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ABSTRACT:

Hyperspectral image classification (HSIC) is a challenging task in remote sensing data analysis, which has been applied in many
domains for better identification and inspection of the earth surface by extracting spectral and spatial information. The combination
of abundant spectral features and accurate spatial information can improve classification accuracy. However, many traditional
methods are based on handcrafted features, which brings difficulties for multi-classification tasks due to spectral intra-class
heterogeneity and similarity of inter-class. The deep learning algorithm, especially the convolutional neural network (CNN), has been
perceived promising feature extractor and classification for processing hyperspectral remote sensing images. Although 2D CNN can
extract spatial features, the specific spectral properties are not used effectively. While 3D CNN has the capability for them, but the
computational burden increases as stacking layers. To address these issues, we propose a novel HSIC framework based on the
residual CNN network by integrating the advantage of 2D and 3D CNN. First, 3D convolutions focus on extracting spectral
features with feature recalibration and refinement by channel attention mechanism. The 2D depth-wise separable convolution
approach with different size kernels concentrates on obtaining multi-scale spatial features and reducing model parameters.
Furthermore, the residual structure optimizes the back-propagation for network training. The results and analysis of extensive HSIC
experiments show that the proposed residual 2D-3D CNN network can effectively extract spectral and spatial features and improve
classification accuracy.

1. INTRODUCTION

Hyperspectral imaging has a wide variety of real-world
applications, including land cover analysis, urban analysis,
environmental and agricultural analysis, and anomaly
identification. Hyperspectral remote sensing classification is an
effective way to distinguish different features and provide
critical decision-making and reference information for different
fields. Some advanced remote sensing platforms, such as
airborne, space satellite, and UAV platforms, can achieve
hyperspectral and high-resolution remote sensing data.
Therefore, abundant spectral features and accurate spatial
information can improve the classification accuracy (Paoletti et
al., 2019; Chen et al., 2019; Seydi et al., 2020).

Abundant research has been carried out on precise feature
classification with hyperspectral imagery, adopting two primary
classification strategies (Zhong et al., 2017; Zhang et al., 2018).
The first strategy solely uses spectral features. Another method
combines spectral and spatial information to distinguish features.
However, the exceptionally high spatial resolution could cause
severe spectral variability and heterogeneity. For instance, rice
filed and forests have similar spectral curves, as illustrated in
Figure 1, which brings some obstacles to the classification task.
Hence, there are still some challenges when applying the
previous classification strategies to hyperspectral and high-
resolution imagery.

In the few decades, numerous traditional classification methods
such as minimum distance, maximum likelihood, and spectral
angle mapper have proven the ability to classify the features
based on the advantage of the rich spectral information.

Moreover, advanced machine learning algorithms such as
support vector machine, decision tree, and random forest (RF)
have the stability for the hyperspectral classification task. For
instance, the support vector machine (SVM) seeks to separate
two-class data by learning an optimal decision that separates the
training samples in a kernel-included high dimensional feature
space. Some studies using SVM for hyperspectral image
classification can improve result performance (Mountrakis et al.,
2011; Li, Bioucas-Dias & Plaza 2013; Song et al., 2020).

Figure 1. Remote sensing image with high spectral resolution
and high spatial resolution.

However, most traditional approaches presenting hand-
designed feature descriptions based on expertise knowledge
probably limit the application potential for the precise
classification. Some classifiers have limited representation
capacity to utilize the abundant spectral and spatial features
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fully. It is challenging to find appropriate parameters to generate
features for different classification tasks. Handcrafted feature as
shallow properties based on expertise knowledge probably
limits the application potential for the precise classification.

Recently, deep learning-based methods reached powerful
performance in many applications where visual information is
required, such as image classification and object detection.
CNN plays a promising role in processing feature extraction.
The convolutional neural network is one of the most commonly
used in the hyperspectral classification task because of its
superior performance to hand-designed features. In recent years,
considerable development is also worked in deep learning for
the HIS analysis.

