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ABSTRACT: 

The development and increase of multi and hyperspectral sensors in the recent years have significantly improved urban structure 

analysis and interpretation. The current study is the first to investigate the potential of DESIS hyperspectral images for the detection 

or identification of urban roof materials. After field campaigns in 2014, 2015 and 2018 to collect ground truth points and rooftops 

radiometric properties; a linear spectral mixture, implemented using a non-negative least squares (NNLS) regression based on the 

sequential coordinate-wise algorithm (SCA) was applied on a DESIS image from 2020 of Kigali city to identify the different rooftops 

material and color. Although results show that most endmembers were predicted with a very low probability, the study proved that the 

combination of spectral mixture and hyperspectral data such as DESIS have great potential in the detection of rootops material. The 

presented study also highlghted a number of challenges resulting from the choice of spectral mixture algorithm and colinearity between 

materials. 

 

1. INTRODUCTION 

Human activities, since their beginnings, have left an undeniable 

footprint on the World; Especially cities are among the most 

noticeable activities(UN, 2014). Today, almost 60 percent of the 

world’s population live in urban areas, a proportion that is 

expected to increase to 66 by 2050. This development underlines 

the need of sustainable urban planning which prepares cities for 

challenges related to overpopulation, the supply of 

infrastructures, teaching and medical services, and the creation of 

housing space (UN, 2014). 

On the other hand, the development of cities is determined by 

economic arrangements, social relations and division, legal 

constructions, political systems and the history of all these 

interdependent processes (Taubenböck, 2018).  

(Pereira and Oliveira, 2014) showed that these spatial and social 

pattens allow to describe networks, built space and empty spaces 

in shape-related, topological and hierarchical terms in two, three 

and four dimensions. Earth Observation provides us with spatial 

and spectral characteristics of these urban structures 

(Taubenböck et al., 2018). 

Building materials are an indicator of the socio-economic status 

but satellite images of very high-resolution (VHR) are needed to 

achieve the desired quality and detail (Ye et al., 2017). Yet, most 

VHR imaging satellites only have limited numbers of spectral 

bands, making the identification of materials impossible. As an 

alternative, hyperspectral satellites operate with a significantly 

higher number of bands, but at the cost of spatial resolution. 

Therefore, single pixels are characterized bypresence of various 

materials (van der Linden et al., 2018).  

Spectral mixture models of hyperspectral data demonstrated their 

facility and ability to display various surface reflectance types as 

simple combinations of endmember abundance within an image 

pixel (Small, 2003). 

For a long time hyperspectral data was only used for the detection 

of minerals than urban surfaces (Chisense, 2012), but their 

potential in urban areas is to be investigated. 

Among the first,(Roessner et al., 2001) tested and presented the 

potentials of airborne hyperspectral data for detailed 

classification of urban surface cover types. 

(van der Linden et al., 2018) reviewed the progress and increase 

in number of spaceborne hyperspectral sensors which fostered 

the global transferability of approaches due to standardization of 

observation modes and analytical techniques.  

The DESIS sensor with 235 spectral bands within a range of 400 

to 1000 nanometerse (nm) offers best condition to collect data in 

urban areas as most carbonaceous materials observed in roof 

materials have distinct spectral characteristics at 514, 633 and 

780 nm (Carmona, 2019). 

This study is the first to investigate the potential of DESIS images 

for the detection of urban roof materials. The aim of this study is 

to demonstrate the capabilities of DESIS data for the spectral 

unmixing of urban surfaces. We see this as a first step towards 
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the generation of a locally adapted spectral library of rooftop 

materials which can be applied to newly acquired images for a 

steady and standardized monitoring (Braun et al., 2019). 

Furthermore, the characteristics of different surface types are 

investigated regarding their separability and detectability in the 

image. 

2. DATA AND METHODS 

2.1 Study Area 

Kigali is the largest city and the capital of Rwanda, as well as the 

country's most important business centre. It is also the main port 

of entry with a population estimated at 1.135 million residing in 

an area of 730 km2 (Rwanda, 2012) with a population growth 

rate of 3.4 %. 

