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ABSTRACT:

Terrestrial lidar scanners are increasingly being used in numerous indoor mapping applications. This paper presents a methodology
to model rollers used in hot-rolling steel mills. Hot-rolling steel mills are large facilities where steel is processed to different shapes.
In a steel sheet manufacturing process, a steel slab is reheated at one end of the mill and is passed through multiple presses to achieve
the desired cross-section. Hundreds of steel rollers are used to transport the steel slab from one end of the mill to the other. Over a
period of use, these rollers wore out and need replacement. Manual determination of the damage to the rollers is a time-consuming
task. Moreover, manual measurements can be influenced by the operator’s judgment. This paper presents a methodology to model
rollers in a hot-rolling steel mill using lidar points. A terrestrial lidar scanner was used to collect lidar points over the roller surfaces.
Data from several stations were merged to create a single point cloud. Using a bounding box, lidar points on all the rollers were
clipped and used in this paper. The clipped data consisted of the roller as well as outlier points. Depending on the scan angles of
scanner stations, partial surfaces of the rollers were scanned. A right-handed coordinate frame was used where the X-axis passed
through the centers of all the rollers, Y-axis was parallel to the length of the first roller, and the Z-axis was in the plumb direction.
Using a standard diameter of the roller, model roller points were created to extract the rollers. Both the lidar data and the model
points were converted to rectangular prism-shaped voxels of dimensions 15.24mm (0.05 ft) x 15.24mm in the X and Z directions
and extending over the entire width of the roller in the Y-direction. Voxels containing at least 40 lidar points were considered
valid. Binary images of both the lidar points and the model points were created in the X-Z axes using the valid voxels. The roller
locations in the lidar image were located by performing 2D FFT image matching using the model roller image. The roller points at
the shortlisted locations were fitted with a circle equation to determine the mean roller diameters and mean center locations (roller’s
rotation axis). The outlier points were filtered in this process for each roller. The elevation at the top of every roller was determined
by adding their radii and Z-coordinates of its centers. Incorrectly located and/or modeled rollers were identified by implementing
moving-average filters. Positively identified roller points were further analyzed to determine surface erosions and tilts. The above
methodology showed that the rollers can be effectively modeled using the lidar points.

1. INTRODUCTION

Hot-rolling steel mills are large facilities where steel is pro-
cessed into different shapes. Figure 1 shows a schematic dia-
gram of a steel sheet manufacturing hot-rolling mill. The steel-
manufacturing process starts with a cold slab at one end that is
reheated in a furnace and then passed through multiple mills to
achieve the desired thickness and cross-section. In this process,
rollers are placed at regular intervals to transport the slab. The
length over which a slab is processed in a steel mill can extend
to six to nine hundred meters. In the end, the processed steel
sheet is rolled to form a coil.

Figure 1. Schematic diagram showing the working of a
hot-rolling steel mill.

Figure 2 shows rollers in a hot-rolling steel mill. Drive motors
are attached to one end of rollers that spin them at a constant
rotational speed.

Over a period, the rollers undergo wear and tear because of fric-
tion with the slabs. They could develop several issues such as

uneven surface profile and tilt in the rotation axis as shown in
Figure 3. The unevenness, although a few millimeters, can af-
fect the quality of the steel by creating differential roller surface
speed which causes stripes on the steel surface. As shown in
Figure 3(a), the axis of a roller may not be perfectly horizontal.
Such a roller, due to varying friction over its length, could result
in different roller radii. Figure 3(b) shows a roller with chan-
ging radii along its length.

Figure 4 shows changes in diameters from roller to roller. As
stated earlier, the rollers are rotated at a constant rate. Uneven
reductions in radii along the length of rollers would result in
uneven surface velocities causing friction and/or drag between
the rollers and steel (PI tapes). Figure 4 also shows that the
change in the radius of the rollers over their length could result
in an uneven top surface. This situation is shown by the third
roller where a steel section could be supported by the second
and fourth rollers. The third roller might just touch or scratch
the steel over it.

Thus, it can be concluded that the quality of the steel produced
directly depends on the surface quality of these rollers. Until
now, the surface variations and alignments of the rollers have
been measured manually using tactile direct measurement tools.
The mill operations had to be stopped to make manual meas-
urements thereby causing loss of revenue for the steel factory.
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Figure 2. Rollers in a steel mill. Drive motors on the right side
of the rollers.

