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ABSTRACT: 

 

DLR’s Earth Sensing Imaging Spectrometer (DESIS) is mounted on the International Space Station (ISS). DESIS records data in the 

spectral range from 400 to 1000 nm with a spectral and spatial resolution of 2.55 nm and 30m respectively. The high spectral resolution 

enables in detecting a target object distinctly in remotely sensed imagery which has many useful applications in different fields of 

surveillance and monitoring. In present work two different case studies have been carried out that use DESIS data for target detection. 

In the first case study brick kilns are detected in DESIS data using Adaptive Coherence Estimator (ACE) algorithm. In the second case 

study Photovoltaic (PV) panels are considered as target object and linear spectral unmixing is employed to distinctly detect them in 

the image. From experimental results it is observed that the first target which were sparsely located in the image is detected very 

precisely with F1 score value of 0.97. The accuracy of the output of PV panel detection is observed to be more than 98%. Both the 

case studies show the potential of DESIS data in target detection which is a very important application of hyperspectral remote sensing. 

 

 

1. INTRODUCTION 

 

Hyperspectral image with its rich spectral information has found 

many applications in various fields (Paul et al.; 20215), such as 

astronomy, agriculture (Datt et al., 2003), mineralogy (Hörig et 

al., 2001), military (Eismann et al., 2009), and in particular, target 

detection (Manolakis et al., 2014; Frontera-Pons et al., 2017, 

Cavalli et al., 2013). The concept of target detection is to find out 

whether a pixel is occupied (fully or partially) by the target 

material or it belongs to the background (Bitar et al., 2020). 

 

Hyperspectral sensors capture the reflective (or emissive) 

characteristics of objects in the visible to infrared (IR) regions of 

the spectrum (Paul et al., 2015; Paul and Chaki, 2020). The huge 

spectral dimension of hyperspectral image is generally reduced 

to obtain better classification accuracy in certain applications 

(Paul and Chaki, 2021a; Paul and Bhoumik, 2021; Paul et al., 

2021a). In addition to dimensionality reduction (Paul and Chaki, 

2019; Paul and Chaki, 2021b), hyperspectral images are also 

enhanced for noise reduction and better representation (Paul et 

al., 2021b). By utilising the spectral signatures of the materials 

hyperspectral data enables algorithms to detect targets of interest 

in a hyperspectral scene. Hence, target detection is basically a 

binary classification that labels each pixel in the image either as 

a target or background. 

 

Target detection algorithms work in supervised as well as in 

unsupervised way. The unsupervised way of target detection is 

also known as anomaly detection where no prior knowledge of 

the target spectral signature is used or assumed. Anomaly 

detectors uses statistical measures to detect objects that are 

distinct from the cluttered background. For instance, pixels that 

have a significantly different spectral signature from their 

neighboring background pixels are identified as spectral 

anomalies (Matteoli et al., 2010). Reed–Xiaoli (RX) anomaly 

detector (Reed and Yu, 1990) is a classic example of this kind of 

algorithms that has been successfully applied in many 

hyperspectral target detection applications. 

 

In contrast to the anomaly detection, in the supervised target 

detection, prior knowledge about the spectral characteristics of 

the desired targets is available. Hence it is also known as 

signature-based target detection. In this case, a single target 

spectrum (Robey et al., 1992) or a target subspace (Scharf and 

Friedlander, 1994) is used to define the spectral characteristics of 

the target object. The local/ global background is modelled by a 

Gaussian distribution or by subspace statistics (Nasrabadi, 2014).  

 

In present work supervised target detection has been carried out 

on DESIS datasets. Two case studies have been demonstrated 

here. In first case study, the target object is brick kiln whereas 

solar panel is considered as target object in the second case study. 