Geographically, Kigali is located in the Central-East African 

region slightly in South of Equator at 1°56′38″S and 30°3′34″E.  

2.2 Data 

2.2.1 Building References: Between November 2014 and 

October 2015, 1053 reference datasets on buildingwere collected 

within several field campaigns which included information on 

GPS coordinates, building type, height, usage, roof type and 

material, roof color, roof orientation together with information on 

the neighbourhood of each buildings (Braun et al., 2019). A 

clustered spatial sampling was conducted in advance to identify 

areas which represent the full range of socio-economic conditions 

within the city.  Figure 1 displays the distribution of the collected 

building references. 

 

 

Figure 1: Overview on the city of Kigali. The illustrate the 

spatial distribution of the collected reference data (1,053 

samples). 

2.2.2 Rooftop Spectral Reflectance: Additional field campaigns 

were carried out in July 2018. Rooftop samples (n=900) were 

collected from the main suppliers in the city of Kigali: Ruliba 

clay, Rwanda Mastersteel Ltd and Safintra. These samples (clay 

tiles, concrete roofs, plain metal, coated metal and corrugated 

metal (clear and rusty)) were analysed under a field spectrometer 

(Spectral Evolution SR-3500) to retrieve radiometric reflectance 

values between 350 and 2500 nm at intervals of 1nm. 

Furthermore, natural artificial surfaces, such as asphalt, 

vegetation and bare soil were sampled (n = 200) (Braun et al., 

2019). A list of materials used for this study is shown in Table 1. 

A total number of n=x individual samples was used in this study.  

Table 1: Table of Roof Material names and code 

Roof Material Code name 

Clay X02_clay 

Metal Orange X03_metal_orange 

Metal Red X04_metal_red 

Metal Dark Red X05_metal_dark_red 

Metal Blue X07_metal_blue 

Metal Red Rubber X14_metal_red_rubber 

Metal Orange Rubber X15_metal_orange_rubber 

Corrugated  X10_corrugated_1 

X10_corrugated_2 

Corrugated Rusty X11_corrugated_rusty_1 

X11_corrugate_rusty_2 

Vegetation (Hasel) X17_hasel_1 

Metal bright X30_metal_bright 

  

A first analysis of class consistency showed that corrugated 

materials  are not a homogenous surface because of the many 

stages of material deterioration. To reduce the impact of single 

measurements, each material was repeatedly observed by a 

minimum of 4 measurements which were later aggregated to two 

unseparable classes (see Table 1) using the pavo package in 

R(Maia et al., 2013) . The results are shown in Figure 4. Further 

details and the similarity of different measurements are presented 

in Figure 5.    

   

 
Figure 2: 10 Corrugated Metal, partly slight rusty 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-1/W1-2021 
1st DESIS User Workshop – Imaging Spectrometer Space Mission, Calibration and Validation, Applications, Methods, 28 Sept.–1 Oct. 2021, virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-39-2022 | © Author(s) 2022. CC BY 4.0 License.

 
40



 

 

Figure 3: 11 Corrugated Metal, rusty condition. 

 

 

Figure 4: Roof Material Spectral Reflectance in nanometres. 

2.3 Methods 

2.3.1 Pre-processing: (Keshava, 2003) describes spectral 

unmixing as the procedure by which the measured spectrum of a 

mixed pixel is decomposed into a collection of constituent 

spectra, or endmembers, and a set of corresponding fractions, or 

abundances, that indicate the proportion of each endmember 

present in the pixel. 

Multiple Endmember Spectral Mixture Analysis (mesma) is a 

widely applied tool to retrieve spatially explicit information on 

urban materials and land cover from both hyperspectral and 

multispectral data, because it shows strengths in processing and 

analysing larger number of materials (Roberts et al., 1998).  

For this project all processing was done in R, with three main 

packages namely: hsdar (Lehnert et al., 2018) and  pavo (Maia 

et al., 2013)  for pre-processing. RStoolbox (Leutner, 2019) with 

the “mesma” library was used to compute the spectral unmixing. 

