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ABSTRACT: 

Sustainable forest management is a critical topic which contributes to ecological, economical, and socio-cultural aspect of the 

environment. Providing accurate AGB maps is of paramount importance for sustainable forest management, carbon accounting, and 

climate change monitoring. The main goal of this study was to leverage the potential of two machine learning algorithms for predicting 

AGB using optical and synthetic aperture radar (SAR) datasets. To achieve this goal random forest (RF) and light gradient boosting 

machine (LightGBM) models were deployed to predict AGB values in Huntington Wild Forest (HWF) in Essex County, NY using 

continuous forest inventory (CFI) plots. Both models were trained and evaluated based on airborne light detection and ranging (LiDAR) 

data, Landsat imagery, advanced land observing satellite (ALOS) phased array type L-band Synthetic Aperture Radar (PALSAR), and 

their combination. The integration of airborne LiDAR, optic, and SAR datasets provided the best results in terms of root mean square 

error (RMSE) and mean bias error (MBE). The RF model outperformed the LightGBM in all scenarios (LiDAR, Landsat 5, ALOS 

PALSAR, and their combination). The RF model was able to predict AGB values with the RMSE of 51.90 Mg/ha and MBE of -0.189 

Mg/ha for the combination of LiDAR, optic, and SAR data, while LightGBM estimated the AGB values with the RMSE of 52.78 

Mg/ha and MBE of -0.253 Mg/ha. LightGBM is more sensitive to noise and there are lots of hyperparameters that need to be tuned 

which highly affect its performance.    

1. INTRODUCTION

In today’s world, global deforestation is expanding and 

accelerating, resulting in the release of a quarter of carbon into 

the atmosphere (Li, Quackenbush, and Im 2019). Forest 

monitoring and more accurate estimates of forest above-ground 

biomass (AGB) is of significance to clarify the contribution of 

forests in global climate change. Therefore, some countries have 

developed a campaign which is known as Reducing Emissions 

from Deforestation and Degradation (REDD) to mitigate the 

effects of the climate change (Bellassen and Gitz 2008). A key 

question for REDD effort is how much AGB is available at 

national and global scale. According to the requirements of this 

effort, participating countries are supposed to report verified 

estimates of AGB at national level which is a key indicator of 

carbon pools in forest systems (Chen et al. 2018). One major 

problem in accurate carbon estimation is to find an efficient 

method for the determination of the forest AGB. Although filed 

measurement techniques can estimate AGB accurately, they are 

inherently destructive, labor-intensive, costly, time-consuming, 

and practical only for local scale (M. Li, Im, and Beier 2013). 

The increasing availability of remote sensing data paves the road 

for cost-effective and large scale AGB estimation. 

Recently, light detection and ranging (LiDAR), optic, and 

synthetic aperture radar (SAR) data have been extensively used 

as non-destructive and effective methods for forest monitoring 

(S. Li, Quackenbush, and Im 2019). The invention of light 

detection and ranging (LiDAR) data has provided an efficient 

tool for an accurate AGB estimation by capturing three-

dimensional forest structure (Bolton et al. 2020). The cost and 

volume of LiDAR data limits its application for large scale AGB 

estimation. Optic and SAR data are considered as other valuable 

sources of AGB estimation over large areas and with less cost in 

comparison to airborne LiDAR flight. Spectral bands, vegetation 

indices, and texture features derived from optical imagery have a 

high correlation with vegetation density, biomass, chlorophyll 

content and etc. (Zhou et al. 2016). However, weather conditions 

such as cloud cover, rain, and snow can greatly affect the quality 

of the optical imagery, especially in tropical regions and northern 

climates. In addition, these images suffer from saturation which 

occurs when the pixels’ spectral reflectance values do not show 

the exact reflectance at high biomass regions (Urbazaev et al. 

2018; Zhou et al. 2016). SAR sensors acquire data independent 

of weather and illumination conditions. SAR signals are sensitive 

to trees geometric structure and can penetrate through forest 

canopy depending on the wavelength (Tamiminia et al. 2017). 

Urbazaev et al. (2018) indicated that SAR data also have 

limitations with saturation depending on the wavelength and 

biomass density. Thus, in this study the combination of airborne 

LiDAR, optic, and SAR data is used to overcome the limitation 

of single source approaches and to enhance AGB estimation.  

