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ABSTRACT: 

Regional extent and spatiotemporal dynamics of Arctic permafrost disturbances remain poorly quantified. High spatial resolution 
commercial satellite imagery enables transformational opportunities to observe, map, and document the micro-topographic transitions 
occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. The entire Arctic has been imaged at 0.5 m or finer 
resolution by commercial satellite sensors. The imagery is still largely underutilized, and value-added Arctic science products are rare. 
Knowledge discovery through artificial intelligence (AI), big imagery, high performance computing (HPC) resources is just starting to 
be realized in Arctic science. Large-scale deployment of petabyte-scale imagery resources requires sophisticated computational 
approaches to automated image interpretation coupled with efficient use of HPC resources. In addition to semantic complexities, 
multitude factors that are inherent to sub-meter resolution satellite imagery, such as file size, dimensions, spectral channels, overlaps, 
spatial references, and imaging conditions challenge the direct translation of AI-based approaches from computer vision applications. 
Memory limitations of Graphical Processing Units necessitates the partitioning of an input satellite imagery into manageable sub-
arrays, followed by parallel predictions and post-processing to reconstruct the results corresponding to input image dimensions and 
spatial reference. We have developed a novel high performance image analysis framework – Mapping application for Arctic Permafrost 
Land Environment (MAPLE) that enables the integration of operational-scale GeoAI capabilities into Arctic science applications. We 
have designed the MAPLE workflow to become interoperable across HPC architectures while utilizing the optimal use of computing 
resources.

1. INTRODUCTION

Big image data analysis has become essential in an array of 

scientific applications, such as computer vision (CV) (Kucuk et 

al., 2017), medical imaging (El-Baz and Suri, 2019), material 

science (Okunev et al., 2020), astronomy (Kremer et al., 2017). 

Owing to the advancements of satellite sensor technology 

coupled with ever increasing spatial resolution and temporal 

frequency of image acquisitions ideally position Remote Sensing 

applications in a ‘big’ data landscape.  Satellite imagery archives 

are radically being transformed from terabytes to petabyte scale.  

Sheer volumes of imagery pose new challenges in storage, 

analysis, and visualization techniques. These requirements 

exceed the capabilities existing general purpose computing 

resources. The quest is therefore at its peak for seamless 

integration of high-performance computing (HPC) resources to 

translate big satellite imagery into science-ready products, which 

enable knowledge discovery at the nexus of the human-natural 

system.  

In recent years, usage of HPC resources has become an 

inextricable component in big imagery applications. Highly 

efficient workflows are indeed required for automatically 

analyzing hundreds-to-thousands of satellite imagery. 

Traditional RS image analysis algorithms fail to grapple with the 

image complexities and high-level semantics arising from the 

sub-meter resolution satellite imagery. Sophisticated algorithms, 

which exploit color, texture, spatial arrangement, and context and 

construct high-level abstractions based on low-level motifs are 

needed for automated object detection, segmentation, and 

classification. Deep learning (DL) convolutional neural nets 

(CNNs) (LeCun et al 2016) has shown great potential for object 

instance segmentation in detecting and delineating each distinct 

object in an image of common objects from everyday images. 

The success of DLCNNs in CV applications has received great 

interest from the remote sensing community. DLCNNs 

algorithms are computationally intense and memory demanding. 

Thus, it is important to optimize data management, image 

processing, classification, and visualization techniques as they 

can be bottleneck in image-to-assessment pipelines.    

There are many applications found in literature involving big 

imagery and HPC computing. (Amat et al., 2015) have developed 

a workflow for light-sheet microscopy, which involves several 

tens of terabytes of data. Schmied et al. (2016) have compared 

the performance of an automated workflow between a single 

workstation and HPC cluster. Liu et al. (2016) have analysed 

geosciences workflow on multi-core processors and Graphical 

Processing Units (GPUs). They have achieved 5.x speed up on a 

multi-core processor and 43.x speedup for some parts of the 

workflow on GPU. A-Saadi et al. (2020) compared workflow 

application designs for high resolution satellite imagery analysis. 

They have analysed three workflows using Extreme Science and 

Engineering Discovery Environment (XSEDE) HPC computer 

for two use cases with 4672 images and 8.35 TB of data. 

Modern HPC systems consist of a large number of HPC computer 

nodes. Each node contains multi-core Central Processing Units 

(CPUs) and multi-GPUs. These resources measure the usage 

using different accounting models.  Different configurations 

present new challenges to design efficient workflows for 

different applications, which require both CPU and GPU 

processing. 