“Pavo” mainly provices functions which allow organizing 

spectral data by importing raw files, visualize, explore and 

process their spectral content (Maia et al., 2013). We used it to 

compare the signatures with respect to their separability and to 

merge spectra to a joint class signal. 

Our raw spectral files were stored in self extraction directive 

(.sed) files and we used the “getspec” function to import all 

samples. Using “procspec” we applied a normalization or 

smoothing algorithm to the spectra for further analysis. 

Plotting all spectral curves together is possible with the 

“aggplot” function but the high number of samples did not allow 

any detailed visual analysis and observation. We therefore used 

the ‘explorespec” function which plots groups of  curves  for a 

better comparability of spectra. The number of groups and 

number of curves in one group is selected manually. Figure 5 

shows the grouping of spectral curves.  As shown, the first three 

clay samples barely differ, the metal coated black have close to 

null reflectance and the bright metals separated into three groups 

because of the high within-class heterogeneity. 

This step is crucial as it serves as a guide to the subsequent step 

of aggregating similar spectra and reducing the number of input 

for the final mesma computation. For this step we used the 

“aggspec” function which combines spectra (by taking the 

average) according to an index or a vector of  identity. 
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Figure 5: Spectral curves in groups of 3

 

Similarly, the “hsdar” package (Lehnert et al., 2018) is also used 

for pre-processing and processing of hyperspectral data. In this 

study, we mainly used the “spectralresampling” function to 

resample the spectral resolution of the field spectrometer (1 nm) 

to the bandwidths of the satellite sensor (DESIS), for this is a 

prerequisite for the mesma function.  

The function has a built-in list of characteristics of already 

implemented sensors such as Quickbird, RapidEye and World-

View 2.  Because DESIS was not within these built-in sensor list, 

its bandwidth characteristics are passed to the algorithm using a 

data frame with two columns: first column with lower bounds of 

channels and second column with upper bounds.  

Using the minimum of 402 nm and maximum of 1000 nm with a 

spectral resolution of 2.55 nm we created the data frame with one 

column of lower limits and another for upper limits of bands and 

resampled the ground data to match with the DESIS spectral 

range. 

2.3.2. Mesma: “RStoolbox” is an R package providing a wide 

range of tools for remote sensing operations . The available 

toolset covers the entire image processing workflow, from data 

import, pre-processing, data analysis, image classification to 

graphical display (Leutner). 

The “mesma” library of the “RStoolbox” is implemented using 

a non-negative least squares (NNLS) regression based on the 

sequential coordinate-wise algorithm (SCA). 

The SCA produces a sequence of solutions x (0), x (1), . . ., x(t) 

which converges to the optimal x∗. The idea is to optimize in each 

iteration with respect to a single coordinate while the remaining 

coordinates are fixed. The optimization with respect to a single 

coordinate has an analytical solution, thus it can be computed 

efficiently (Vojtěch et al., 2005). 

The NNLS is a statistical approach to fit model parameters to 

data, assuming that the model parameters are always expressed 

linearly to those not expressed by the model  and that the model 

parameters can  never  be negative (Schwalb-Willmann). 

This approach of fitting model parameters to data and forcing 

parameters to be non-negative is helpful for cases where negative 

values do not correspond to the physical reality,  for example 

when talking about the abundance of certain materials which 

cannot be below zero (Vojtěch et al., 2005). 

To evade from physical absurdity and maintain inherent 

characteristics such as pixel intensities and chemical 

concentration, it makes sense to enforce the nonnegativity (Chen 

and Plemmons). As described below “mesma” performs a 

multiple endmember spectral mixture analysis on a multiband 

raster image. 
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The following is an example of the execution of mesma within R 

including its relevant parameters.  

mesma (img, em, method = “NNLS”, iterate = 400, tolerance 

= 1e-08, …, verbose) 

- Img is a RasterBrick or RasterStack, in our case DESIS 

image. 

- em is a matrix or data.frame with spectral endmembers. 

