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ABSTRACT: 

 

High spatial resolution images acquired with drones can provide useful information to farmers for devising suitable management 

practices and increase crop yield. Data collected as individual frames or images have to be mosaiced using pattern recognition and 

matching process. Most flight missions collect hundreds of photos with high overlap and side overlap in order to generate mosaic 

without data gaps or distortion. These frames are aligned using the location information associated with each image. The same 

features are identified in multiple frames for generating the mosaic. In this process, it is common to use all or most of the images 

which requires a lot of resources. Uploading and processing hundreds of images could take several hours to days. Many farmers and 

crop consultants in developing countries may not have the necessary resources to upload hundreds of images. This study assessed the 

optimal number of images required to generate an image mosaic for a crop field without any data gaps or distortion. Images were 

collected at two different heights and directions. First, the mosaic was generated using all (100%) frames followed by subsets 

containing 90%, through 50% of images. Results obtained will assist us to plan the settings in future flight missions for acquiring 

optimal number of images required for generating image mosaic. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) or drones are used for a 

range of applications such as inspection (Chan et.al., 2015), 

surveying (Meouche et.al., 2016), mapping (Seibert et.al., 

2014), crop monitoring and mapping (Raeva et.al., 2019), 

security (Birk et.al., 2011), identify epiphytes (Anivilla et.al., 

2020; Aswin etl.al, 2021), emergency response (Sanjana et.al., 

2020). In agriculture drones are used for monitoring crop 

growth (Tao et.al., 2020), monitoring irrigation issues, pesticide 

application (Yinka-Banjo and Ajayi, 2020). Drones acquire high 

spatial resolution images along with other variables and provide 

rich data that can be used for modelling crop growth (Li et.al., 

2016). These data have helped farmers to adapt suitable 

management to improve crop growth. 

 

Drones that can collect imagery data in visible and infrared 

regions of the spectrum. Infrared regions are relatively more 

expensive than those that collect data in the visible spectrum. 

Similarly, fixed wing drones are relatively more expensive than 

several quadcopter (four rotor) models. Hexa- and Octa-copter 

models are required to carry the heavier sensors used for 

collecting detailed data are expensive. In addition to the 

platforms and sensors, specialized software is required to 

process the imagery data collected on the ground. These 

software are available for both desktop and on online platforms 

where users have to upload individual images acquired for an 

area of interest and generate a mosaic, i.e., a single image that 

will cover the entire study area. These mosaics will show 

variations in the growth and health in a crop field. 

 

Image registration technique is the basis for combining two or 

more images (Ait-Aoudia et.al., 2012). These techniques find 

the distinct key point or feature vector in that image and also 

find the same feature points in other images to align the photos. 

When many photos are acquired or at very high spatial 

resolution, large computing resources are required for creating 

image mosaic (Carrio et.al., 2017). For very large imagery data 

volume, cloud-based processing solutions can be rented for 

remote computation. Based on the computing resources the 

processing time can take between few hours and days. 

 

Farmers in most developing countries might not have access to 

recent drone and sensor technologies, and facilities to process 

aerial images for generating image mosaics of their fields. 

Recently introduced low-end (lower cost), quad-copter drones, 

have high quality sensors that are capable of acquiring high 

spatial resolution images. Sensors on these drones can acquire 

high quality images and videos. If mosacis of acceptable quality 

can be generated using these low-cost drones, more farmers can 

afford to invest in drones.  

 

Seifert et al., (2019) reported that images acquired at low flight 

altitudes with higher image overlap resulted in most 

reconstruction details. This study reported the effect of drone 

height and image overlap while reconstructing forest images. 

 

The primary objective of this study was to assess whether a 

commonly available low-cost drone can be used for acquiring 

aerial images and generate good quality mosaic for a crop field. 

The second objective of this study was to determine the optimal 

number of images required to generate a mosaic without 
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distortion and gaps (potholes). The third objective was to 

evaluate the effect of drone height during image acquisition on 

generating the mosaic. If acceptable mosaics can be generated 

with optimal number of images will reduce the processing time 

and eliminate the need to invest in high end computing systems. 