Many efforts have been made to identify changes in the 

environment using geospatial big data. Archived observation 

data was predicted to exceed Exabyte by 2015 by the Open 

Geospatial Consortium (OGC). But it is estimated that upto 95% 
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of the data present in existing archives has never been accessed. 

(Nikolaouet al. 2014)   

The entire Arctic has been imaged at 0.5 m resolution by 

commercial satellite sensors (DigitalGlobe, Inc.). The image 

repository at the Polar Geospatial Center (PGC) provides 

transformational opportunities to observe, monitor, and 

document permafrost thaw occurring across the Arctic, which is 

a remote region with an extremely sparse field observation 

network. Alaska, Canada, and Russia collectively harbor 

approximately 5 million km2 of tundra. But, yet imagery-derived 

science products are rare despite their unprecedented potential for 

Arctic science applications. 

Arctic permafrost - unique landscapes comprising the Earth 

materials that remain at or below 0°C for at least two consecutive 

years - occupies approximately 24% of the exposed land surface 

of the northern hemisphere. Ice-rich permafrost can be identified 

by atypical surface features called ice-wedge polygons (IWPs), 

which are underlain by several meter-wide and deep ice-wedges 

that form a network across the tundra. Vegetation and geology 

maps suggest that about two-thirds or more of the Arctic 

landscape is occupied by polygonal ground (Raynolds et al. 

2019) and therefore ice-rich ground, but the exact extent and the 

prevailing IWP types (i.e., whether the ice wedges experienced 

melt or not) are largely unknown (Liljedahl et al. 2016). 

Over recent decades, ice-wedge degradation – transformation of 

low-centered polygons into high-centered polygons due to ice-

wedge degradation has been documented at several locations 

across the Arctic tundra in the field and through localized remote 

sensing analyses (Steedman et al., 2017). The shift from one IWP 

type to the other is documented to occur in less than a decade 

(Liljedahl et al. 2016) with an unusual warm summer, wildfires, 

or human activities initiating the onset of ice-wedge degradation. 

Degradation of ice wedges is a quasi-cyclic process with 

degradation often occurring over a shorter time scale than the 

formation of new permafrost (aggradation), with the latter 

controlled by accumulation of organic and mineral soil above the 

ice-wedge (Kanevskiy et al. 2017). Understanding of 

spatiotemporal dynamics behind the evolution of ice-wedge 

polygonal tundra demands for objective and detailed maps 

consolidating the ice wedge extent and their prevailing 

successional stages.  

Despite the alarming signals, yet the Arctic science community 

has a limited understanding of the spatiotemporal continuity of 

the otherwise locally observed changes. The lack of knowledge 

on the larger geographical extent and successional stage of IWPs 

introduce uncertainties to regional and pan-Arctic estimates of 

carbon, water, and energy fluxes. Remote sensing provides 

transformational opportunities to observe, monitor, and measure 

the Arctic polygonal landscape at multiple spatial scales and 

varying temporal windows. IWPs are difficult to detect in any 

remote sensing imagery with spatial resolution greater than 4 m. 

Therefore, sub-meter resolution commercial satellite imagery 

(e.g. DigitalGlobe, Inc.) demonstrates a greater promise in 

accurate delineation and characterization of ice-wedge polygonal 

networks. Due to IWPs’ varying spectral and morphometric 

characteristics, visual inspection and manual digitization has so 

far been the most widely adopted and promising method to 

delineate polygons from high resolution remote sensing imagery. 

A considerable number of local-scale studies have analyzed ice 

wedge degradation processes using satellite imagery, and 

manned-/unmanned aerial imagery/LiDAR data (Muster et al. 

2013). Most of the studies to date have relied on manual image 

interpretation and/or semi-automated approaches (Skurikhin et 

al. 2014). Therefore, there is a need and an opportunity for 

utilization of VHSR imagery in regional scale mapping efforts to 

spatio-temporally document microtopographic changes due to 

thawing ice-rich permafrost.  