Rows represent a single endmember of a class, 

columns represent the spectral bands (i.e. columns 

correspond to number of bands in img) Number of 

rows needs to be > 1. 

- Method [Character] is the selected unmixing method. 

In our case “NNLS” 

- Iterate [integer] this sets maximum iteration per pixel. 

Processing time could increase the more iterations are 

made possible. Default is 400. 

- Tolerance [Numeric] the tolerance limit represents a 

nearly zero minimal number. Default is 1e-08. 

- … further arguments passed to writeRaster 

- Verbose [Logical] this prints progress messages 

during execution. 

The output is a RasterBrick which contains one band per 

endmember, with each value representing the estimated presence 

probability of the endemember per pixel (0 to 1), and a Root 

Mean Square Error (RMSE) band. 

The iterate and tolerance settings must be considered with 

precautions as they might affect the sum of estimated 

probabilities per pixel i.e. the sum varies around 1. 

The Mean Square Error (MSE) is used to evaluate the 

performance in most regression algorithms; but since it has an 

order of 2 and our dataset and prediction are of order 1, RMSE is 

the best option to allow direct correlation of data with the error 

(Kathuria, 2019).  

Since its introduction by C.F. Gauss, the RMSE has been proven 

to be a mathematically more tractable definition to derive the 

principle of least squares (Ozawa, 2019). Within our analysis, the 

RMSE determines the difference between values predicted by the 

model and the values observed. 

𝑳 = √
𝟏

𝑵
[∑(Ŷ − 𝑌)

2
] 

Where the summation goes from n=1 to N, and N is the number 

of instances in the dataset. 

3. RESULTS 

3.1 Spatial Results 

The spatial results of the multiple endmember spectral mixture 

analysis are shown in Figure 7. Each map shows the abundance 

probability of an endmember, representing the respective roof 

material. The extent of the city, as well as its internal 

differentiation is clearly reflected by the different maps, 

especially the abundance of clay, as well as metal roofs (orange 

and corrugated) are strongly related to the different parts of the 

city. Also, vegetation (X_17) clearly dominates outside the city, 

as expected. However, the images also indicate that some 

materials are not fully represented by the actual occurrence of 

building types, but rather biased by other surfaces which were not 

part of the reference spectra, such as open soils or concrete. This 

leads to partially overestimations, as observed for blue metals and 

rusty corrugated metals.  

It is also worth to mention that each abundance map is 

independent and the sum of abundances should not necessarily 

be equal to 100% per pixel. When we overlayed these layers with 

a satellite basemap like in the example provided in Figure 7, we 

realized the corrugated material (X11_2) was overfitting and 

mapped the entirety of built-up areas. In contrast (X10_2) 

displayed a more realistic approach with high abundance in areas 

known for informal settlements; Errors appeared in residential 

(villa) areas with metal red or metal dark red being considered as 

corrugated 

3.2 Error assessment 

Figure 6 shows the overall RMSE calculated based on all 13 

abundance maps produced Figure 8. The combination of 

hyperspectral data with field sample data within the mesma 

approach allowed a clear visual separability of the spectral 

characteristics of the materials. 

The Root Mean Square Error (Figure 6) which measures the 

difference between values predicted by a model and the values 

observed, displayed an overall high distribution of errors between 

probabilities ranging from 0 to 0.05. Accordingly, the predicted 

probability of a roof material to occur within a pixel has an error 

margin of around ± 3%. 

 

Figure 6: Overall RMSE 

3.3 Validation 

3.3.1 Qualitative validation: For a qualitative validation we 

decided to overlay the abundance maps with VHR imagery to test 

for their validity and plausibility.  

 

Figure 8 shows three selected examples of abundance maps at the 

local scale. They demonstrate that, despite the comparably coarse 

spatial resolution of the DESIS sensor (30 m), the results can be 

used to assess roof materials in urban areas, but can contain 

certain challenges  
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The first example of clay (top) shows the challenges related to 

spectral unmixing in the city: While the clay roofs of the luxury 

apartments in the Nyarugenge upgrading areas are clearly visible 

in the upper centre of the map, the bare areas in the right part are 

also indicating abundance of clay, but compared to the image we 

realized this was the Kigali golf course being renovated 

(Humphreys, 2020). 