Zhong et al. (2017) have researched the proposed spectral-
spatial residual network (SSRN). The residual block in SSRN
was used to determine a feature map that aids in propagating
previous information to the following units to improve the
backward step by promoting gradient propagation. Roy et al.
(2019) proposed hybridSN, a joint spectral-spatial 3D CNN
network followed by spatial 2-D-CNN. 3D-CNN facilitates the
focus on the joint spatial-spectral feature representations from a
stack of spectral bands, then followed by 2D-CNN to further

learn the more abstract level spatial representation. Compared
with other handcrafted methods and deep learning-based
methods on Indian pines, the university of Pavia and Salinas
scene. The proposed model achieved promising results with
98.39%, 99.72%, and 99.98, respectively.

It is noticeable from the previous studies that using 2D and 3D
alone had a few disadvantages, such as very complex models or
missing channel relationships, respectively. The main intention
is because HIS comprises both volumetric data and has spectral
dimension. Comparatively, a deep 3-D-CNN is more
computationally complicated, and this mechanism alone
sometimes tends to perform worse for classes having similar
textures over many spectral bands. This paper proposed a novel
method to combine the advantages of 2D CNN and 3D CNN.
The proposed deep convolution network model uses 3D CNN to
extract spectral information and ensure network propagation
effectiveness. The residual structure is applied to the 3dcnn
module to optimize the network structure, and an improved
channel attention mechanism refines features to improve the
efficiency of the model. The network model adopts 2D depth-
wise convolution extract spatial features following the 3D
residual module to obtain multi-scale spatial information and
reduce model parameters.

Figure 2. The proposed network framework.

2. THE PROPOSED NETWORK MODEL

As illustrated in Figure 2, The proposed model framework
consists of four parts: Firstly, the hyperspectral remote sensing
images were fed into the network and divided into hyperspectral
image cubes with fixed pixel size (In this study, the size was set
at 15 ×15×15). Then the image cube is transmitted into the
residual 3D convolution module to extract the spectral feature
information along channel direction, and the channel attention
model using squeeze and excitation network is applied for
spectral feature optimization. The obtained feature map is
transferred to the depth-wise separable convolution module to
extract multi-scale spatial context information. Finally, the
pooling pyramid feature interaction is carried out to aggregate
features, and the fully connection layers complete the final
prediction.

2.1 3D residual convolutional module

3D CNN can extract features of three dimensions along spatial

and channel dimensions through 3D convolution layers, which
is suitable for hyperspectral image data. The network, stacking
3D convolution layers, can simultaneously learn the spatial
correlation and spectral characteristic of ground objects. 3D
CNN is defined in formula (1):
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where xyz
ijf represents the value of the neuron at (x, y, z), i is

the neural network layer index, j is the feature sample index, m
is the feature map index of i-1th layer network; h and v are the
width and length of 2D spatial convolution kernel, respectively,
and C is the size of channel dimension. hvc

ijkw denotes the
weights of the convolutional kernel at position (h, v, c)
connected to the m-th feature map, bij is the bias.  is the
activation function of neurons.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-3-2021 
ASPRS 2021 Annual Conference, 29 March–2 April 2021, virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-187-2021 | © Author(s) 2021. CC BY 4.0 License.

 
188



Residual learning is applied to the 3D CNN blocks to avoid
network degradation as the increase of network depth. As
shown in Figure 3, the residual structure can alleviate the issues
of network gradient degradation when the training samples are
not enough (He et al., 2016). In the residual convolution module,
as shown in the figure, a short-cut connection path can be
established, skipping some 3D convolutional modules, and is
used to fuse the features from the previous layers. Through the
skip-connection path, the error generated in the training of the
network can be propagated, which can solve the issues of
gradient dispersion caused by stacking many convolutional
layers and accelerate the update and iteration of weight
parameters. Hence, the residual structure can improve efficiency
for the network architecture.