The goal of our ongoing effort is the production of the first pan-

Arctic ice-wedge polygon map using a large volume of 

commercial satellite imagery available at the Polar Geospatial 

Center and HPC resources. At the first stage we create an IWP 

map with high IWP probability regions of the Arctic. This area 

includes around 25 000 satellite images with 200 TB data. We 

have developed Mapping Application for Arctic Permafrost Land 

Environment (MAPLE) workflow, which can be deployed in 

heterogeneous computing resources. Main objective of this paper 

is to analyse the computational efficiency of the workflow in 

heterogeneous computational environments, which involves both 

CPUs and GPUs.  

 

2. METHODS 

2.1 Mapping Application for Permafrost Land 

Environment 

A workflow diagram of the MAPLE is shown in Figure 1. The 

main objective of the workflow is to detect ice-wedge polygons 

in the entire Arctic permafrost tundra region. The workflow 

should process approximately 5 million km2 in Alaska, Canada, 

and Russia, collectively. Further the analysis should be carried 

out over periodically to detect temporal changes of ice-wedge 

polygons. 

The MAPLE workflow takes high resolution satellite images as 

input and outputs an ice-wedge polygon map and a map of 

surface water bodies. The spatial resolution of satellite imagery 

n is 0.5 m with a typical footprint of 20 km X 20 km (i.e. 160 

million pixels per image).  The scale of workflow requires 

sophisticated computation approaches to process images with 

efficient use of high-performance computing resources.  

 
Figure 1. Simplified schematic of the Mapping Application for 

Permafrost Land Environment (MAPLE). Imagery © 2016 

DigitalGlobe, Inc 

 

 

The HPC resources are limited and must be shared with other 

users. Therefore, we need to use the HPC resources efficiently to 

process images within a given HPC allocation. We have 

employed several techniques to improve the efficiency of the 

workflow.   

 

 
Figure 2.  (a) The sample satellite images with water bodies.  (b) 

The calculated water mask by the workflow where water bodies 
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are represented by black colour., Imagery © 2016 DigitalGlobe, 

Inc 

 

The first approach is to minimize the area of processing by 

removing unwanted areas such as large numbers of waterbodies 

in the arctic regions. First, water bodies are detected accurately 

using the methods developed by Kaiser et al. (2019) for mapping 

lake dynamics. Figure 2 shows the generated binary water mask 

of a smaller satellite image. The binary mask of generated water 

bodies is applied on the satellite image to remove water areas 

from processing. Figure 3 shows the zoomed version of the 

satellite image on the left and the detected water bodies on the 

right. We were able to detect small water bodies in our workflow. 

These calculated water bodies will be used to generate a map of 

small water bodies in the region. 

 

 
Figure 3.  (a) A zoomed sample satellite image with water bodies.  

(b) The zoomed calculated water bodies by the workflow where 

water bodies are represented by black. Imagery © 2016 

DigitalGlobe, Inc 

 

 

The satellite footprint has considerable amount of image overlap 

due to different imaging times and different sensors. We can 

considerably reduce the processing volume by removing these 

image overlaps. We have developed an algorithm which 

calculates the image overlaps and excludes them from processing 

in our workflow.  

 

We use Mask RCNN (He et al. 2016) as the key DLCNN model 

in MAPLE. These DLCNN models perform much better in GPU 

than in CPU. Usually, the amount of memory available in GPUs 

is much smaller than that in CPUs. Therefore, we cannot fit a 

complete satellite image together with the DLCNN model in 

GPU memory. Due to this requirement we need to split the 

satellite image into small patches. These patches are saved using 

a compressed file format after excluding water bodies and no-

data areas of the image. These patches are accessed in parallel 

within the workflow and outputs detected ice-wedge polygons. 

Each parallel process stores polygons in an individual shapefile.  

 
 

Figure 4.  (a) The original satellite image with ice-wedge 

polygons. (b) Plot of the ice-wedge polygonsImagery © 2016 

DigitalGlobe, Inc 

 

The Figure 4 shows the map of ice-wedge polygons from the 

MAPLE workflow. The number of polygons detected in an image 

vary a lot with the image quality, tundra type, landscape. 

 

We keep 10% overlap between patches not to miss polygons 

intersected by patch boundaries. This results in duplicate 

polygons along the patch edges. We combine the shapefiles 

generated by each parallel process into a single shapefile and 

remove duplicate polygons during the post-processing stage. The 

Figure 5 shows a zoomed view of a section of a satellite image 

on the left and the detected polygons by the model on the right. 