 

 

2. MATERIALS AND METHODS 

2.1 Image mosaic 

Panorama is the best example for image mosaicking technique 

(Szeliski et.al., 1994). Two or more images are taken at slightly 

different times for the study area are combined to form a single 

image where the entire target area is visible. The mosaic is 

constructed by aligning the images in order. Image registration 

techniques extract feature points available in the images, which 

are termed as the descriptor vector that describes or locate the 

local key point in the image. These techniques are used in 

satellite and UAV acquired image processing (Ait-Aoudia et.al., 

2012) biomedical (Shao et.al., 2011), and many other 

applications. 

 

Algorithms such as scale-invariant feature transform (SIFT) and 

speed up robust feature (SURF) are used in feature points 

extraction (Lowe, 1999). Other optimized methods such as 

BRIEF (Binary Robust independent elementary features) 

(Calonder et.al., 2011) and ORB (Oriented Fast and Rotated 

Brief) (Rublee et.al., 2012) are used in other applications. These 

algorithms find the key point in the image and to compute the 

descriptor vector that helps to focus more on the extreme feature 

point. The key point is computed by blurring the image with 

different level of Gaussian blur and are stacked. The stacked 

blurred images are subtracted to find the key point in the image. 

Then the descriptive vector is computed by calculating the local 

neighbourhood to know the surroundings of the key point. 

Using the descriptor vector from different images, they are 

aligned based on transformations such as projective, similarity, 

affine functions. Finally, the overlapping region of two images 

are stitched (Szeliski et.al., 2006) based on the pixel intensity 

value (i.e., Gradient domain) (Levin et.al., 2004). Agisoft™ 

uses SIFT to identify the key point (Bert, 2018). For entire 

study, the recommended default values were used: key point 

limit = 40,000 and tie point limit = 4000). The key point 

determines the feature point in 2D image and tie point are used 

to compute 3D position of the feature. 

  

2.2 Data collection 

A DJI Spark™ drone was used to capture aerial images of 

Brinjal (Solanum melongena) field located in Vedasandur, 

Tamil Nadu (India). Aerial images were acquired from two 

different altitudes: 15 and 13 meters. Flight heights were 

determined based on safe to fly height in order to avoid 

obstacles such as trees that were planted along the field 

boundary, utility poles, and other elevated objects (Sajithvariyar 

et al., 2019).  The study area is in a safe to fly zone.  

 

Hammer App™ is an open-source software available for iOS 

platform, can be used to plan a flight mission over the study 

area. Hammer App™ enables users can input boundary points 

and other manual waypoints for the field and additional settings 

like altitude, front and side overlap based on the available flight 

time. Settings used in this study are summarized in Table 1. 

 

Heig

ht. 

(m) 

No. of 

images 

(100% of 
dataset) 

Front 

overlap 

% 

Side 

Overlap 

% 

Gimbal 

tilt 

(deg) 

Ground 

offset 

(m) 

13 m 241 90 52 -90 -4.0 

15 m 319 90 52 -90 0 

Table 1. Flight settings entered in the Hammer app (™) for 

acquiring images for the study area. 

 

The front overlap was set at maximum (90%) as it does not 

affect the flight time. The side overlap settings were adjusted 

based on the flight time and battery longevity. Flight direction 

were set at -70 degrees to align the flight path in straight pattern 

rather than zig-zag pattern as shown in the (Figure 1). 

 

 

 
Figure 1. Flight mission plan for the study area set for altitude 

15m in Hammer app (™). 

 

Next, the white balance setting in DJI GO4 app was adjusted 

depending on the flight condition. In this study both missions 

were flown under sunny conditions (Figure 2). 

 

 
Figure 2. White Balance was set to Sunny in DJI G04 app 

based on meteorological conditions at the time of the flight. 

 

 

2.3 Reference panels 

Black and white reference panels were placed throughout the 

field (Figure 3) in order to determine whether the minimum and 
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maximum values change during the mosaic creation process. 

Methods described by Jeong et al., (2018) was adopted for 

placing the reference panels. High-end sensors use internal or 

external methods to calibrate their measurements which are not 

available for low-end sensors. Minimum (black panel) and 

maximum (white panel) values after the mosaics generated 

under different settings will provide insights about the precision 

of the pixel values in the mosaic. 

 

 
Figure 3. Black and white reference panels placed in the field 

prior to the flight mission. 

