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ABSTRACT: 

 
The microtopography associated with ice wedge polygons (IWPs) governs the Arctic ecosystem from local to regional scales due to 
the impacts on the flow and storage of water and therefore, vegetation and carbon. Increasing subsurface temperatures in Arctic 

permafrost landscapes cause differential ground settlements followed by a series of adverse microtopographic transitions at sub 
decadal scale. The entire Arctic has been imaged at 0.5 m or finer resolution by commercial satellite sensors. Dramatic 
microtopographic transformation of low-centered into high-centered IWPs can be identified using sub-meter resolution commercial 
satellite imagery. In this exploratory study, we have employed a Deep Learning (DL)-based object detection and semantic 
segmentation method named the Mask R-CNN to automatically map IWPs from commercial satellite imagery. Different tundra 
vegetation types have distinct spectral, spatial, textural characteristics, which in turn decide the semantics of overlying IWPs. 
Landscape complexity translates to the image complexity, affecting DL model performances. Scarcity of labelled training images, 
inadequate training samples for some types of tundra and class imbalance stand as other key challenges in this study. We 

implemented image augmentation methods to introduce variety in the training data and trained models separately for tundra types. 
Augmentation methods show promising results but the models with separate tundra types seem to suffer from the lack of annotated 
data. 
 
 

1. INTRODUCTION 

A network of polygonal pattern appears in the tundra due to the 
cracking and subsequent development of ice wedges. Ice-wedge 
polygons (IWPs) are one of the most common landforms across 
the Arctic tundra lowlands (Zhang et al. 2018). Researchers 
(Leffingwell et al. 1919) described two major types of IWPs: 
polygons with elevated blocks or high-centered polygons, 

polygons with depressed blocks or low-centered polygons. In 
recent years, a dramatic microtopographic transformation of 
low-centered IWPs into high-centered IWPs across the Arctic 
tundra region was documented using sub-meter resolution 
commercial satellite imagery (Steedman et al. 2017) (Liljedahl 
et al. 2016). Commercially available high resolution satellite 
imagery is already available, Imagery archives are swiftly 
rolling to petabyte scale. Yet, the imagery-derived products are 
rare. We are in the process of translating these big imagery 

resources to Arctic-science ready products. Our ongoing 
research investigates the automated detection of IWPs from 
commercial satellite imagery.  
The successful implementations of deep learning convolutional 
neural nets (DLCNNs) in computer vision (CV) applications 
have received great interest from the remote sensing 
community. There has been a lot of recent research where 
researchers have tried to integrate DLCNNs to solve remote 

sensing classification related problems such as land use and 
land cover type detection, feature extraction from remote 
sensing images, etc. Deep learning convolutional neural nets 
perform well in terms of object detection, image segmentation, 
semantic object instance segmentation. A lot of DLCNN 
architectures have been published, trained and tested with 
different types of imagery. Each of these architectures have 
their own advantages and disadvantages with respect to the 

computation time and resources. Previous studies show 
promising results found by implementing the implementation of 
deep learning convolutional neural networks with commercial 

satellite imagery (Zhang et al. 2018) (Witharana et al. 2020). 
However, there are scopes of implementing image augmentation 
techniques with the regular Mask R-CNN model. The Mask R-

CNN is an advanced model that does image detection and 
segmentation at the same time. Image segmentation process 
detects each of the polygons in our image tiles and the detection 
pipeline decides whether a polygon is a high-centered or a low-
centered IWP. In this study, we have implemented 17 different 
types of augmentation methods. Some methods are single 
augmentation methods and some consist of multiple 
augmentation methods. Based on the type of augmentation 

method, some changes the image distribution and some keep the 
distribution of the input image unchanged. 
The Mask R-CNN model itself has a lot of room to modify and 
tweak the default parameters (He et al. 2017). The backbone of 
the model is a Convolutional Neural Network (ConvNet/CNN). 
This can be changed to different types of CNN models, we used 
the ResNet-50 structure (He et al. 2016) as the backbone. To 
initialize the model, we have practised the transfer learning 
approach. In this approach, the model is already trained based 

on some dataset. Our backbone was pretrained based on the 
ImageNet dataset. We retrained the Mask R-CNN model with 
different augmentation methods using our dataset so that the 
model can be used for the detection and segmentation of the ice 
wedge polygons. 
We noticed that IWPs have different spectral, spatial, textural 
characteristics based on the tundra vegetation type. For 
example, the IWPs sampled from the tussock sedge tundra show 

different characteristics from the IWPs sampled from the non-
tussock sedge tundra region. These differences affect the model 
performance. So, we trained Mask R-CNN models for different 
tundra types. The main goal of this study is to explore the 
potential of augmentation methods on top of a state-of-the-art 
DL CNN method (Mask R-CNN) to characterize the tundra ice-
wedge polygon landscape as well as to assess the change in the 
model performance when trained with separate tundra types. 
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We conducted a multi-step quantitative assessment to assess the 

precision, recall, F1 score and overall accuracy of the prediction 
results.  
 