Figure 3. Cross-sectional view of rollers showing surface
erosion, mean and tilted rotational axes.

Figure 4. Issues in multiple rollers due to uneven erosion.

Moreover, such measurements can be made at limited locations.
Hence, more time and efforts would be required to manually
measure the entire profile of the rollers.

Alternatively, a laser scanner can be employed to scan the rollers.
But manual extraction of the important roller parameters from
the laser points would be highly time-consuming and would be
influenced by individual operator judgment which could lead to
errors from misinterpretation. Hence, methods that can auto-
matically extract the roller features and minimize manual inter-
action can greatly increase the effectiveness of roller mapping.

In this paper, methods are presented to extract the roller para-
meters from terrestrial laser points. The main objectives are to
minimize human factor error, increase the measurement level of
confidence, and to make the process computationally efficient.

2. LITERATURE REVIEW

Laser scanners (Light Detection and Ranging (lidar)) are in-
creasingly being used on aerial or terrestrial platforms. The
basic principle of a laser scanner is based on distance meas-
urement using a laser pulse sent by a sensor to the object (Liu
et al., 2009). An onboard GPS/IMU system coupled with the
range distance can determine the position of the ground point.
Due to its direct ranging capabilities and few limitations, lidar
is increasingly being used in numerous industries with applic-
ations such as structural shape modeling (Puente et al., 2016,
Yi et al., 2019), geometric deformation modeling (Cabaleiro et
al., 2015, Selvaraj and Madhavan, 2018), deformation determ-
ination in structural members (Cabaleiro et al., 2014), trans-
portation engineering (Gézero and Antunes, 2019), and water
resources engineering (Deshpande, 2013, Deshpande and Yil-
maz, 2017). The paper (Taheri Andani et al., 2018) showed
the reliability of lidar sensors for the assessment of the top of
rail lubricity in a laboratory environment. The paper (Stein et
al., 2016) presented methods to determine infrastructure ele-
ments like rails and turnout from mobile lidar data of a railroad.
The paper (Cabaleiro et al., 2016) presented an application of
lidar technology in structural health monitoring, especially in
the study of deformations and stresses in beams. In the paper,
(Gézero and Antunes, 2019) 3D linear elements were extracted
from a mobile lidar point cloud of a railroad. In the papers,
(Sánchez-Rodrı́guez et al., 2019, Yi et al., 2019, Puente et al.,
2016) methodologies addressing different issues in automatic
tunnel modeling were presented.

Thus, it could be summarized based on the literature review
that lidar is progressively used for modeling and mapping vari-
ous construction elements. However, the use of laser scanners
in steel industries is relatively new. Steel mills have numer-
ous structural elements that need periodic monitoring for the
smooth functioning of their facilities and the safety of their em-
ployees. Rollers, one of the important elements in the steel-mill
industry are cylindrical in shape. Commercially available soft-
ware cannot address the issues to the extent necessary in steel
mills. This paper presented unique roller modeling approaches
using a terrestrial laser scanner in steel mills.

2.1 Salient metric properties of a roller in a steel mill

As stated earlier, the rollers are an essential component in steel
mills. In this section, different issues that are being addressed
by this paper are listed. Considering all rollers together (Fig-
ure 4) following pertinent parameters were determined:

1. Centerline variations of rollers (Axial 3D alignment)
2. Radius variations of the rollers (Roller profile/wear)
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3. High point elevations of rollers

Pertinent parameters considering an individual roller (Figure 3)

1. Surface variations of a roller with reference to the mean
rotation axis

2. The actual (tilted) rotation axis variation compared to the
mean rotation axis

3. Surface variations considering the roller’s actual (tilted)
rotation axis

3. DATA DESCRIPTION

The data used in this study was acquired in a steel mill located
in the US continent using a Z+F IMAGER R© 5010C, 3D Laser
Scanner. The rollers were scanned by stationing the instrument
on bridges as shown in Figure 2. Lidar points on 372 rollers
were clipped by defining a bounding box. It can be noted from
Figure 5 that several outliers existed in the clipped dataset. A
right-handed local coordinate system was used to orient the data
in which the X-axis was along the centerline of the rollers and
the Z-axis was in the plumb direction.