Recently, machine learning models are commonly used to 

develop relationships between forest attributes and remote 

sensing derived predictors (Zhang et al. 2019). Decision tree-

based models (e.g. random forest (RF)) have shown promising 

results in AGB estimation (Y. Li et al. 2020). Nonetheless, a 
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comparison between decision-tree based techniques is needed.  

Y. Li et al. (2019) compared the results of linear regression, RF, 

and extreme gradient boosting (XGBoost) for AGB estimation in 

subtropical forest of southern China using spectral bands, 

vegetation indices, and texture measures derived from Landsat 8 

imagery. They reported that XGBoost provides better 

performance in compared with linear regression and RF. In 2020,  

Y. Li et al. conducted further investigation on XGBoost tuning 

parameters for AGB estimation in southern China using the 

combination of Landsat 8 and Sentinel-1 data. Moreover, Pham 

et al. (2020) compared and reported that the combination of 

XGBoost method and genetic algorithm feature selection 

technique provides better results than CatBoost (CB), RF, 

gradient boosted regression tree (GBRT), and support vector 

regression (SVR) algorithms for mangrove AGB estimation 

using integration of SAR and optical data in Vietnam. Since 

mentioned studies were conducted in tropical and subtropical 

forests, in this study we plan to explore the potential of decision 

tree-based models for a temperate forest.      

 

The main gaol of this study is to compare two ensemble machine 

learning models: random forest (RF) and light gradient boosting 

machine (LightGBM) for AGB estimation using the integration 

of remote sensing data. To achieve this goal, the following 

research objectives are addressed:  

 

 To assess the potential of the synergy of airborne LiDAR, 

optic (i.e. Landsat 5 Thematic mapper (TM)), and SAR (i.e. 

advanced land observing satellite (ALOS) phased array type 

L-band Synthetic Aperture Radar (PALSAR)) data for AGB 

estimation. The hypothesis is that the combination of remote 

sensing data increases the performance of AGB modelling 

in comparison to single data source method.  

  

 To compare RF (a bagging technique) and LightGBM (a 

boosting technique) models. Our hypothesis is that a 

properly-tuned LightGBM can perform better than RF 

model.    

2. MATERIALS 

2.1 Study Area  

The study area is located in Huntington Wildlife Forest (HWF) 

area, in the central Adirondack Park, northern New York State 

(Figure 1). HWF covers an approximate area of 6,000 ha (latitude 

44E 00" N, longitude 74E 13" W). It has mountainous 

topography and the elevation ranges from 473 m to 908 m above 

mean sea level. The mean annual temperature and precipitation 

are 4.4 Celsius degree and 1010 mm, respectively.      

 

 

Figure 1. Location of the study area (Essex County, NY) for 

forest AGB estimation using ensemble machine learning 

models. White circles depict sample plots located in Huntington 

wildlife forest   

2.2 Field Measurements   

Continuous Forest Inventory (CFI) plots have been used as a 

reference dataset in this study. This dataset was collected by the 

State University of New York, College of Environmental Science 

and Forestry (ESF) during July and August of 2011. Plots cover 

northern hardwood species including sugar maple, red maple, 

yellow birch, beech, white ash, red oak, white pine, hemlock, red 

spruce, and pine/softwood plantations of various species 

(Breitmeyer et al. 2019). CFI data over HWF contains 288 

sample plots (Figure 1). Tree information such as tree species, 

diameter at breast height (DBH) of 11.7 cm or greater, and the 

relative location to the center of the plot were recorded (S. Li, 

Quackenbush, and Im 2019). Then, AGB at tree level was 

calculated using species-specific DBH Component Ratio Method 

(CRM) allometric equations (Kennedy et al. 2018). Finally, plot 

level AGB was calculated as the average AGB per unit area 

within each sample plot. In other words, the plot level AGB in 

megagrams per hectare (Mg/ha) was calculated by dividing the 

tree level AGB by the plot area. 

 

2.3 Remote Sensing Data  

2.3.1 Airborne LiDAR: Discrete return aerial data collection 

was acquired over HWF in May 2015 using the Leica 

Airborne Laser Scanner (ALS70) at a maximum flying height of 

3500 above ground level (AGL). This was to support a 2.5 ppm2 

LiDAR point cloud. First step in LiDAR data processing was to 

convert the raw point clouds into height-normalized point clouds. 