Brick kiln is a thermally insulated chamber where blocks of clay 

are baked into bricks. It has been a focus of researchers from 

decades for many reasons. Apart from the business (eBrickkiln, 

2020), industry (Kiln Eco, 2015) and technology (Maithel et al., 

2014, beralmar, 2011) related reasons, brick kilns are also studied 

for environmental pollution (Weyant et al., 2014) and labour 

related activities (Boyd et al., 2018). Brick kiln industry requires 

to be closely monitored by the administration and stake holders. 

With the help of increasing spectral resolution, hyperspectral data 

has a potential to detect brick kiln locations efficiently. The 

spectral patterns of target objects are extracted from the scene for 

known locations. Adaptive coherence estimator (ACE) algorithm 

(Bar et al., 2013) is used to detect the target pixels in other 

locations of the scene. 

 

In recent years, renewable energy systems are growing steadily 

(Malof et al., 2016; Puttemans et al., 2016; Chang, 2013). An 

important component of the renewable energy systems is 

Photovoltaic (PV) panels (or solar panel) that generate greener 

(i.e., non-polluting) electrical power from solar energy. As this 

industry is growing, the detailed information concerning these 

solar systems including their localization are gaining importance 

(Malof et al., 2016). Remote sensing provides faster and more 

reliable means of obtaining such precise information (Malof et 

al., 2016; Bioucas-Dias et al., 2012). Very high-spatial-resolution 

airborne/spaceborne images with a small number of spectral 

bands ignore the material properties due to limited number of 

spectral bands. Hence, very efficient detection is restricted with 
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this type of data. In some cases, the visual characteristics of the 

PV panels get altered due to specular reflections, which makes 

the detection more difficult (Karoui et al., 2018). On the other 

hand, hundreds of narrow and contiguous spectral bands of 

hypersepctral imagery enable more accurate material detection 

(Cichocki et al., 2009). Each observed pixel-spectrum in an 

image is compared with reference material spectra by using an 

appropriate criterion or method to detect the target pixels from in 

a hyperspectral image (Limem et al., 2013). In the present study 

DESIS hyperspectral data is used for detecting Photovoltaic 

panels in the scene using spectral unmixing. 

 

The rest of the article is arranged as follows:  The dataset 

description is given in section 2 whereas the methodology is 

described in section 3. Section 4 includes the experimental results 

and final conclusions are drawn in section 5. 

 

2. DATA DESCRIPTION AND STUDY AREA  

DLR’s Earth Sensing Imaging Spectrometer (DESIS) is mounted 

on the International Space Station (ISS) (Müller et al., 2016; 

Krutz et al., 2019). DESIS records data in the spectral range from 

400 to 1000 nm with a spectral resolution of 2.55 nm and a spatial 

resolution of 30 m.  The tile size is 1024×1024 pixel 

corresponding to about 30×30 km2 on the ground. The available 

types of DESIS products are summarised in table 1 (Alonso et 

al., 2019). In present study of target detection DESIS L2A 

product is used. 

 

Product 

Type  

Description  Order 

Parameters 

L1B Radiometric and sensor specific 

corrected data. All metadata attached 

for further processing 

Spectral 

Binning  

L1C L1B data ortho-rectified and 

resampled to a specified grid using 

global SRTM 1 arcsec DEM for 

terrain correction using global 

Landsat ETM+ references for sensor 

model refinement 

 Map 

Projection, 

L2A L1C data atmospherically 

correctedc(Bottom-of-Atmopshere 

reflectance) generating several masks 

(water, land, cloud, shadow, ...) 

 Resampling 

Table 1. DESIS product types and descriptions. 