Figure 3. 3D residual convolution block.

If 3D CNN is applied to hyperspectral cubes with large
convolution kernels, network parameters will significantly
increase due to hundreds of spectral bands for the hyperspectral
image. After several residual modules are contacted, it can
cause a computational burden and affect model training
efficiency. Some traditional methods use data dimension
reduction methods, such as principal component analysis (PCA),
which may lose the correlation and some features between
spectral channels. Therefore, inspired by residual 2D CNN, a
bottleneck structure is introduced into 3D CNN modules,
making the network learn spectral features and reduce the
model parameters. The bottleneck structure contains two
convolution layers using kernels with the size of 1× 1× d,
where d is the number of spectral bands. In Figure 3, the first
convolution layer is used to reduce hyperspectral cube
dimensions and capture spectral information, where r is the
reduction rate. Then, features are transmitted into a convolution
of 3×3×d to extract spectral and spatial features. Finally, the
last convolutional layer recovers feature dimensions. Therefore,
a 3D residual module unit consists of a bottleneck structure and
a layer of 3D convolution, where two 3D residual modules are
contacted to generate multiple feature cubes.

In the proposed 3D residual module, the upper layer of
convolution features via skip-connection are fused by the three
layers of convolution in the residual module. The ReLu
activation function is applied to these features before they are
transmitted into the subsequent convolutional module. This
enables the residual module to learn new features based on the
input features to improve the feature representation and reduce
computational cost.

2.2 Spectral feature optimization using the channel
attention mechanism

Although the deep 3D convolutional neural network can learn
to extract different spectral-spatial information levels, these
features may not be the optimal results for the classifier to
recognize different objects. On the one hand, the convolution
filter extracts fusion information of space and channel in the
local receptive field. With the addition of the nonlinear
activation layer and downsampling layer, CNN can obtain the
hierarchical pattern with the large receptive field to capture
image features. However, this process requires stacking enough
convolution layers, which undoubtedly increases the difficulty
and computational complexity of network model training. On
the other hand, the features extracted by the 3D residual
convolution module have many different representations. These
features are not filtered with redundant information, especially
for a large number of spectral bands, which may cause
classification ambiguity and affect the network efficiency.
Attention mechanism can assist the model to assign different
weights to each channel or spatial features, making the model
filter redundant information without bringing more calculation
complexity and memory consumption. Channel attention can
model the correlation and dependence of different spectral
features. Therefore, we introduce a channel attention model to
learn global representation and optimize 3D convolutional
features.

Squeeze and exception network (SEnet) is an effective channel
attention model that aims to improve the representation ability
of the network by modeling the dependency of each channel and
recalibrate the features channel-wise (Hu et al., 2018). The
network can learn to selectively enhance the efficient
information and suppress useless features through establishing
global representations weights. The basic structure of the SEnet
block is shown in Figure 3. First, the squeeze operation obtains
the global spatial features of each channel as the representation
parameters to form the global descriptors. Second, the excitation
operation constructs the dependency for each channel by two
layers of the fully connected neural network, which adjusts the
feature map based on the learning parameters.

Figure 4. SEnet network structure.

As shown in Figure 5, the proposed channel attention model is
similar to SEnet, including squeeze, activation, and scaling
process. Different from SEnet, in the squeeze operation, two
pooling layers, including global average pooling (GAP) and
maximum pooling (MAP), are adopted to enhance the learning
ability of global representation that can be defined in formula (2)
and (3):

1 1

1 H V
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avg ijk
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H V  


  , (2)
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max ijkf max( f ), i, j , , , ,HV   , (3)
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Figure 5. The framework of proposed channel attention model.

where fijk is the value at position (i, j, k) of the feature map in the
k-th channel. H and V are the length and width of the feature
map, respectively. k

avgf and k
maxf are the feature value of GAP

and MAP, respectively. Attention weight parameters can be
obtained by two layers of the fully connected neural network
as formula (4) and (5):

( ( ( ( ))k
avg avgsigmoid F F f  , (4)

( ( ( ( ))k
ma x maxsigmoid F F f  , (5)

where, avg and max are the global scaling parameters,  is
the ReLu activation function, F is dense layers weight operation.
Finally, the 3D residual block features can be calibrated by
global scaling parameters, as shown in formula (6). contcat(·)
denotes concatenation operation,  denotes pixel-wise
multiplication operation, fre is the fused feature.