Figure 5. Point cloud of the rollers in a steel mill and the
coordinate reference frame.

The roller points and the outlier points within a sub-set of five
rollers are shown in Figure 6(a). It can be noted that depend-
ing on the locations of the scanners and their scan angles, laser
points were collected on limited surfaces of rollers.

Figure 6. Laser points in the X-Z plane. (a) Voxel overlaid on
the point cloud and (b) image created by thresholding the

number of laser points within each voxel.

4. METHODOLOGY

The overview of the entire process is shown in Figure 7 which
can be broadly grouped as locating the rollers using 2D Fast

Fourier Transform (FFT) and extracting rollers’ metric para-
meters.

Figure 7. Steps to extract roller properties.

4.1 Two-dimensional Fast Fourier Transform (2D FFT) im-
age matching

The general idea of 2D Discrete Fourier Transform is that an
image in the spatial domain f(x,y) of size (M by N) pixels will
be represented in the frequency domain F(u,v) (Smith, 1997,
Gonzalez et al., 2004). Figure 8 shows a digital image in the
spatial and the frequency domains, respectively. The concept
behind the Fourier transform is that any waveform can be con-
structed using a sum of sine and cosine waves of different fre-
quencies.

Figure 8. 2D FFT.

Thus, F(u,v) can be converted to the corresponding image (f(x,y))
using the Inverse Fourier transform (IFT). Fast Fourier trans-
form (FFT) is a smart algorithm for rapidly calculating the DFT.
FFT can perform convolution by multiplication in the frequency
domain hundreds of times faster than convolution in spatial do-
main. Using this concept, two images can be convoluted in the
frequency domain for image matching (Smith et al., 1997). This
process is faster than the correlation in the spatial domain.

Figure 9(a) shows a search template that is to be located on the
input image. According to the FFT matching, the template im-
age is flipped from left to right and then from top to bottom. A
DFT is applied to both the images to obtain the real and ima-
ginary output. These two sets are multiplied to obtain a real
and imaginary output. An IFT transform is implemented to ob-
tain the correlation. The rightmost image in Figure 9(b) shows
the results, where the brighter pixels represent the locations of
higher correlation. This technique is used to locate the rollers
to expedite the matching process.

4.2 Locating the rollers using FFT matching

Figure 5 shows the point cloud and the coordinate reference
frame. To locate the rollers, the entire laser point cloud was
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Figure 9. FFT image matching.

converted to voxels. Voxels are 3D cubes represented by width,
depth, and height in X, Y, and Z directions, respectively. Several
researchers have used voxels in various LiDAR-based applica-
tions (Popescu and Zhao, 2008, Chasmer et al., 2004).

In this study, rectangular prism-shaped voxels of dimensions
15.24mm (0.05 ft) x 15.24mm in the X and Z directions and ex-
tending over the entire width in the Y-direction were created. It
can be noted from Figure 6(a) that the voxels would represent a
2D image in which the column and row directions were aligned
to the X and Z axes of the data, respectively. The first column
of the raster image was placed on the point with the smallest X-
value and the first row was placed on the point with the highest
Z value. Voxels containing at least forty points were considered
valid. This threshold was based on experimental testing which
showed a reduction in outlier cells in the raster image. A binary
image was created along the X and Z axis containing 1 for a
valid voxel and 0 for a non-valid voxel. Figure 6(b) shows the
resulting image where white shows the valid pixel containing at
least forty laser points. The shape of the roller and several out-
lier pixels can be seen in this figure. In the next step, individual
rollers were located using the FFT image matching technique
where Figure 6(b) was used as the input image.

In a steel mill, a standard roller size is used. Therefore, de-
pending on the source of the data, a template roller was created
by specifying the standard roller radius of 20.7cm (0.68 ft). Vir-
tual points were placed at the specified radius (Figure 10(a)) and
were grouped in voxels of size 15.24mm (0.05 ft) x 15.24mm
in the X and Z directions. The voxels were converted to create
a template search image as shown in Figure 10(b).

Figure 10. FFT image matching (Smith (1997)).