A k-nearest neighbour imputation algorithm (k=5) was used to 

imputed a digital elevation model (DEM) which is subtracted 

from all returns in the point cloud (Hawbaker et al. 2009; Huang 

et al. 2019). Then, predictors were computed using the height 

normalized LiDAR data for modelling at 30 m grid cells. Finally, 

29 height (i.e. height percentiles, coefficient of variation of 

height, and etc.) and intensity (i.e. percentage of ground intensity, 

percentage of feature intensity, and etc.) predictors were fed as 

inputs into the machine learning models. Since the reference 

datasets were collected in 2011 and we are using airborne LiDAR 

for 2015, the main hypothesis is that HWF did not change from 

2011 to 2015.        

 

2.3.2 Landsat 5 TM Imagery: Landsat 5 TM surface 

reflectance (SR) imagery with 30 m spatial resolution were pre-

processed and downloaded through Google Earth Engine (GEE) 

platform. First, the Landsat 5 image collection which covered the 

HWF were selected for July and August of 2011 with less than 5 

percent of cloud cover. A cloud masking function was applied 

based on the pixel quality assessment (pixel-qa) band of Landsat 

SR data to mask out the clouds. Then, 6 spectral bands including 

blue, green, red, near infrared (NIR), shortwave infrared-1 

(SWIR1), and shortwave infrared-2 (SWIR2) were selected. 

Finally, some vegetation indices such as normalized difference 

vegetation index (NDVI), Soil Adjusted Vegetation Index 

(SAVI), Ratio Vegetation Index (RVI), normalized burn ratio 

(NBR), and normalized difference moisture index (NDMI) were 

calculated based on spectral bands.         
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2.3.3 ALOS PALSAR Data: For SAR data, the global 

PALSAR/PALSAR-2 yearly mosaic with 25 m resolution at L-

band was utilized. This dataset is freely available at GEE 

platform (Tamiminia et al. 2020).It should be noted that the strips 

with less response to surface moisture were selected for this 

procedure. Then, the imagery was ortho-rectified and slope 

corrected using the 90 m shuttle radar topography mission 

(SRTM) digital elevation model (DEM). In this study, the dual 

polarization (horizontal transmit/horizontal receive (HH) and 

horizontal transmit/vertical receive (HV) polarizations) yearly 

mosaic was used for the year 2011over HWF. Then, a smoothing 

speckle filter with the radius of 30 m was applied to the channels 

to remove the speckle noise. Span and ratio were also calculated 

to add more features to train the models (Equations 1 and 2). The 

images were resampled to 30 m resolution to be as the same 

resolution as the LiDAR and optic datasets. 

     

Span=HH2+HV2     (1)         

Ratio=HH/HV         (2)    

where  HH= horizontal transmit/horizontal receive channel 

 HV = horizontal transmit/vertical receive channel  

 

3. METHODS 

This section describes two ensemble machine learning models 

used and compared in this study. Two well-known ensemble 

techniques are bagging and boosting (Liaw and Wiener 2002). 

RF and LightGBM are subset of decision tree-based models 

which use bagging and boosting methods, respectively. The 

training dataset contained 70% of the data used for tuning and 

training the model while 30% of data used for the evaluation of 

the final model. Hyperparamers were tuned using a grid search 

approach.  

 

3.1 Random Forest (RF) 

The first idea of RF was proposed by Ho in 1995, then, an 

extension of RF that is applied for classification and regression 

purposes was developed by Breiman (2001). RF is a machine 

learning algorithm which uses a bagging technique to train the 

model independently in parallel. The forest is a combination of 

trees which each tree is trained separately without any 

dependency on the other trees. Due to the characteristics of RF, 

the training speed runs faster, the results are less sensitive to 

tuning parameters, and few parameters are needed to be tune (Li 

et al. 2019). Moreover, RF creates many trees on subsets of the 

data both bagged observations and subsets of variables. This is 

done to increase the difference in the trees in order to improve 

predictive power, leading to a robust algorithms that can reduce 

the over-fitting issues (Li et al. 2019). The RF implementation 

was performed using randomForest package in R software. Grid 

search winning parameters for the combination of LiDAR, optic, 

and SAR data are listed in Table 1.  

 

Parameter Description Selected Value 

ntree Number of trees to 

aggregate. 

390 

mtry Number of variables to split 

at in each node. 

3 

nodesize Minimum size of terminal 

nodes. 