( , )xyz xyz
re ma x ij ave ijf contcat f f    , (6)

In the activation process, two layers of dense connections are
used to scale the global characterization parameters by setting
different numbers of neurons. The first dense connection layer
reduces the global representation parameters to 1 / r of the
original channel number, r is the reduction ratio, while the
second dense connection layer recovers the parameters to 1 / 2.
The two new features via GAP and MAP can be generated and
are concatenated to construct the optimized spectral-spatial
features. This operation aims to enable the channel
representations to capture different aspects of globally spatial
position in each channel-wise and enhance spectral feature
attention ability. In figure 1, the proposed channel attention
model is applied to the network, following by each 3D residual
CNN module to refine features.

2.3 Multi-scale feature fusion network by 2D CNN

Due to the computational complexity and parameter limitation,
3D convolution uses the convolution kernels with a small size
to extract spatial-spectral information. However, objects have
different scale characteristics that are presented in a variety of
sizes in remote sensing images. If the convolution operation
uses a fixed receptive field, the performance is inconsistent with
the features of different scales, which probably causes the loss
of some spatial information, such as the boundaries and corners
of different categories. Therefore, in the model, the 2D CNN
network following with the 3D residual convolution module is

applied to extract multi-scale spatial information to improve the
spatial accuracy of classification.

In 2D CNN, deep separable convolution is an effective
operation (Chollet, F., 2017). Firstly, the multi-channel features
from the upper layer are divided into each feature map channel-
wise, and then they are convoluted using different kernels,
respectively, and are fused through point convolution. This
channel level splitting operation only adjusts the size of the
feature maps from previous layers, but the number of channels
does not change. Therefore, the depth-separable convolution
can ensure the channel feature dependency and extract the
spatial features on different channels. Besides, it significantly
reduces the model training parameters by channel separation. In
the proposed model, as shown in figure 1, a set of convolution
kernels with different sizes, including 5 × 5, 7 × 7, and 9 × 9,
are applied to obtain multi-scale spatial features in the proposed
model 2D depth separable convolution blocks. Finally, these
multi-scale features are concatenated and fused by 2D
convolution blocks.

3. EXPERIMENTAL RESULTS AND DISCUSSION

A series of experiments are conducted to test the superiority of
the proposed model. The results are compared with state-of-the-
art models such as SVMs, RF, 2D-CNN, 3DCNN. The model is
trained using Adam optimizer with a learning rate of 0.001 for
2000 epochs over each HSI data set. The categorical cross-
entropy loss is minimized using back-propagation. Batch
normalization (BN) and 50% of dropout are used to deal with
the over-fitting problem. Accuracy metrics were used to
evaluate the experimental results, including Overall accuracy
(OA), Kappa coefficient, Recall, and F1 score.

3.1 Data Description

In this paper, experiments are completed on two
representative hyperspectral data sets with different settings,
including the Chikusei dataset and the Pavia dataset.

The first dataset is airborne hyperspectral remote sensing by the
Hyperspec imaging sensor over agricultural and urban areas in
Chikusei, Japan (Yokoya & Iwasaki, 2016). The dataset
comprises 128 bands in the spectral range of 0.363 μm to 1.018
μm and have 2.5 m spatial resolution. The whole image has
been geometrically and radiometrically corrected. In the
experiment, the study area was a subset with the size of 991
pixels ×1121 pixels in the yellow zone, as shown in Figure 5.
Ground truth of 19 classes was collected via a field survey and
visual inspection using high-resolution color images.