This template image was used for FFT image matching to locate
the rollers in the input image. The resulting correlation image
is shown in Figure 11(a). It should be noted that the template

was a complete circle whereas the rollers were partial circles
with varying surface point coverage. Depending on the extent
of roller surface points, the correlation value ranged signific-
antly over the entire length. However, as seen in Figure 6(a),
the extents of rollers’ surface scan changed gradually in a smal-
ler region. Hence, to obtain a uniform correlation, the entire
length was divided into smaller sections along the X-direction,
so that a local threshold could be determined. Approximately
five rollers were processed at one time thereby generating a uni-
form correlation value for every section. Sufficient overlap was
maintained between these sections to avoid missing any roller at
their ends. Based on multiple testing a threshold of Max value/2
was adopted for each section to locate the rollers. Here Max
value represented the maximum correlation value within each
section. Figure 11(b) shows a binary image where white pixels
represented locations with values greater than Max value/2 . It
can be noticed that a cluster of white pixels existed at the roller
locations. At this point, user input was used to specify a seed
point as shown in the figure. Rollers were searched within a
buffer of three pixels on both sides along the row of the seed
pixel. When a cluster was detected, their average location in
row and column directions was considered as a matching loc-
ation. It should be noted that FFT matching located the lower
right corner of the rollers. Using this location, the left and right
extents in the X-direction and top and bottom in the Z-direction
for every roller on the image were identified as below:

Left extent=Center column pixel-size of template circle (DIA)-
4 pixels (OFFSET)

Right extent=Center column pixel+4 pixels (OFFSET)

Top extent=Center row pixel-size of template circle (DIA)-4
pixels (OFFSET)

Bottom extent=Center row pixel+4 pixels (OFFSET)

These measurements are shown in Figure 11(b) where DIA stands
for the diameter of the template circle and OFFSET stands for
four pixels offset. The OFFSET pixels accounted for rollers’
size variations. Figure 11(c) shows the extents of the identified
rollers. Laser points on every roller were identified using the
extents determined. At this stage, the locations of every roller
were available. Using the points within these extents, various
parameters were extracted as described below.

4.2.1 Determining the mean radius and mean rotation axis
of individual roller: The points within the extents of a roller
consisted of outliers and roller points. Therefore, it was neces-
sary to exclude the outliers to determine the average radius and
center of the roller. An iterative refinement approach was im-
plemented to determine the actual radius and the center of the
roller as shown in Figure 12. A threshold of 6.1mm (0.02 ft
– 1/8th of an inch) was used after several tests to shortlist the
points belonging to the roller. Points within this threshold were
used to fit a circle, compute the radius, and coordinates of the
center of the fitted circle.

Figure 13 shows laser points within the extents of one roller
containing the filtered roller points, outlier points, and the fitted
circle. The coordinates of the center were considered as the
mean axis of rotation for the roller.

It was found that the above methodology erroneously selected
a few incorrect roller locations. Based on visual examination, it
was found that the erroneously detected rollers had significantly
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Figure 11. FFT matching between the template and the data
image.

Figure 12. Flowchart to determine roller’s points, average
diameter, and the location of the mean rotation axis.

Figure 13. Laser points of one roller containing the roller points,
outlier points, and the fitted circle.

different radii and centers’ Z-coordinate. Thus, a two-stage fil-
tering process was developed that examined the consistency in
the radii and the centers of all the rollers to determine erro-
neously detected rollers. In the first stage, a moving average
roller radius and Z-coordinate at each roller was calculated us-
ing the neighboring roller parameters. The differences between
the computed and the average values were calculated and rollers
outside certain confidence from the mean separation were con-

sidered as outliers. By implementing the above process, erro-
neously detected rollers were excluded from further analysis.
For each roller, its mean radius was added to the Z-coordinate of
the roller’s centers to determine the top elevation of the rollers’
surface. In the second filtering stage, moving average filtering
was implemented on the top elevation of the roller’s surface to
filter outliers. The analysis was performed using different mov-
ing average filter sizes and different confidences.

4.2.2 Determination of the individual roller’s radius vari-
ation from the mean rotation axis: The steel slabs are primar-
ily supported and transported over the middle length of the roller.
Determining the radii variations over the length of the roller
could provide essential information about its wear and tear. There-
fore, radii variations of every roller with reference to the mean
rotation axis were calculated at regular intervals to determine
surface undulations. The roller points from the previous sec-
tion were sliced in the Y-direction at every 25.4mm (1 inch).
A mean radius and its standard deviation were calculated with
reference to the mean rotation axis for every slice of data. Fig-
ure 14 shows the radii variations and their standard deviations
at each slice of the roller.