 

 
Figure 5.  (a) The zoomed satellite image with ice-wedge 

polygons. (b) Plot of the ice-wedge polygons of the zoomed 

image. Imagery © 2016 DigitalGlobe, Inc 

 

 

 

2.2 Model Training 

We employ a transfer learning strategy to re-train the Mask-

RCNN network. Annotated ice-wedge polygon dataset was 

created using an online web tool “VGG Image Annotator '' from 

satellite imagery comprising heterogeneous tundra types. We 

randomly selected 512 cropped subsets from different tundra 

types (tussock, non-tussock, and sedge) considering the spectral, 

and spatial variability. The training data set consists of 9200 hand 

annotated ice-wedge polygons. We started with pre-trained 

weights generated by the COCO dataset and trained only the head 

layers of the Mask-RCNN network. Training was implemented 

using NVIDIA GeForce RTX 2080 GPU with 10 GB memory. 

We trained the Mask R-CNN model with a mini-batch size of two 

image tiles, 250 steps per epoch, learning rate of 0.001, learning 

momentum of 0.9, weight decay of 0.0001 and with 50 epochs. 

 

 

2.3 Workflow Models 

The modern HPC resources, such as Frontera (Texas Advanced 

Computing Center) and XSEDE consist of multiple nodes. Each 

node contains multiple CPUs and GPUs. Each CPU and GPU 

contain multiple cores. The programs should be designed to use 

these resources optimally. The TensorFlow library used in the 

Mask RCNN model can run on GPU.  

 

Figure 6 shows the semantic diagram of the sequential workflow 

in a single computing node. In this setup we do not use multiple 

CPUs and GPUs available in the node. All three stages 

preprocessing, inference and postprocessing executed 

sequentially. 
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Figure 6. A semantic diagram of single-CPU single-GPU 

MAPLE workflow model using a single HPC node. 

 

Figure 7 shows the second model where multiple GPUs available 

in a single computing node are used. Here the patches generated 

in the pre-processing stage, that is stored in a multi-threaded 

queue, are processed using multiple GPUs.  

 

 
Figure 7. A semantic diagram of single-CPU multi-GPU MAPLE 

workflow model using a single HPC node. 

 

Figure 8 shows a multi-CPU-GPU model where we process 

multiple images per batch. In the preprocessing we use multiple 

CPU cores found in a single node. Then tiles from each image 

are processed in separate nodes for inferencing stage with using 

optimum number of GPUs available in that node. The shapefiles 

generated in the inferencing stage are processed in a single HPC 

node using multi-CPU cores at the post-processing stage.  

 

 

 
Figure 8. A semantic diagram of multi-CPU-GPU MAPLE 

workflow model using multiple HPC nodes. 

 

 

 

2.4 Numerical Experiments. 

The numerical experiments were carried out in the Frontera HPC 

system computing nodes described in Table 1. Each node 

consisted of 2 IBM Power 9 CPUs and each having 20 cores. 

Each core consisted of 4 hardware threads. The total amount of 

RAM available was 300 Gb. Each node consisted of 4 Nvidia 

Tesla V100 GPUs with each having 16Gb memory. There are 96 

such computing nodes in the Frontera Longhorn HPC system. 

 

 

Model IBM Power System AC922  

Processor:  IBM Power 9 

Total processors per node:  2 

Total cores per processor:  20 

Total cores per node:  40 

Hardware threads per core:  4 

Hardware threads per node:  160 

Clock rate:  2.3GHz 

RAM:  256GB 

GPUs:  4x NVIDIA Tesla V100 

GPU RAM:  4x 16GB (64 GB total)  

Table 01: Frontera Longhorn computing node configuration. 

 

 

The effective use of HPC resources depends on the accounting 

model and HPC architecture. We have shown the optimum set up 

for the Frontera Longhorn system where job accounting is based 

on node time. The project resources are allocated based on 

service units. One service unit (1 SU) is calculated by multiplying 

job duration in wall clock hours, charge rate per node hour and 

number of nodes per job. Therefore, to get maximum resource 

utilization we need to use all four GPUs per job. But in some 

HPC systems like XSEDE Bridges2 one SU is defined by 

multiplying job duration, number of GPUs per node, charge rate 

per one hour and number of nodes. Here we must calculate the 

optimum number of GPUs for a single job.  

 

3. RESULTS AND DISCUSSION 

We evaluated the time taken for three stages of the sequential 

workflow described in Figure 6 for different images sizes as a 

base case. Figure 9 shows the computation results. Blue colour 

denotes pre-processing time, orange denotes inferencing time 

and colour Gray denotes post processing time. The first bar 

shows the time taken for a 400-million-pixel image in the CPU. 