 

In the first case study where the brick kilns are considered as 

target object the DESIS data acquired on 24th Feb, 2020 with 

approximate latitude extent from 29° 50' 57" N to 30° 16' 11" N 

and longitude extent 75° 52' 57" E to 76° 18' 56" E is used. The 

area covers parts of Punjab and Hariyana state and includes Bir 

Gurdialpura Wildlife Sanctuary. The major land use includes 

agriculture. A partial cloud cover is observed in the scene. In the 

second case study of solar panel detection, the DESIS data of 

05th Mar, 2019 is used. The data is acquired over the state of 

Rajasthan covering the spatial extent with approximate min-max 

latitude from 27° 14' 8"N to 27° 39' 35"N and longitude from 71° 

49' 42"E to 72° 15' 11"E in Thar Desert. The area has solar 

irradiation of 5.72kWh/m2/day (Bhadla Solar Park, 2019) and 

includes many important solar power plants viz. Bhadla solar 

park, NTPC solar park etc. in the Jodhpur district of Rajasthan. 

This area receives many sandstorms every year (Supe et al., 

2020). 

 

 

3. METHODOLOGY  

The methodology for target detection using DESIS hyperspectral 

data includes stages like data pre-processing and target detection 

as described in following subsections. 

 

3.1 Data pre-processing 

DESIS L2A is a corrected data product as given in table 1. In 

addition to onboard measurement and laboratory calibration for 

geometric correction, DESIS uses image matching with reference 

data for extraction of Ground Control Points (GCP). However, 

the geometric accuracy of DESIS data used in the first case study 

is observed a bit low because of poor image matching. Hence, the 

geometric corrections of the dataset have been carried out using 

the LANDSAT data. 

 

3.2 Target detection using Adaptive Coherence Estimator  

The spectral match-based target detection methods make 

decisions based on signatures. They distinguish the target pixels 

from the background by comparing the whole image spectra with 

the known target spectra. The target detection is carried out by 

using in-scene target spectra that are extracted for known 

locations and a library is built. The Adaptive coherence estimator 

(ACE) algorithm is used to detect the target due to its significant 

detection performance (Jnawali et al., 2018). It assumes a normal 

distribution for the background and calculate the background 

covariance adaptively (Yang et al., 2014).   The formula of ACE 

is given in equation (1). 

 

𝐷𝐴𝐶𝐸(𝑥)

=
[(𝑇 − μ)𝑇𝐶𝑜𝑣−1(𝑥 − μ)]2

[(𝑇 − μ)𝑇𝐶𝑜𝑣−1(𝑇 − μ)][(𝑥 − μ)𝑇𝐶𝑜𝑣−1(𝑥 − μ)]
          (1) 

 

where, x is the data acquired by the sensors, μ is the background 

mean, Cov is the background covariance and T is the 

characteristics of the target spectra. DACE becomes maximum 

while x=T, that means the test pixel is the target. However, DACE 

becomes minimum for x=μ, that shows the test pixel is belongs 

to the background. However, in practical scenario the results 

always cannot reach the ideal condition. So, a detection threshold 

ηthr should be set to evaluate the results as given in equation (2). 

 

𝑥 = {
𝑡𝑎𝑟𝑔𝑒𝑡,           𝐷𝐴𝐶𝐸 > ηthr

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (2) 

 

If the calculated value is bigger than the threshold, x is a target 

pixel otherwise x is considered as background pixel (Bai et al., 

2019). 

 

Since only a small fraction of all the pixels in the image can be 

labelled as targets, the overall classification accuracy is not a 

good measure of performance since pixels of interest are sparse 

(Nasrabadi, 2014). Therefore, in present case study, performance 

of target detection is measure using precision, recall and F1 score 

as given in equations (3) to (5) respectively. True positive value 

indicates the number of correctly detected brick kilns whereas 

false positive value gives the number of wrongly identified kilns. 

The false negative value represents the number of brick kilns that 

were actually present in the scene but could not be detected by 

the process. 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (3) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
     (4) 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     (5) 

 

3.3 Target detection using spectral unmixing 

Effect of mixed pixel is prevalent in low or middle resolution 

remote sensing images. Hence, spectral unmixing has become a 

widely adopted technique in remote sensing for quantitative 

analysis. Linear Spectral Unmixing is used to determine the 

relative abundance of materials that are captured by hyperspectral 

imagery based on the materials’ spectral characteristics. In 

present study the linear spectral unmixing is used to detect pixels 

that contain PV panel in the DESIS data. Here, the reflectance of 

each material (or endmember) is assumed to be known. Each 

pixel of the input data is assumed to be a linear combination of 

the endmembers. Linear Spectral Unmixing is employed to 

estimate the abundance values of each endmember for every 

pixel in the scene. It performs inversion of library matrix and 

multiplication by the observed spectrum as given in equation (6) 

to (7). 