Figure 14. Radius calculated using every slice of the roller.

4.2.3 Determination of individual roller’s actual (tilted) ro-
tation axis: As described earlier, the rollers were susceptible
to tilt. Tilt results in uneven wear and surface velocities. In
this study, the roller’s tilt was modeled by computing the radii
at the ends of the roller as shown in Figure 15. Roller points
within 0.3m (1 ft) at both the ends of the roller were shortlisted
to determine best-fit circles. The calculated radii and centers of
these circles were assumed to be at the ends of the roller. The
actual (tilted) rotation axis was created by connecting the cen-
ters at both ends of the roller. A positive tilt value represented
that X’ location was higher than X.

Figure 15. Mean and actual roller axis and the surface points.

4.2.4 Determination of the individual roller’s radius vari-
ation from the actual (tilted) rotation axis: In this section,
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the roller surface variations with reference to the actual axis of
rotation were determined. Roller points were divided into slices
of 25.4m width along its length to calculate the radii from the
actual axis of rotation.

Figure 16. Mean and actual roller axis and the surface points.

5. RESULTS AND DISCUSSIONS

The above-presented methodologies were implemented on a data-
set consisting of 372 rollers extending to a length of 350m. As
it was not possible to include graphical results of all the rollers,
salient graphics and tables have been shown to prove the effic-
acy of the methods.

5.1 Locating rollers

The original dataset covered 372 rollers. The points within a
box placed around all the rollers were exported from Cyclone
into MATLAB. These points were converted to voxels of di-
mensions 15.24mm (0.05 ft) x 15.24mm in the X and Z dir-
ections and extending over the entire width in the Y-direction.
As explained in the 2D FFT image matching, the input image
was created using the voxel dataset and the roller template im-
age was created using a standard radius of 20.7cm. The en-
tire length of the data was segmented into smaller sections con-
sisting of approximately five rollers. A sufficient overlap was
maintained between the sections so that no rollers at the edges
were excluded. The rollers’ locations identified in each region
using the DFT were ordered in ascending X-coordinates and
any duplicate locations were eliminated. Extents of each roller
were defined from the matched location as explained in Fig-
ure 11(c) to segregate points belonging to each roller. Using the
least-squares method, a circle was fitted iteratively to the se-
gregated points to determine the roller’s mean radius and mean
center coordinates (mean axis of rotation).

5.2 Assessment of roller location

Using the 2D FFT, rollers were detected at 393 locations how-
ever, only 372 rollers existed in the data. Data for each roller
was manually inspected to identify incorrect rollers. It was
found that 366 rollers were correctly identified and modeled
(see Figure 17), 6 rollers were correctly identified but incor-
rectly modeled (see Figure 18) and the remaining 21 were not
roller locations (see Figure 19). Based on this inspection, the
FFT matching successfully identified 98.3 percentage (366 out
of 372) of rollers.

Figure 20(a), (b), and (c) show the Z-coordinate variations of
roller’s center, rollers’ radii variations, and the rollers’ top sur-
face elevation variations, respectively. The 27 erroneously loc-
ated or modeled rollers can be visually identified as spikes.

Figure 17. Sample locations with positive DFT matching and
roller detection. Several outlier points can be seen that were

filtered.

Figure 18. Sample locations where correct roller locations were
identified but incorrect parameters were computed. (a) Outlier

points on the left side of the roller. This resulted in a larger
diameter radius and lower Z-coordinate of the center, (b) and (c)

part of the roller selected resulting in incorrect parameters.

Figure 19. Sample identified locations where rollers were not
present.

Figure 20. A plot showing the centerline of all rollers before
filtering the erroneously located rollers.