6 

Table 1. Values for tuned hyperparameters for RF model using 

a grid search approach and combination of LiDAR, optic, and 

SAR data          

3.2 Light Gradient Boosting Machine (LightGBM) 

Gradient boosting machine (GBM) is another ensemble-based 

decision tree, however, unlike the trees in RF model, the trees in 

GBM method cannot be created in parallel. Alternatively stating, 

in the GBM algorithm, the second tree depends on the first tree 

and the third depends on the first two and so on. Boosting 

technique used in GBM builds new sets in a sequential way and 

the observations are weighted, leading some take part in the sets 

(Ke et al. 2017). The main objective of GBM is to reduce the 

model’s residual along the gradient direction by decreasing the 

previous residuals (Pham et al. 2020). The GBMs have very low 

interpretability because the second tree in the model no longer 

predicts the same target as the original model the subsequent trees 

in the model seek to predict how far off the original predictions 

were from the truth by using the residuals from the prior trees. In 

this way, each subsequent tree of the gradient boosting model is 

slowly reduces the overall error of the previous trees. This 

enables the gradient boosting models to have high predictive 

power but low interpretability (Ke et al. 2017). The main 

advantage of GBM is being robust and being able to handle 

mixed data types which is useful for remote sensing data. 

However, it is computationally expensive. In this paper, a 

LightGBM model which uses a leaf-wise split and runs faster was 

implemented using the lightgbm package in R. Table 2 shows the 

winning hyperparameters of LightGBM model using the 

combination of LiDAR, optic, and SAR data.   

    

Parameter Description 
Selected 

Value 

learning-rate 
How fast the algorithm 

learns.  
0.01 

nrounds 
The number of boosting 

iterations. 
100 

num_leaves 
The maximum number of 

leaves per tree.  
31 

max_depth 
Prevents the tree growth 

from a certain depth.  
-1 

bagging_frequency  
How many iterations to run 

before resampling.  
10 

bagging_fraction 
The fraction of rows to use 

per iteration.  
0.9 

feature_fraction 

The proportion of 

predictors to use in each 

iteration.  

0.6 

Table 2. Values for tuned hyperparameters for LightGBM 

model using a grid search approach and the combination of 

LiDAR, optic, and SAR data      

 

4. RESULTS AND DISCUSSION 

This section describes the results of applied regression models 

for AGB estimation for 4 different scenarios: airborne LiDAR, 

Landsat 5, ALOS PALSAR, and the combination of them. RF 

and LightGBM regression models were applied for each scenario 

separately. The performance of the models were evaluated using 

root mean square error (RMSE) and mean bias error (MBE). 

MBE was calculated based on the difference between the mean 

values of all observed and predicted values (Ji et al. 2015). 

Therefore, the positive MBE is a sign of under-prediction and the 

negative MBE indicates over-prediction.     

 

Figure 2 shows the distribution of computed AGB values for CFI 

plots using CRM allometric equations. Calculated AGB values 
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using CRM allometric equations vary from 0 to 433.2 Mg/ha with 

a median of 183.2 Mg/ha (Table 3).   

 

 

Figure 2. Distribution of calculated AGB using CRM 

allometric equations. The grey dots represent a cloud of 

randomly jittered plots below the ridge line plot. The AGB 

values of sample plots were used to train and test the models 

based on 70/30 split     

 

Min 

(Mg/ha) 

1st 

quartile 

(Mg/ha) 

Median 

(Mg/ha) 

3rd quartile 

(Mg/ha) 

Max 

(Mg/ha) 

0 139.5 183.2 183.4 433.2 

Table 3. Statistics characteristics of AGB of CFI plots in HWF 

used for AGB estimation using RF and LightGBM models  

   

Table 4 summarizes the RMSE and MBE for 4 scenarios and 

each regression model. From a machine learning perspective, in 

all 4 scenarios RF model which is a bootstrap (bagging) 

technique outperformed the LightGBM model. For instance, the 

RF model for the ALOS PALSAR-only scenario predicted AGB 

values with the RMSE of 72.88 Mg/ha and MBE of 5.96 while 

LightGBM estimated with RMSE of 77.79 Mg/ha and MBE of 

11.26 Mg/ha. In this case, both models are over-predicting the 

AGB, however, the average over-estimation of RF model is 

nearly 5 Mg/ha lower than the LightGBM method. Since the RF 

is a parallel ensemble decision tree which trains each tree 

separately, it leads to reducing variance. This independent 

training process decreases the sensitivity of the RF model to noise 

existing in the predictors. On the other hand, LightGBM trains 

the trees sequentially and aims to reduce the bias. Although 

LightGBM can overcome over-fitting issues in decision tree 

algorithms, noisy input variables may decrease the accuracy of 

the subsequent tree. In this case, due to the inherent characteristic 

of remote sensing data, noise cannot be ignored. Though over-

fitting is still considered as a concern for modelling the AGB 

values, RF model which is less sensitive to outliers seems to be 

more effective for AGB prediction in HWF. In airborne LiDAR 

only scenario, both intensity and height variables of LiDAR data 

were used as predictors for AGB estimation. It is worth 

mentioning that LiDAR predictors can be noisy because of low 

vertical accuracy relative to horizontal sample distance. 