 

𝐴𝑀×𝑁 ∗ 𝑋𝑁×1 = 𝐵𝑀×1     (6) 

or 

𝑋 = 𝐴−1 ∗ 𝐵    (7) 

where, A is endmember library matrix with N number of 

spectrums, B is observed spectrum from data with M number of 

bands and X is unknown abundance vector respectively.  

 

The fraction of the pixel that contains the endmember material is 

provided in the abundance images for the corresponding material. 

The original observed spectrum is compared with the best fitting 

spectrum to estimate the error. It’s also a good indicator for 

missing or incorrect endmembers. 

 

 

4. RESULT AND DISCUSSION 

Results of target detection using DESIS data for two different 

target objects are discussed in following subsections. 

 

4.1 Detection of brick kiln 

In present study the DESIS L2A data is first geometrically 

rectified using LANDSAT data (figure 1). Next, the target 

spectrum is generated from the scene for known locations. A 

sample target spectrum is given in figure 2. 

 

 

 
 

Figure 1: Rectified DESIS data of the study area (RGB bands: 

94, 59, 28) 

 

 
 

Figure 2: Target spectra of brick kilns 

 
The ACE algorithm is applied on the data to generate target map 

as described in section 3.1 with threshold value of 0.25. The 

target map of brick kiln locations in the scene is given in figure 

3a where white spots represent the detected brick kiln’s locations. 

Two such spots are highlighted in red and yellow dots in figure 

3a for which high resolution images are shown in figures 3b and 

3c respectively. It is observed in this figure that Brick kilns are 

detected correctly and this shows the case of true positive 

detection. 
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(a) 

 

   
 

                     (b)                                             (c) 

Figure 3: (a) Target map of brick kilns, HR image of the (b) Red 

and (c) Yellow marked locations respectively showing true 

ppositive detections. 

 
The target detection result is verified using high resolution (HR) 

Google Earth satellite imagery of the same location for 

performance assessment. The precision, recall and the F1 Score 

of the output is estimated using equations (3) to (5) respectively. 

Precision value of 0.96 is observed which is quite high. Precision 

is the ratio of correctly detected brick kilns to the total detected 

brick kilns. A high precision value indicates a smaller number of 

false detections. It is a very important aspect of target detection 

in a remotely sensed image where background of the target is 

heterogeneous. Hence, the actual number of true negative points 

are further analysed. Only 2 numbers of true negative detections 

are observed in the scene. In first case the target object was 

covered by cloud and a very different spectral signature is 

obtained at that location as given in figure 4a. the corresponding 

scene reference is given in figure 4bHence, it could not be 

identified by the present method. 

 

 
(a) 

 

 
(b) 

Figure 4: (a) Spectral signature of the cloud covered target and 

(b) DESIS Scene reference. 

 

In the second case the target is found to be mostly occupied by 

vegetation as is mostly the case with abandoned kilns. This made 

the target to be mixed with the background (figure 5). Hence, the 

target is not distinctly detected using the present method. 

 

 
(a) 

 

 
(b) 

 

Figure 5: (a) Spectral signature of the target mixed with 

vegetation, (b) HR image of the location. 

 

The ACE method also performed well in terms of Recall value, 

i.e., 0.98. Recall indicates the sensitivity of the detection method 

i.e., ratio of the number of correctly detected brick kilns to the 

total number of brick kilns that are actually present in the scene. 