5.3 Filtering the data

The erroneously located rollers were filtered in two steps. In
the first step, the roller radii and Z-values were filtered using a
moving average filter. Tests were conducted using two moving
average filters to identify the outliers. The first moving filter
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used 5 locations (two on both sides and the location itself) and
the second used 11 locations (five on both sides and the location
itself) to compute the average values. Moving average values at
the start and end of the line used fewer points. Figure 20(a)
and (b) show the moving averages of the radii and Z-values.
The differences between the moving average and the calculated
value at each roller were determined and points outside 68.8%,
80%, 90%, and 95% confidences about their mean differences
were considered invalid. In the second step, the top elevations
of every roller were computed by adding the roller radius to
the center’s Z-value. Once again, moving average values were
computed and outliers were determined based on 68.8%, 80%,
90%, and 95% confidences. The efficacy of the above two steps
filtering process was verified by visual inspection. Figure 21
summarizes the results. It can be noticed that by decreasing the
confidence about the mean, a greater number of incorrect rollers
were detected, but more correct rollers were also falsely flagged
as outliers. Similarly, an increase in the size of the moving
average filter showed better results. At 95% confidence using an
11-size moving average filter 18-locations out of 27-locations
were detected as outliers. Nine locations were not detected,
and 1 roller was falsely detected as an outlier. The total success
rate was computed as a ratio of failed and incorrect locations to
the total rollers in the data. In this case, (366-9-1)/366 = 97.3%.

Figure 21. Filtering result at varying confidence intervals.

5.4 Top surface variations after the two-step filtering

Figure 22(a) and (b) shows the roller centerline and the radii
variation plots after filtering. Continuing the roller’s data ana-
lysis, desired pertinent measurements were also extracted for
all the rollers. These results are discussed in the following
sections. Filtered laser points for every roller were uniformly
sliced to determine the average roller radii. The center of the
circles was the mean rotation axis. Figure 14 illustrates surface
variations with the reference to their mean axes of rotation for
four sample rollers. The graphs show the areas of significant
surface wear.

Figure 22. Centerline and radii variation after the two-stage
filtering.

The actual (tilted) axis for each roller was subsequently determ-
ined by determining circles at both ends. A line connecting
these circles was considered as the actual rotation axis. Fig-
ure 15 shows the mean and the actual axes of rollers’ rotation.

The Class 1 and Class 2 points are placed at the radii distance
from the mean axis of rotation. Figure 16 shows radii variations
of rollers from the actual rotation axis. The radii variation high-
lights the surface wear for the rollers.

6. CONCLUSION

Point cloud consisting of 370 rollers and extending over 350 m
was analyzed in this study. New methodologies were presented
to locate and extract roller properties that are important in the
steel industry. The primary results were visually inspected to
determine the outlier. Two-stage moving average filters were
used to identify the outliers. The results showed 97.3% success
in identify rollers correctly using an 11-location moving aver-
age filter at 95% confidence. This study also extracted valuable
information from the laser points data such as roller’s erosion,
tilt, and alignment parameters that can be useful to the steel
industry to replace rollers. The results showed that the laser
scanner can effectively map deformations in rollers.

During this investigation, several avenues were identified for
future study including the use of image data were identified.
At present, the entire process is automated with minimum hu-
man interpretation. Manual operations were only involved in
the clipping the rollers from the entire steel mill dataset, the
selection of a seed point, and defining the template roller size.
The whole process can be improved to be an entirely automatic
procedure, which allows for real-time data processing.

REFERENCES

Cabaleiro, M., Riveiro, B., Arias, P., Caamaño, J., 2015. Al-
gorithm for beam deformation modeling from LiDAR data.
Measurement, 76, 20–31.

Cabaleiro, M., Riveiro, B., Arias, P., Caamaño, J., 2016. Al-
gorithm for the analysis of deformations and stresses due to tor-
sion in a metal beam from LIDAR data. Structural Control and
Health Monitoring, 23(7), 1032–1046.

Cabaleiro, M., Riveiro, B., Arias, P., Caamaño, J., Vilán, J.,
2014. Automatic 3D modelling of metal frame connections
from LiDAR data for structural engineering purposes. ISPRS
Journal of Photogrammetry and Remote Sensing, 96, 47–56.

Chasmer, L., Hopkinson, C., Treitz, P., 2004. Assessing
the three-dimensional frequency distribution of airborne and
ground-based lidar data for red pine and mixed deciduous forest
plots. Int Arch Photogramm Remote Sens Spat Inf Sci, 36(8),
W2.

Deshpande, S. S., 2013. Improved floodplain delineation
method using high-density LiDAR data. Computer-Aided Civil
and Infrastructure Engineering, 28(1), 68–79.

Deshpande, S., Yilmaz, A., 2017. A semi-automated method to
create a lidar-based hydro-flattened DEM. International journal
of remote sensing, 38(5), 1365–1387.
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