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ABSTRACT: 

 

With the recent launch of advanced hyperspectral satellites with global coverage, including DESIS and PRISMA, a massive volume 

of high spectral resolution data is available. This work is focused on the spectral analysis and implementation of feature extraction or 

data dimensionality reduction techniques on both newly available datasets for geological interpretation. Three of the best feature 

extraction algorithms, Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), and Independent Component 

Analysis (ICA), were tested for lithological mapping for the Rajasthan state of India. The present work demonstrates the advantage 

of the feature extraction algorithm in geological mapping and interpretability as it shows the excellent performance for these datasets. 

The narrowband ratios for the clay minerals, dolomite, kaolinite, amphiboles, and Al-OH are generated using the PCA and MNF 

components. All of these band ratios were compared with the Lithological Map available. It is concluded that PCA is the first choice 

for feature-based lithological classification of hyperspectral remote sensing data. ICA is giving some impressive results which can be 

explored further. DESIS and PRISMA have a 30 km swath, finer spectral resolution, and high signal-to-noise ratio, which shows 

much potential in lithological mapping over the parts of northern India. It is suggested to use advanced feature extraction algorithms 

with recently launched hyperspectral data for accurate and updated mineral mapping over a sizeable geological importance area. 

 

 

1. INTRODUCTION 

The high-quality spectral information in a hyperspectral image 

can better classify and identify the minerals in a mineral-rich 

area. Meanwhile, Hyperspectral datasets with hundreds of bands 

come with the curse of inherent dimensionality. A large number 

of redundant bands can affect the quality of interpretation and 

classification of the hyperspectral datasets for various 

applications. High-dimensional datasets have many 

mathematical challenges and new opportunities and are 

platforms for developing a new dimensionality algorithm. High 

data dimensionality covers a significant volume on the disk, 

increasing with the further processing steps (van der Meer et al., 

2012). From the geological point of view, it is necessary to 

reduce the unnecessary or redundant bands to enhance those 

bands having diagnostic absorption features of some specific 

minerals (Gupta and Venkatesan, 2020; Samani et al., 2020; 

Shirmard et al., 2020). Previously, feature extraction or data 

dimensionality reduction methods were extensively used for 

mineral mapping using spaceborne and airborne hyperspectral 

datasets like Hyperion and AVIRIS (Boardman and Kruse, 

1994; Uddin et al., 2020). Recently launched PRISMA and 

DESIS datasets with good spectral quality in bandwidth and 

SNR can prove to be a boon for geoscientists in mapping the 

remote and geologically rich areas on Earth's surface. These 

datasets will give good results after applying feature extraction 

techniques thanks to comparative better spectral quality.  

Dimensionality reduction techniques are usually applied during 

pre-processing of the hyperspectral image to remove redundant 

bands and secure the actual information in a low-dimensional 

subspace (Richards and Richards, 1999). This work discusses 

linear data dimensionality reduction methods to deal with high 

volume hyperspectral data (Pour et al., 2019). 

This work focuses on applying linear data dimensionality 

reduction techniques to newly launched hyperspectral datasets: 

PRISMA and DESIS. Here the analysis from the results of 

Principal component analysis (PCA), Minimum noise fraction 

(MNF), and Independent component analysis (ICA) is discussed 

for PRISMA and DESIS hyperspectral datasets to interpret the 

geology of the study area. Later few narrowband ratios 

developed in the VNIR (Visible to Near-Infrared) and SWIR 

(Short wave Infrared) range using PRISMA hyperspectral 

datasets to check the mineral abundance (Kalinowski and 

Oliver, 2004). These narrowband ratios are developed initially 

for ASTER datasets, but they have been transformed to 

narrowband ratios suitable for PRISMA hyperspectral datasets 

in this work. 

 

1.1 Principal Component Analysis 

In Digital image processing techniques, PCA is mathematically 

defined as an orthogonal linear transformation that transforms 

the hyperspectral image data to a new coordinate system in 

which the greatest variance by some projection or rotation of 

the data comes to lie on the first coordinate (also known as the 

first principal component: PC), the second greatest variance on 

the second coordinate, and so on (Harsanyi and Chang, 1994). 

The principal component analysis represents the low 

dimensional form of high dimensional datasets by decomposing 

the matrix (pixels in the image) to different components based 

on either covariance or correlation (Rodarmel and Shan, 2002). 

PCA includes centralizing of image data (pixels value), 

similarity analysis using covariance or correlation, and 

decomposition using either Eigenvalue decomposition (EVD) 

or singular value decomposition (SVD). Here in this work, 

EVD is used (Chuvieco, 2016).  
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1.2 Minimum Noise Fraction 

MNF uses PCA twice to decorate and rescale the noise present 

in the data, and the second rotation uses the principal 

components obtained after noise whitening the data. The 

inherent dimensionality of the data is checked by evaluating the 

final eigenvalues and the associated images. The hyperspectral 

data space or new subspace after two PCA is divided into two 

parts with large eigenvalues and coherent Eigen images in one 

and a complementary part with noise-dominated images. MNF 

separates the data's noise, thus contributing to improved spectral 

processing results (Green et al., 1988). 