The second example (middle) shows the abundance of bright 

metals. These displayed higher abundance only at large buildings 

especially factories which are located in the Kigali special 

economic zone. Smaller houses showed moderate abundance but 

were one of the highlights of the findings as most of these houses 

are really small and scatted. 

Finally, corrugated material demonstrated high abundance in the 

Biryogo slum very close to the Kigali CBD and made up of old 

and informal settlements. 

3.3.2 Quantitative validation : Using the 1053 ground truth 

points from the field surveys introduced in section 2.1.1, we 

extracted raster values from the mesma abundance maps to 

produce boxplots of DESIS abundance maps against the collected 

data in Kigali. These are shown in Figure 9, highlighting the size 

of the ground points and the abundance pixel values 

 

 

Figure 7: mesma plots for all the materials and RMSE; Values in the mesma function vary between 0-1. 
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Figure 8: Abundance maps over Google satellite images 

 

 

Figure 9: Comparison of clay, bright metals and corrugated metals with abundance values 
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From 1053 ground reference points, 99 were clay, 60 were bright 

metals and 722 were corrugated metal.  

Of the 99 reference buildings with  clay roofs , 64% were 

confirmed as such based on their pixel’s probability predicted 

from the DESIS data. Other clay rich areas in Kigali such as open 

quarries, riverbanks and construction grounds have also shown a 

high abundance of clay.  

Only 9.6% of the pixels which contained the 60 reference 

buildings with bright metal roofs showed high abundances of  

bright metals in the mesma output 

These 9.6% as displayed in figure 9, are slightly greater than zero. 

This is largely because the small size of the buildings with metal 

roofs which hold small shares within the pixels of 30 by 30 

meters.  

With 722 points representing corrugated metal, the first sample 

of corrugated metal (10) had 66.62 and 30.74 % respectively, 

while the second sample of corrugated rusty metal (11) had 0.13 

and 94.73% respectively. 

4. DISCUSSION 

The Current study has shown that hyperspectral data from DESIS 

can be used to identify some not all rooftops material. The study 

proves the benefits of including context information to reduce 

misinterpretation of detected materials.  

As mesma is used to detect materials, the likelihood of confusing 

materials of similar origin, such as clay rich soil and clay roof 

tiles, is very high. Therefore, we added building footprint data to 

successfully reduce misinterpretation of the results. Future 

projects should consider applying masks for areas such as open 

land, clay quarries, riverbanks etc, to have the endmember 

probability prediction limited to built-up areas only. 

The mesma function from the RStoolbox was faulty due to 

unprecise iterate and tolerance values with values slightly above 

designed range of 0-1. We followed up and informed the creator 

of the function and he has promised to update the function. 

Meanwhile we recommend future projects to try other available 

platforms such as the Viper tools software package designed for 

Envi but can since 2017 be applied in QGIS as a plugin. 

Most endmembers were predicted with a very low probability 

and it is within the same range of 0-0.05 that the RMSE displayed 

a high difference between the observed and predicted values. 

Further studies should therefore focus on the required minimum 

building size and spatial share within the spatial resolution of an 

image pixel to be reliably predicted as such. This could be 

targeted by a more comprehensive field survey on roof materials 

on few selected focus areas.  

In the beginning of the project, we observed a high collinearity 

between some roof materials which affected the model. With the 

example of metal green which covered a huge part of vegetation. 

Therefore, more investigation is needed on how the selection and 

number of classes affects the later results. More statistically 

robust methods have to be applied to determine the ideal 

definition and composition of endmembers.  

We, therefore, highly recommend performing a collinearity test 

between the materials in the data preparation phase, to select the 

less collineated variables. We also encourage future projects to 

compare abundance maps and socio-economic data to evaluate 

the possibility of patterns or relationship between roof material 

and socio-economic data. 
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