The rest of the bars represent time taken using GPU for 

inferencing stage for different image sizes. When comparing the 

first two bars, it is evident that using GPU for inferencing 

achieves 6.0x speed up. The reason for this speed up is that 

DLCNN computations can be simultaneous with a large number 

of GPU cores. When increasing the size of the image the time 

increases. The time taken to process a 3600-million-pixel image 

on GPU is in the same order as the time taken to process 400 

million pixels using only CPUs.  

 

 

 

 
Figure 9. Comparison of time taken for MAPLE workflow for 

different image size for CPUs and GPUs. 

 

 

Most of the HPC nodes are having multiple GPUs in a single 

node. Therefore, in the model illustrated in Figure 7 we utilize 

the multiple GPUs to process images. Figure 10 shows the 

improvement we obtained for the inferencing stage. Using 4 

GPUs we can obtain 3.6x speed up for a 160-million-pixel image. 

We cannot obtain 4.0x speed up due to I/O operations and serial 

sections in calculation.  
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Figure 10. Comparison of time taken for multiple GPUs to 

process 1600-million-pixel images in a single HPC node. 

 

Figure 11 shows the computation results for full workflow for an 

image with 1600-million-pixel image. The speed up achieved 

using 4 GPUs is 2.0x. The reason for lower seep up is due the 

increase of percentage of serial workload.   

 

 
Figure 11. Comparison of time taken for multiple GPUs to 

process 1600-million-pixel images in a single HPC node. 

 

The Figure 12 shows the time taken to perform preprocessing and 

postprocessing in multiple CPU cores in a single node. The speed 

up using 10 CPU cores in a single computing node for pre-

processing is 7.5x and for post processing is 9.7x which results 

in a combined speed up of 8.4x.  Pre-processing is a memory 

intensive task. It needs four times the memory of the image 

during pre-processing. With 256 GB RAM available in one node, 

we can only process up to ten 1600-million-pixel images.  

 

 
Figure 12. Comparison of time taken for multiple GPUs to 

process a 1600-million-pixel image in a single HPC node. 

 

 

 
Figure 13. Comparison of time taken for multiple GPUs to 

process a 1600-million-pixel image in a single HPC node. 

 

 

Post-processing is less memory intensive. Therefore, we can 

process more images with post processing. The Figure 13 shows 

the time taken for post-processing with respect to the number of 

CPU cores. After 10 CPUs the speed up started to saturate. This 

is mainly due to I/O operations.   

 

The Figure 14 shows the total amount of time taken to process 

one 1600-million-pixel image with model 3 with 4 GPUs. The 

first bar shows the result we obtained with model 2. The speed 

up of 2.4x with 5 CPUs and 2.9x achieved compared to Model 2. 

When compared with model 1 a speed up of 3.4x with 5 CPUs 

and 4.0x with 10 CPUs are achieved. This 4.0x speed up means 

we can process 4 times faster than sequential mode in Figure 6 

with the same resources. 

 

 
 

Figure 14. Comparison of time taken for multiple GPUs to 

process 1600-million-pixel images in a single HPC node. 

 

 

4. CONCLUSION  

We have developed a Mapping Application for Permafrost Land 

Environment (MAPLE) by combining Deep Learning, Big 

Imagery and HPC resources. Our workflow can run on 

heterogeneous HPC systems, demonstrating its interoperability 

for large scale implementation. We have tested the workflow 

with different HPC settings and compared the speed up. Three 

computational modules have been checked with the Frontera 

Longhorn HPC system.   

The speed up achieved with multi-CPU-GPU model is 3.4x with 

5 CPUs and 4 GPUs.  When you increase the number of CPUs to 

10 the speed increases to 4.0x only. This speed up means we can 

process an image with 33% of SUs with 5 images per batch 

according to the Frontera accounting model.  The number of 

parallel processes can be employed depending on the amount of 
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main memory in the computing node. In Frontera-Longhorn that 

limit is 10 images per batch. But the size of satellite images can 

vary. It is safe to use 5 images per batch as the gain of the speedup 

is very small with 10 images per batch.  

The multi-CPU-GPU model can be used with heterogeneous 

HPC systems effectively. But with a different HPC system the 

optimum number of images per batch can be different. We need 

to redo these computations to determine optimum number for 

each HPC system.   
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