  

1.3 Independent Component Analysis 

ICA utilizes higher-order statistics to transform a large number 

of bands in a hyperspectral image to mutually independent 

components with no prior information about spectral mixing. 

ICA transform is based on the non-Gaussian assumption of the 

independent variables and utilizes higher-order statistics to 

uncover the meaningful features in hyperspectral datasets of 

non-Gaussian in nature. IC transformation successfully reveals 

the elements of interest even no matter how small the area they 

occupied in the pixels of the hyperspectral image (Hyvarinen, 

1999; Hyvärinen and Oja, 2000). 

 

Instrument DESIS PRISMA 

Country/ 

Agency/ 

Year 

German Space Agency 

(DLR), 2018 

Italian 

Space 

Agency 

(ASI), 

2019 

 

  

Spectral Range 

(µm) 

 

VNIR  

[235 bands  

(no binning), 

118 bands (binning 2), 

79 bands (binning 3), 

60 bands (binning 4)] = 

0.4 – 1.00 

PAN= 0.4-

0.7 

VNIR  

(66 Bands) 

= 0.4-1.01 

SWIR  

(173 

Bands) = 

0.92-2.5 

 

Swath (km) 30  30 

 

Spatial 

Resolution 

 VNIR= 30m  PAN= 5m 

VNIR-

SWIR= 

30m 

 

Spectral 

Resolution 

2.55 nm 

(w/o binning); ~10.2 nm 

(binning 4) 

 

 ≤ 12 nm 

Revisit 

(Days) 

3 to 5 (depends on the 

frequency of orbit 

maneuvers) 

 

 7 (29) 

SNR 195 (w/o  binning), 386 

(4  binning) 

VNIR 

>200:1 

SWIR 

>100:1 

PAN > 

240:1 

Table 1. Specifications for DESIS and PRISMA datasets 

 

2. DATASETS 

This work utilizes the DESIS and PRISMA hyperspectral data. 

DESIS stands for DLR Earth Sensing Imaging Spectrometer, 

developed by the German Aerospace Center and Teledyne 

Brown Engineering (Kerr et al., 2016; Krutz et al., 2019).  

DESIS is a hyperspectral push-broom imaging spectrometer 

covering the Visible and Near Infrared (VNIR) optical spectral 

region (400-1000 nm) with an altitude of 400 ± 5 km.  DESIS 

datasets are provided with four different spectral binning modes 

(0-4). The pixel size is 30 m, and the image tile size is 30 

kmX30 km.  DESIS is installed on the MUSES (Multi-User 

System for Earth Sensing) platform onboard the International 

Space Station. DESIS data can be tasked to acquire 

hyperspectral images for user-defined AOI (Area of Interest). 

L2A datasets (orthorectified surface reflectance) for DESIS 

acquired on 7th December 2020 (Banswara) are used in this 

study. 

The PRISMA is a push-broom imaging spectrometer (or 

hyperspectral imager) to capture images in a series of 

contiguous spectral bands from 400 to 2500 nm with an altitude 

reference of 625 km (Loizzo et al., 2018; Stefano et al., 2013). 

The PRISMA, with a daily imaging capability of ~200,000 km2, 

can deliver hyperspectral imagery for a broad area. PRISMA 

has a wider swath (30 km) and temporal frequency (7-14 days) 

as compared to Hyperion (7.5 km and 14-30 days). DESIS has a 

slightly better SNR (195) ratio as compared to PRISMA (200). 

This study utilizes L2D datasets (at surface reflectance and 

geocoded) of PRISMA acquired on 21st February 2020 

(Banswara). Table 1 enlists the sensor specifications for DESIS 

and PRISMA. DESIS and PRISMA are the only sensors 

providing "GLOBAL" hyperspectral imageries in recent times. 

3. STUDY AREA 

 
Figure 1. Study area- Banswara district of Rajasthan and Ratlam 

District of Madhya Pradesh State, India 

 

As shown in Figure 1, this study utilizes the DESIS and 

PRISMA datasets from the Indian states of Rajasthan, as this 

region has geological significance, especially in terms of 

minerals. Rajasthan is located in the north-western part of India. 

The State possesses a variety of lithological and tectonic units 

ranging from the Archaean age to Recent times. The study area 

includes the Banswara region of Rajasthan state stretching 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-3-2021 
ASPRS 2021 Annual Conference, 29 March–2 April 2021, virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-169-2021 | © Author(s) 2021. CC BY 4.0 License.