Stratified systematic samplings are applied for sampling
techniques. A total of 34820 points from the whole samples
based on stratified systematic samplings were created and
consisted of 19 classes (including water, bare soil farmland,
forest, grass, the rice field-grown, plastic house, manmade non-
dark, manmade dark, manmade grass, paved ground, and
asphalt, etc.).

Pavia university data contains a part of urban site scenes
acquired in 2013 by the ROSIS spectral sensor over the
University of Pavia, Italy. The hyperspectral imagery has 115
wavebands in the wavelength range of 0.43-0.86 μm, and the
spatial resolution is 1.3 m. Due to the influence of noise, 12
bands are eliminated, and 103 bands are left as classification
data. The image size is 610 × 340, and the pixels are be
classified into nine categories. The pseudo color image and the
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ground truth map of the hyperspectral data are shown in Figure
6.

Figure 5. Chikusei dataset. The experimental subset is
located in the yellow rectangle.

a b
Figure 6. Pavia dataset. a is the pseudo color image, b is the

ground truth map.

3.2 Classification results for the proposed network

Table 1 displays data from the Chikusei dataset's experimental
results. Our proposed residual 2D-3D CNN method achieved an
overall classification accuracy of 99.24% with the F1 score of
99.78% and kappa score of 99.48% and outperformed 3D-CNN
with an overall accuracy of 91.23%, kappa coefficient of
92.17%, F1 score of 82.47%, the precision score of 87.24% and
Recall of 95.34%. 2D-CNN with 87.21% overall classification
accuracy, F1 score of 85.24%, and kappa score of 85.34%.

Generally, there is a tendency that the 2D-CNN model provides
the lowest values due to the kappa (85.24%), F1(82.34%),
precision (81.36%), recall (83.21%), and therefore overall
accuracy, common classifiers such as random forest and support
vector machine performed better than 2D-CNN. Comparatively,
the proposed residual 2D-3D CNN has almost a similar
performance with random forest, support vector machine, and
random forest.

The overall accuracy of the proposed method is similar to that
of random forest, with 99.21% overall classification accuracy
and similar to that of support vector machine with 99.53%
overall classification accuracy. Besides, the precision score of
the proposed 2D-3D CNN (99..24%) is achieved equivalent to
random forest (99.21%), support vector machine (99.53%). F1

and Recall of proposed residual 2D-3D CNN are slightly higher
than random forest and support vector machine, indicating that
the proposed method is slightly better at the true positive and
contributes to more balanced predictions. The proposed model's
training time is the highest than other classifiers, which cost
only 53.98 seconds per 50 epochs, whereas the traditional
classifiers such as random forest and support vector machine
recorded 307.12 seconds and 974.25 seconds, respectively. 2D-
CNN achieved the lowest training time, which is 312.59
seconds.

Table 1. Comparison Accuracy on Chikusei data with another
state-of-the-art method. The bold values denote the best result.

Table 2 shows the accuracy of the proposed methods and other
classifiers for the experimental results on the Pavia dataset.
Overall accuracy for the proposed model was 97.57 percent,
with a Kappa coefficient of 97.42 percent. However, for the tree
class, the proposed model performs slightly worse than 3D-
CNN. Furthermore, SVM outperformed the proposed model in
classification.

Category 2D
CNN

3D
CNN

RF SVM Proposed
model

Asphalt 88.56 91.68 86.91 93.45 97.46
Meadows 84.15 84.73 84.59 93.78 96.01
Gravel 56.82 62.17 38.21 82.53 99.24
Trees 94.09 99.80 94.94 99.38 99.12
Metalsheet 99.70 99.93 99.35 99.6 100.00
Baresoil 45.93 98.27 98.57 97.38 99.92
Bitumen 64.11 93.38 90.38 94.19 100.00
Bricks 99.08 98.45 97.39 98.31 98.57
Shadows 99.4 97.79 94.09 99.86 98.52
Overall
accuracy/%

80.27 89.48 87.04 94.68 97.57

Kappa/% 73.90 86.46 87.23 92.92 97.42
Table 2. Comparison accuracy on Pavia dataset with another
state-of-the-art method. The bold values denote the best result.

