for 
training. This also shows that the potential of improving the 
results with more training data.  
 
 

4. CONCLUSIONS AND RECOMMENDATIONS 

Resnet-6 and Resnet-9 with BCE and MSE loss functions were 
able to generate output labels with higher SSIM and IoU scores. 
The SSIM scores can be higher if the target plant occupies a small 
area in the images used for testing. Resnet-50 and Resnet-101 did 
yield output labels with lower SSIM and IoU scores due to 
smaller number of images for training.  
 
The output labels were more blurred for BCE compared to MSE 
loss function. Choice of selecting appropriate loss function for 
reducing the blur in the output labels. Current DL architecture 
demands more changes in the system loss function. 
 
The new annotation by removing the background had no 
significant improvement in label prediction.  
 
Incorporation of hybrid models might be necessary to make 
improvements to the epiphyte identification model. This work 
also highlights the opportunities for further improvement by 
making changes to hyper parameters like loss function in addition 
to incorporating new architectures.   

 
.   
Generator 
network & 
Loss 
function 

 
 

Ground Truth 

 
 

Predicted 

 
 
 
Resnet-6 
& BCE 

  
 
 
Resnet-9 
& BCE 

  

 
 
 
 
Resnet-6 
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Resnet-6 
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Resnet-9 
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Resnet-6 
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Table 2. The labels predicted by the trained model with highest 

SSIM and IoU score. 
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