 

 

2.4 Mosaic generation 

Leave two blank lines under the key words. Type Aerial images 

collected from both missions (15 m and 13 m) were mosaiced 

under different settings. The image mosaics were generated 

with Agisoft software™ installed in a Windows 10 OS, i7 9th 

generation processor, 8GB RAM and 1660TI graphic card with 

6GB VRAM. The process flow for creating mosaic is shown in 

(Figure 4), The first step was to import all photos that were 

collected at each flight height. 

 

 
Figure 4. Workflow for building mosaic in Agisoft™ using 

aerial images acquired at 13 and 15 m above the study area. 

Camera calibration steps described by (Agisoft, 2011) was 

applied. Next, the image alignment process and the missing data 

part were built by meshing process to generate the mosaic. Time 

taken to generate each mosaic was recorded. The final mosaic 

products were saved as TIFF files. 

The flow diagram shown in (Figure 3) was followed in the 

present work. The mosaic was generated for each height; each 

mosaic was created by reducing 10% of individual images until 

40% or even less until potholes and data loss were noticed. The 

time taken for alignment of images and mesh building remains 

the same. This is because the images that were removed to 

reduce the overlap after the image alignment and mesh were 

built. So, the change in time will be only based on mosaic 

building process. Then time needed to generate the outputs 

(mosaics) at each step was recorded. Following settings were set 

in Agisoft™’s Reduce Overlap tool: capture distance = 40m; 

Image overlap = High; Max images = Number of images which 

is to be removed at each %, for this study the no. of images to 

be removed is listed in (Table 2). 

 

Altitude 

(m) 

Dataset % Number of 

Available  

images 

Number of 

images to 

be 
removed 

Number of 

images 

after 
removal 

13 

100 241 0 241 

90 241 24 217 

80 241 48 193 

70 241 72 169 

60 241 96 145 

50 241 120 121 

40 241 145 96 

15 

100 319 0 319 

90 319 32 287 

80 319 64 255 

70 319 96 223 

60 319 128 191 

50 319 159 160 

40 319 191 128 

Table 2. Number of images that were removed at each step. 

The quality of mosaic was visually assessed, and the average 

minimum (black panel) and maximum (white panel) reflectance 

value was computed for the mosaics generated with different 

amount (%) of images acquired for the study area. 
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3. RESULTS 

3.1 Time required to generate mosaics 

Processing time recorded for each image is a combination of 

two steps: a) alignment of images and mesh building, and b) 

mosaic building process. Since the first step was completed 

with 100% of images at both elevations (Tables 3 and 4), the 

processing time for the first step will remain the same for all 

settings. Differences in time will be based on the mosaic 

building process step. 

 

Percent & Number 

of 
images used 

Time taken 

Tie points 

100 241 57 mins 0.94 

90 217 57 mins 0.94 

80 193 57 mins 0.94 

70 169 56 mins 0.94 

60 145 55 mins 0.94 

50 121 55 mins 0.94 

40 96 54 mins 0.94 

30 72 53 mins 0.94 

20 48 53 mins 0.94 

Table 3. Time taken to generate mosaics with different percent 

of aerial images acquired at a flight height of 13 m.  All 241 

aerial images were used for aligning and mesh building, prior to 

generating the mosaic. 

 

Percent & Number of 

images used 
Time taken Tie points 

100 319 58 mins 0.68 

90 287 58 mins 0.97 

80 255 55 mins 0.66 

70 223 54 mins 0.67 

60 191 51 mins 0.67 

50 160 50 mins 0.67 

40 128 50 mins 0.67 

Table 4. Time taken to generate mosaics with different percent 

of aerial images acquired at a flight height of 15 m. All 319 

aerial images were used for aligning and mesh building, prior to 

generating the mosaic. 

 

Removal of photos reduced the processing time, but it was not 

linear and in few instances the time taken remained the same 

(Tables 3 and 4). Images from both datasets acquired at 13 and 

15 meters aligned without any noticeable problems. For aerial 

images acquired at 13m, the tie point identification was 94% at 

each removal. However, for 15m the tie point varied from 66% 

to 97%. 

Based on visual inspection, mosaic generated with 100% of 

images (n = 241) acquired at 13 meters appeared to be of high 

quality (Figure 5). No noticeable distortion, loss or potholes 

were noticed until 60% of the images (n = 145) were used for 

generating the mosaic. 

 

 
Figure 5. Mosaic generated with 100%, 80%, 60%, 40% and 

20% of aerial images acquired at a flight height of 13 m. 