2. MEDTHODS 

2.1 Study Area 

We extracted a total of 370 image tiles of varying dimensions 
(292×292 pixels, 345×345 pixels, 507×507 pixels, 199×199 
pixels, etc) out of 3 satellite imagery scenes from the north 
slope of Alaska and from the Banks Island, Canada (Figure 1). 
These areas are covered mostly by tussock and non-tussock 
sedge tundra, sedge/grass moss wetland and other types of 
tundra. We annotated a total of 12561 polygons (5,620 low-
centered and 6,941 high-centered polygons) from these image 

tiles manually.  
We prepared 3 sets of images out of all available images as the 
training, test and validation datasets. The training dataset was 
used for training the model and the validation dataset was used 
to check model performance while training the model. The test 
dataset was used to calculate the performance of the final 
model. 
 

 
Figure 1. Circumpolar arctic vegetation map (CAVM) 

(Raynolds et al. 2019) showing the study area. 
 

2.2 Model Architecture 

We implemented a deep-learning based model named as the 
Mask R-CNN (He et al. 2017) (Figure 2). This model is 
specialized in object detection as well as instance segmentation 

at the same time.  
 

 
Figure 2. Simplified block diagram of the Mask R-CNN model. 
 
Our codes are developed based on an open-source package built 

on Keras and Tensorflow developed by the team of Mask R-
CNN on Github (https://github.com/matterport/Mask_RCNN). 
The model consists of a CNN backbone, region proposal 
network, neural networks for predicting classes, bounding box 
and generating the mask. We have used ResNet-50 (He et al. 
2016) pretrained with the ImageNet dataset as the backbone of 
the Mask R-CNN network. The final outputs of the model 
consist of the polygons detected inside the bounding boxes as 

well as in the form of masks and the class names (high-centered 
or low-centered polygons) corresponding to each of those 
detected polygons. 
 

2.3 Augmentation Methods 

Image augmentation is a process that modifies training images 
in a variety of ways and act like additional training images to 
the model. Image augmentation, thus, can boost the 
performance of deep learning models by introducing additional 

training data. In the Mask R-CNN model, we have the ability to 
introduce augmentation methods. Table 1 exhibits the 
augmentation methods that we used in our study. 
 

Augmentat

ion 

methods 

Description Names 

used in 

accu-

racy 

plots 

Crop 
generates smaller-sized 
subimages from given full-sized 
input images 

Crop 

FlipLR flips the image horizontally FlipLR 

FlipUD flips the image vertically FlipUD 

FlipLRUD 
combination of FlipLR and 
FlipUD 

FLRUD 

Gaussian 
noise 

Adds noise sampled from 
gaussian distributions 

GN 

Hue 
multiplies the hue of images by 
random values  

Hue 

Saturation 
multiplies the saturation of 
images by random values  

Sat 

Hue-
saturation 

multiplies the hue and saturation 
of images by random values  

HS 

Invert 
subtracts all pixel values from 
255 

Invert 

Rotation 
(x) 

Apply affine rotation of 'X' 
degrees on the y-axis to input 
data 

RX (ex: 
R30, 
R60) 

Salt & 
pepper 
noise 

adds salt and pepper noise (noisy 
white-ish and black-ish pixels) 
to rectangular areas within the 
image 

SPN 

Salt & 
pepper and 
FlipLR 

a combination of salt & pepper 
noise and FlipLR method 

SPFLR 

Spectral 

a sequential combination of salt 
& pepper noise, hue, saturation 
and hue-saturation augmentation 
methods 

Spectral 

Top 7 
augmentati
ons 

a sequential combination of the 
top 7 augmentation methods 
based on their mean average 
precision score on the test 
dataset 

Top7 

 
Table 1. Augmentation methods used in this study. 