Obviously, the proposed model achieved higher accuracy than
the others on both datasets. 3D convolution layer can facilitate
gradient back-propagation, whereas the 2D convolution block
aims to extract spatial features abundantly. Therefore, The
combined 3D and 2D have effectively extract refined features
and enhance the classification accuracy. Moreover, the multi-
scale information improved classification performance by
fusing different level representations from 3D residual blocks.
Besides, depth-wise separable convolution was used in the
convolution filter for the input channel to ensure fewer
parameters.

The attention gate layers support the network to obtain global
context by squeezing the operation and obtaining channel-wise
representations to calibrate features. For instance, the global

Methods
Overall
accuracy

%
Kappa % F1% Precision% Recall%

RF 99.21 99.41 99.56 99.47 99.41

SVM 99.53 99.36 99.57 99.54 99.53

2D-CNN 87.21 85.24 82.34 81.36 83.21

3D-CNN 91.23 92.17 82.47 87.24 95.34
Proposed
model 99.24 99.48 99.78 99.54 99.58
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average pooling maintains the information in the global context,
whereas the maximum pooing extracts remarkable features. The
implementation of multiple dependencies for the global feature
correlations between channels affirms that the final excitation
scores should not be biased towards local spatial information.
Therefore, the proposed model can learn more distinct and
powerful spectral-spatial feature representations. Our result also
has proven in agreement with the previous works of Yu et al.
(2020) and Yang et al. (2020).

Figures 7 and 8 show the prediction maps of the proposed
model and other classifiers. Visually, The classification map
generated through SVM and RF is better than 2D-CNN and 3D-
CNN, but still exist some artifacts within the class boundaries
and false classification of the pixel. 2D CNN has worse
performance than other methods, which indicates 2D-CNN
cannot sufficiently extract spectral representation to predict the
target pixels. The proposed model can learn more discriminative
and robust spectral-spatial feature representations by refining
the feature while suppressing the ineffective feature.

ba c

d e f
Figure 7. The classification map for Chikusei data subset. a. Study area, b. The proposed model, c. 2D-CNN, d.3D-CNN, e.
Support vector machine, f. Random forest.

Figure 8. The classification map for Pavia dataset. a. Study area, b. 2D-CNN, c. 3D-CNN, d. Random forest, e. Support vector
machine, f. Proposed model.

4. CONCLUSION

This paper studies the hyperspectral remote sensing image
classification method based on deep learning and proposes a

2D-3D hybrid convolutional neural network algorithm to
achieve the effective end-to-end classification of hyperspectral
images. Instead of handcrafted feature extraction using
hyperspectral images, the network uses 3D hyperspectral cube
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data as input and combines 2D and 3D convolution advantages
for the classification. The proposed algorithm adopts the
residual learning network structure, which can extract the
spectral and spatial features of hyperspectral images while
deepening the network and reduce the gradient degradation
problem. 2D depth separable convolution uses multiple
convolution kernels with different sizes to extract multi-scale
spatial features. In addition, the proposed channel attention
model can effectively learn the global spatial representation and
optimize the spectral features to improve the operation
efficiency and classification accuracy of the model. The
experimental results show that the performance of the algorithm
is better than the traditional classification algorithm, 2D-CNN
algorithm, and 3D-CNN algorithm.

In conclusion, compared with the current convolution neural
network model, the proposed network model can optimize the
extracted features and effectively fused the spectral and spatial
information of hyperspectral remote sensing images. The
experimental results demonstrated that the proposed
classification framework has stronger feature extractability and
effectively improves the classification accuracy for
hyperspectral imagery.
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