 

 

Loss of information was noticed when 40% of the images (n = 

96) and there were more gaps in the mosaic generated with 20% 

of the images. 

 

 

 
 

 
Figure 6. Mosaic generated with 100%, 80%, 60%, 40% of 

aerial images acquired at a flight height of 15m. 

 

 

Mosaic generated with 100% of images (n = 319) acquired at 15 

m appeared to be of high quality (Figure 6). When 20% of the 

images were eliminated, minor loss was noticed in the south 

eastern corner of the field. Removing additional 20% of images 

in each step resulted in increasing loss in information. When 
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only 40% of the images were used, several gaps along the field 

boundary. 

 

3.2 Changes in the reference panel values 

The minimum (black panel) and maximum (white board) values 

were obtained for all reference panels in each mosaic generated 

with 100%, 80%, 60%, 40% and 20% of aerial images acquired 

at 13 m and 15 m are presented in Figures 7 and 8 respectively. 

 

 

 
 

 
Figure 7. Minimum, black panel (above) and maximum, white 

panel (below) values measured in the blue, green, and red bands 

(as colored dots) from the mosaics generated with different 

percent of aerial images acquired at 13 meters. 

 

 

The minimum (black panel) values recorded from the mosaics 

generated with aerial photos acquired at 13 meters, revealed that 

they were above zero in all three (RGB) bands (Figure 7 above). 

Minimum values in the blue band (blue dots) were higher in 

comparison to the red (red dots) and green (green dots) bands. 

The maximum (white panel) values varied between 250 and 255 

for all the RGB bands (Figure 7 below). Unlike the minimum 

values, the maximum values did not show any distinct pattern 

across the three (RGB) bands. 

 

The minimum (black panel) values recorded from the mosaics 

generated with aerial photos acquired at 15 meters, revealed that 

they were also above zero in all three (RGB) bands (Figure 8 

above). Minimum values in the blue band (blue dots) were 

higher in comparison to the red (red dots) and green (green 

dots) bands. The maximum (white panel) values varied between 

251 and 255 for all the RGB bands (Figure 8 below). Unlike the 

minimum values, the maximum values did not show any 

distinct pattern across the three (RGB) bands. 

 

Minimum and maximum values in the mosaics generated with 

different number of aerial images acquired at 13 and 15 meters 

showed random variations, instead of increasing or decreasing 

patterns. In other words, the number of photos used for 

generating the mosaic will not affect the minimum or maximum 

values. It is also evident that the minimum values were well 

above zero. 

 

 
 

 
Figure 8. Minimum, black panel (above) and maximum, white 

panel (below) values measured in the blue, green, and red bands 

(as colored dots) from the mosaics generated with different 

percent of aerial images acquired at 15 meters. 

 

 

Based on these results, we can conclude that elevation at which 

the images were flown will influence the quality of the mosaic. 

Mosaics could be generated with relatively fewer number of 

images (20%) acquired at 13 meters indicating that the flight 

height plays an important role. These findings concur with those 

reported by Seifert et al., (2019). 

 

 

4. CONCLUSIONS  

Low-cost drones can be used to generate image mosaics for 

monitoring crop growth. In this study, a widely available drone 

was used, but we hypothesize that similar low-cost drones can 

achieve similar results. 

 

As the number of photos used for generating the mosaic 

decreased, the time required to generate the mosaic slightly 

reduced. However, when working with larger number of images 

considerable time can be saved. However, we recommend users 

collect the maximum number of images for their study area 

depending on the drone’s flight time. This will ensure that there 

will be no information loss while generating mosaics with fewer 

number of images aimed at reducing processing time and 

computing resources. We recommend that the front overlap can 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-3-2021 
ASPRS 2021 Annual Conference, 29 March–2 April 2021, virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-7-2021 | © Author(s) 2021. CC BY 4.0 License.

 
11



 

be set as high as 90% and it will not change the flight time. 

Also, we recommend that side overlap can be set at least 50%. 

Results obtained in this study indicate that it is possible to 

generate mosaics without gaps and distortions using 80% of the 

images.  

 

Relatively fewer number of images acquired from 13 meters can 

be used to mosaics without gaps and distortions. In contrast, 

more images acquired from 15 meters were required to 

acceptable mosaics. 
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