 
170



 

between 23⁰ 03' to 23⁰ 56'N latitude and 73⁰ 57' to 74⁰ 47'E 

longitude. The study area has a variety of lithological units, as 

shown in Figure 2. The minerals found here are mica schist, 

phyllite, conglomerate, crystalline limestone, dolomite, 

intrusive, ultrabasic rock, granite gneiss, and alluvium (Gupta, 

1934; Heron, 1935).  

 

 
Figure 2.  Lithological Map for the Study area 

 

4. RESULTS 

On comparing with lithological Map, the results of various data 

dimensionality reduction or feature extraction techniques show 

some interesting results for the geology of the study area. We 

have generated few Indices based on PCA, MNF, and ICA 

results. On comparing with Lithological Map, few patches of 

granite, basalt, mica schist, and quartzite are seen in Figure 3(a) 

and (b). These interpretations may not be accurate but give an 

overall idea about the regional geology. For Figure 4(a), the 

MNF component 4 gives a rough idea about the presence of 

muscovite in the lower part of the image (Kushalgarh, 

Rajasthan). 

 

 
Figure 3. DESIS datasets (a) PC 3 (b) PC Indices R=7  G=4  

B=3 

 

 
Figure 4. DESIS datasets (a) MNF 4 (b) MNF Indices R=3  

G=9  B=7 

 

 
Figure 5. DESIS datasets (a) IC 3 (b) IC Indices R=2  G=3  B=4 

 

In contrast, in Figure 4(b), MNF Indices R=3  G=9  B=7, areas 

with basalts are matched in pink and blue. ICA is applied on 

DESIS datasets, and IC component 3 and indices consisting of 

IC components as R=2  G=3  B=4 are shown in Figure 5. These 

results support PCA and MNF results on DESIS data in 

interpreting the minerals like muscovite, granite, and mostly 

basalts. Figure 5(a) shows the bright patches in the yellow box 

show the similarity with mica schist and basalt while in Figure 

5(b) the blue and light green color on the bottom of the image 

shows basalt flow. 

 

 
Figure 6. PRISMA datasets (a) PC 3 (b) PC Indices R=10  G=7  

B=1 
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Figure 7. PRISMA datasets (a) MNF 2 (b) MNF 4 

 

 
Figure 8.  PRISMA datasets (a) IC 4 (b) IC 5 

 

A similar methodology was followed for PRISMA 

hyperspectral datasets. However, the interpretation here was 

expected to be far better than DESIS provided an extended 

wavelength range. Due to the striping error in SWIR bands, 

understanding geological features is impossible for a few of the 

band indices or components. In Figure 6(a) and (b), on 

comparing with lithological Map, few patches for granite and 

basaltic schist are seen. Striping error, however, made it 

difficult to say whether the central areas are representing some 

geological outcrops or not. In Figure 7(a) and (b), components 

2 and 4 of MNF are shown, and few patches of granite and 

basaltic rocks are seen (marked in yellow boxes). Few patches 

of basalts and other minerals are mixed. Figure 8(a) and (b), 

ICA components 4 and 5 are shown for PRISMA hyperspectral 

datasets. Here striping error, error due illumination dominates 

the results, so the only interpretation possible here is basalts (in 

yellow boxes). Table 2 enlists the narrowband ratios which are 

also shown in Figure 9(a) and (b) reveal granite, composite 

granite, basalts, and amphiboles, including hornblende schist. 

 

Band Ratio Original Band 

Ratio/Indices 

Band Ratio/Indices 

for PRSIMA 

Amphibole 

Band Ratio 

(Band6 + Band 9)/ 

Band 8 

(R1650 + R2398)/ R2345 

Modified 

Clay and 

Iron Band 

Ratio 

(Band5 * Band 7)/ 

(Band 6)2 

((R2165 * R2260)/ 

(R2205)2 + 

(R2165/R1650)) 

Table 2. Narrowband Ratio for PRISMA 

 
Figure 9. Narrowband Indices for PRISMA (Modified from 

ASTER band ratios) (a) Clay and Iron narrowband ratio (b) 

Amphibole narrowband ratio 

 

5. DISCUSSIONS AND CONCLUSION 

Data dimensionality techniques are beneficial in estimating 

mineral abundance areas. Spectral binning in DESIS helps 

extract various diagnostic absorption features but, on the other 

hand, mix many absorption features. Striping Error in PRISMA 

affecting the results of data dimensionality reduction Band 

ratios generated can be very helpful in mineral mapping. The 

mineral mapping of an area based on data dimensionality 

reduction or feature extraction of a hyperspectral image mostly 

depends on how much geological area is present or visible in 

the hyperspectral imagery. Hence the acquisition time is vital 

for his type of work. The study area chosen here is primarily a 

large geological area and is also proved in most of the results, 

excluding those affected by striping or illumination error. The 

future work will include the compression of newly launched 

PRISMA hyperspectral datasets. A kernel-based normalized 

PCA using the SVD decomposition technique is in progress. 
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