 
Some augmentation methods (for example: flipping) do not 
change the distribution of the input images where some 
augmentation methods (for example: gaussian noise) change the 
distribution of the input images. Also, all the augmentation 
methods do not essentially improve the model performance, as 
we will see in the results section. 
Other than the single augmented methods, we have 

implemented some combined augmented methods. For example, 
we have combined the salt & pepper noise and hue 
augmentation, saturation augmentation, hue-saturation 
augmentation methods into a single pipeline and named it as 
spectral augmentation to get the benefits out of all the individual 
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augmentation methods. We also used a sequential combination 

of the salt & Pepper noise augmentation and the FlipLR 
augmentation method. The last augmentation method named as 
Top7 includes 7 augmentation methods that appeared in the top 
when ranked by their performance. The performance 
measurement process is discussed in the accuracy assessment 
section. Figure 3 lists some of the sample images showing the 
effects of augmentation methods compared to the original 
image. 

 
Figure 3. Augmented images compared to the original image. 

 
2.4 Separate Models for Separate Tundra Types 

We have seen that different tundra vegetation types have 

distinct spectral, spatial, textural characteristics, which in turn 
decide the semantics of overlying IWPs. Landscape complexity 
translates to the image complexity, affecting DL model 
performances. Our idea was to implement separate models for 
separate tundra types and to study the model performance. For 
this we selected the best augmentation methods based on their 

performance, and then train separate models with separate 

training data sets, each of which will contain only one particular 
types of tundra. As we have seen the distribution of tundra types 
in our data compared to the entire arctic, we have seen that our 
data has a different distribution than the original arctic (Figure 
4). However, 3 of the major tundra types cover more than 70% 
of our sampled data set. So, we have prepared 4 tundra types 
named as (G3) Non tussock sedge, (G4) Tussock sedge, (W1) 
Sedge/ grass, and (Others) other tundra types. 

 
Figure 4. Distribution of tundra types. 

 
2.5 Model Training 

We used transfer learning approach to retrain the Mask R-CNN 

model. While doing so, we have taken the ResNet-50 as the 
CNN backbone of the model. The model was initially trained 
with ImageNet dataset. The training process was completed in a 
local machine with Intel(R) Core(TM) i9 CPU with NVIDIA 
GeForce RTX 2070 SUPER with 8GB of GPU memory. The 
training time was not measured as multiple training process 
were run on the local machine at the same time and based on the 
GPU load the training time varied. 

After deciding the augmentation methods and the tundra types, 
we trained the Mask R-CNN model with mini-batches (we 
changed the steps size and batch size based on the memory 
available in the GPU), learning rate of 0.001, learning 
momentum of 0.9, and weight decay of 0.0001. We had a total 
of 257 training image tiles (4,019 low-centered polygons and 
4,007 high-centered polygons), 53 validation image tiles (773 
low-centered polygons and 989 high-centered polygons) and 59 

test image tiles (828 low-centered polygons and 945 high-
centered polygons).  
To optimize the model, we looked into different losses, such as 
(a) L1 loss (this defines box regression on object detection 
systems, which is less sensitive to outliers, than other regression 
loss); (b) Mask R-CNN bounding box loss (this loss indicates 
the difference between predicted bounding box correction and 
true bounding box); (c) Mask R-CNN classifier loss (this loss 

estimates difference of class labels between prediction and 
ground truth); (d) mask binary cross-entropy loss (this loss 
measures the performance of a classification model by 
observing predicted class and actual class); (e) RPN bounding 
box loss (this lossidentifies the regression loss of bounding 
boxes only when there is object and); (f) RPN anchor classifier 
loss (this loss indicates the difference between the predicted 
RPN and actual closest ground truth box to the anchor box). The 

total loss consists of the summation of all these loss values. We 
prepared the training and validation loss graphs for each of the 
augmentation methods (Figure 5) or for each of the tundra types 
(Figure 6). Based on these graphs, we have selected the best 
models for each of the augmentation methods or tundra types. 
In Figure 5, all the models converge at a point but in Figure 6, 
G3 tundra type seem yet to converge when trained for 200 
epochs. 
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Figure 5. Loss graphs for different segmentation methods. 

 

 
Figure 6. Loss graphs for different tundra types. 

 

2.6 Accuracy Assessment 

We conducted a multi-step accuracy assessment for the outputs. 
The outputs are in the form of class names and binary masks. 
We calculated the intersection over union (IoU) for each of the 

polygons in the outputs that matched with the polygon classes 
in the test dataset. We set a threshold of the IoU values as 0.5 
and considered the polygons above this threshold as correctly 
classified. 
We calculated precision, recall and F1 score for each of the 
classes and for each of the images. 

 
 

(1) 

 
 

(2) 

 
 

(3) 

 
We then calculated the average precision, recall and F1 score 

for low-centered and high-centered polygons.  
Finally, we calculated mean average precision and overall 
accuracy for each of the models. 
 

 
 

(4) 

Here, N is the number of total classes. 
 