Furthermore, spectral bands and vegetation indices derived from 

Landsat imagery contain mixed pixels which is not totally 

correspond to forested areas. Thus, increasing the chance of noise 

in the variables. Therefore, with regard to input predictors, the 

RF model outperformed LightGBM in AGB estimation. In 

addition, LightGBM is sensitive to hyperparameter tuning. 

Figure 3 demonstrates the scatter plots of predicted versus actual 

AGB values for both RF and LightGBM models using the 

combination of LiDAR, Landsat 5, and ALOS PALSAR data.              

Data Type Validation Metric RF 
Light 

GBM 

LiDAR 
RMSE (Mg/ha) 53.51 54.73 

MBE (Mg/ha) -1.75 -2.85 

Landsat 5 
RMSE (Mg/ha) 67.11 69.32 

MBE (Mg/ha) 4.65 5.08 

ALOS 

PALSAR 

RMSE (Mg/ha) 72.88 77.79 

MBE (Mg/ha) 5.96 11.26 

Combination 

(LiDAR+optic+

SAR) 

RMSE (Mg/ha) 51.90 52.78 

MBE (Mg/ha) -0.189 -0.253 

Table 4. Results of HWF AGB estimation for RF and 

LightGBM using airborne LiDAR, Landsat 5, ALOS PALSAR, 

and the combination of LiDAR, optic, and SAR data  

   

 
Figure 3. Scatter plots of actual versus predicted AGB for the 

combination of airborne LiDAR, Landsat 5, and ALOS 

PALSAR data using RF and LightGBM models  

 

From a data source perspective, the combination of airborne 

LiDAR, Landsat 5, and ALOS PALSAR data provided the best 

results. Airborne LiDAR data which provides information about 

the vertical structure of the trees indicated the second best RMSE 

and MBE. Unlike LiDAR, both Landsat 5 and ALOS PALSAR 

did a poor job in predicting AGB values accurately due to the 

high effect of saturation in areas with high biomass. In general, 

in Landsat 5 and ALOS PALSAR the AGB values were under-

predicted (MBE>0), while in LiDAR and combination scenarios, 

the AGB values were over-predicted. Residuals of the estimated 

AGB values for each scenario and RF model is demonstrated in 

Figure 4. As it is shown, the residuals for the combination 

scenario are the lowest, followed by airborne LiDAR, Landsat 5, 

and ALOS PALSAR, respectively. ALOS PALSAR has the 
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highest residuals especially for plots with near to zero and high 

biomass. Thus, the integration of vertical structural information 

of forest provided by LiDAR, spectral information of Landsat, 

and ALOS PALSAR L-band backscatter information can 

significantly improve the AGB mapping. 

 

 
Figure 4. Residuals of predicted AGB values for airborne 

LiDAR, Landsat 5, ALOS PALSAR, and the their combination 

using RF regression model  

 

5. CONCLUSION 

The main goal of this study was to compare two ensemble 

machine learning models for AGB estimation using airborne 

LiDAR, Landsat 5, ALOS PALSAR, and the synergy of these 

datasets in a temperate forest in NY. In all scenarios, RF 

regression model outperformed LightGBM. Both RF and 

LightGBM are capable of handling over-fitting issue. However, 

LightGBM is more susceptible to noise and hyperparameter 

tuning which decreases its performance. The combination of 

airborne LiDAR, optic, and SAR data provided the most accurate 

AGB estimation with the lowest RMSE and MBE, followed by 

LiDAR, Landsat 5, and ALOS PALSAR, respectively. It can be 

concluded that the combination of vertical structure along with 

spectral and backscatter information of trees enhances the AGB 

estimation results and reduces the saturation effects.  

Hyperparameter tuning plays an important role in the 

performance of machine learning models especially LightGBM. 

Thus, Bayesian optimization or genetic algorithms might be 

better options for hyperparameter tuning in the future.    
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