A high Recall value indicated a high detection capability. In 

present study only one such instance is observed in the output 

where false positive detection has occurred. Although a 

dissimilarity in spectral signature of the ground object in the 

wavelength range about 740nm to 900nm is observed at false 

positive target location (figure 6) it has very similar response to 

the target object in the other regions of spectra (figure 2). 

Additionally, it has a distinct presence with respect to 

background in the scene. Hence, in present method it is also 

detected as the target. 

 

 
(a) 

Cloud Cover 
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(b) 

Figure 6: (a) Spectral signature of ground object at false positive 

target location, (b) HR image of the location. 

 

F1 Score is the weighted average of Precision and Recall and 

measures the balance between these two metrics. The value of the 

F1 score is 0.97 which is quite high. The DESIS data acquired in 

high spectral resolution enables in achieving this high F1 score 

compared to what has been reported using multispectral data of 

higher spatial resolution in the recent past (Nazir et al., 2020; 

Misra et al., 2020). 

 

4.2 Detection of solar panel 

A sample target spectrum of photovoltaic panels extracted from 

the data (figure 7) is given in figure 8 where a high value in the 

spectral range above 900nm is observed and a lower value in 

about 450-500nm region is evident. However, it gives a relatively 

higher reflectance in bands below 450nm. 

 

 
 

 

Figure 7: Rectified DESIS data of the study area (RGB: 94, 58, 

10). 

 

 
 

Figure 8: Target spectra of photovoltaic panels. 

 

Three major spectrums of three major land cover types are 

extracted from the scene that include spectrum of PV panel, 

vegetation and sand (figure 9). Subsequently linear spectral 

unmixing is carried out using these spectrums. The result of 

unmixing is given in figure 10, where the abundance image of 

vegetation, sand and PV panel are depicted as RGB. The PV 

panels are clearly visible as blue patches in the image. 

 

 
Figure 9: Library spectrum extracted from data for unmixing. 

 

 
Figure 10: Abundance image of vegetation, sand and PV panel 

as RGB 

 

Further to extract solar panel pixels from the data a post 

processing steps are carried out where the PV panel abundance 

image is thresholded with the value of 0.7 and ANDed with the 

inverse of thresholded output of sand with the value of 0.5. 

Finally, the output is converted into a binary image as depicted 

in figure 11. 
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Figure 11: Target map of photovoltaic panels 

 
The accuracy of PV panel detection is estimated using high 

resolution satellite images of the same area where PV panels are 

clearly visible. To avoid class imbalance issue, equal no. of 

random samples is generated through visual inspection for both 

positive (i.e., the class that contains PV panel) and negative class 

(i.e., the class that does not contain PV panel). The overall 

accuracy of PV panel detection is observed to be 98%. A few 

numbers of false detection are observed in places where electrical 

substations are present in the scene. A high abundance value of 

materials of electrical substation in PV panel abundance image is 

quite obvious than other two material types i.e., sand and 

vegetation. However, an alternate methodology or output 

filtration may further be applied to improve the result. The 

spectral signature of electrical substation is given in figure 12 

which is found to be distinct than the PV panel (figure 6). Hence, 

the spectral filtering is applied on the output and the final result 

is given in figure 13. 

 

 
(a) 

 

 
(b) 

Figure 12: (a) Spectral signature of electrical substation, (b) 

reference HR image of the location. 

 

 

 
 

Figure 13: Target map of photovoltaic panels (after filtering) 

 

 

5. CONCLUSION 

Present work demonstrates two case studies of target detection 

using DESIS data. DESIS provides high spectral resolution of 

2.55 nm in the spectral range from 400 and 1000 nm which is 

very useful in detecting objects distinctly. The first case study 

demonstrates the efficiency of DESIS data in detecting brick 

kilns in the study area with very high precision using ACE 

method. In the second case study, solar panels are detected using 

DESIS data where a linear spectral unmixing technique is 

employed. The accuracy of the output is observed to be very high. 

From the experimental results it is observed that target objects 

are detected very accurately using DESIS data.   
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