 
 

(5) 

 
3. RESULTS AND DISCUSSION 

 
3.1 Models with Different Augmentation Methods 

After the model training step was completed, we have 
calculated assessment values for each of the models (Figure 7). 
Some augmentation methods outperformed the model without 
any augmentation. However, some augmentation methods did 
not perform well. Choosing the best 7 methods, we trained 
another model named as the Top7 model and then calculated the 
assessment values for that model. 

Figure 7 shows that Top7 model outperformed the individual 
models with a 79.6% mAP and 79.3% overall accuracy.  

 

 
Figure 7. Performance analysis of augmentation methods. 
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The rotation augmentation methods and the crop method did not 

perform well compared to other augmentation methods. When 
the images are cropped, the corners of the images are filled with 
zero values to match the input image size and thus the image 
distribution is very much changed. This could be a reason why 
rotation methods did not improve the performance. Here are 
some sample outputs from different augmentation methods. 
Detected polygons are marked in different colors. As we 
observed in the accuracy plots, some methods did well in 

detecting the polygon boundaries.  
 

 
Figure 8. Sample outputs with different augmentation methods. 

 
Among the single augmentation methods, FlipLR method 
performed the best, this method doesn’t change the distribution 
of the input images. However, the salt & pepper noise method 
also performed well. Salt & pepper noise adds some black and 
white pixels randomly in the data. The amount of these pixels 
are not enough to change the distribution widely, but able to 
mimic digital noise in the image and makes the model robust 

against noise. As we can see on the probability density function 

and the cumulative distribution function plots, we can see that 

the contributions of the salt & pepper noise in the higher and the 
lower end of the possible pixel values. 
 

 Figure 9. PDF and CDF for original image and salt & pepper 
noise augmented image. 

 

3.2 Models with Separate Tundra Types 

We used our trained models on different tundra types and 
predicted on different tundra types. Table 2 shows the mean 
average precision for models trained and predicted on different 

tundra types. These models performed better when trained and 
tested on the same tundra types. However, for the model trained 
on Non-tussock sedge (G3) actually performed better on Sedge/ 
grass (W1) tundra type. The reason could be the similarity 
between these two types and also the inadequate numbers of 
polygons of these tundra types. 

 

Mean Average 

Precision 

Trained on 

(G3) 

Non 

tussock 

sedge 

(G4) 

Tussock 

sedge 

other 

tundra 

types 

(W1) 

Sedge/ 

grass 

Predi-

cted 

on 

(G3) 

Non 

tussock 

sedge 

0.58 0.32 0.47 0.57 

(G4) 

Tussock 

sedge 

0.08 0.79 0.18 0.05 

other 

tundra 

types 

0.35 0.69 0.62 0.22 

(W1) 

Sedge/ 

grass 

0.75 0.35 0.54 0.8 

 
Table 2. Mean average precision values for models trained on 

different tundra types. 
 
We also predicted the overall accuracy values for the models 
trained and tested with different tundra types (Table 3). We saw 

that the models trained and tested on the same tundra types 
performed better. However, exceptions were also found. For 
example: the model trained with G3 tundra type performed the 
best with W1 tundra type, the model trained with G4 tundra 
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type performed the best on other tundra types. We will analyse 

more on the tundra types in our future works. 
 

Overall 

Accuracy 

Trained on 

(G3) 

Non 

tussock 

sedge 

(G4) 

Tussock 

sedge 

other 

tundra 

types 

(W1) 

Sedge/ 

grass 

Predi-

cted 

on 

(G3) 

Non 

tussock 

sedge 

0.66 0.13 0.13 0.62 

(G4) 

Tussock 

sedge 

0.08 0.66 0.66 0.05 

other 

tundra 

types 

0.35 0.79 0.79 0.22 

(W1) 

Sedge/ 

grass 

0.75 0.36 0.36 0.8 

 
Table 3. Overall accuracy values for models trained on different 

tundra types. 
 

4. CONCLUSION  

Mapping ice wedge polygons from large satellite imagery takes 
a lot of computational resources as well as a lot of annotated 
images. We implemented the Mask R-CNN model for 
segmentation and classification of the ice wedge polygons from 

commercially available satellite imagery. We have improved the 
model performance and found promising results by applying 
augmentation methods on top of regular Mask R-CNN models. 
We explored many types of augmentation methods in our 
training process. However, there are many other augmentation 
methods yet to be explored. We will look further into this topic 
in our future works. We also trained separate Mask R-CNN 
models for separate tundra types. The lack of annotated data 

seems to be visible in the model performance when trained with 
separate tundra types. We will continue our analysis based on 
the tundra types with more image tiles. 
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