
 HANDLING CRITICAL ASPECTS IN MASSIVE PHOTOGRAMMETRIC 
DIGITIZATION OF MUSEUM ASSETS 

 
E.M. Farella, L. Morelli, E. Grilli, S. Rigon, F. Remondino 

 
3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy 

Web: http://3dom.fbk.eu – Email: <elifarella><lmorelli><grilli><srigon>< remondino>@fbk.eu 
 

Commission II 
 

KEYWORDS: massive museum digitization, photogrammetry, depth of field, masking, filtering, cleaning 
 
ABSTRACT:  
In recent years, a growing interest in the 3D digitisation of museum assets has been pushed by the evident advantages of digital copies 
in supporting and advancing the knowledge, preservation and promotion of historical artefacts. Realising photo-realistic and precise 
digital twins of medium and small-sized movable objects implies several operations, still hiring open research problems and hampering 
the complete automation and derivation of satisfactory results while limiting processing time. The work examines some recurrent issues 
and potential solutions, summing up several experiences of photogrammetric-based massive digitisation projects. In particular, the 
article presents some insights into three crucial aspects of the photogrammetric pipeline. The first experiments tackle the Depth of Field 
(DoF) problem, especially when digitising small artefacts with macro-lenses. On the processing side, two decisive and time-consuming 
tasks are instead investigated: background masking and point cloud editing, exploring and proposing automatic solutions for speeding 
up the reconstruction process. 
 
 

1. INTRODUCTION 

3D digitisation of Cultural Heritage (CH) assets is a 
widespread practice supporting the knowledge, conservation, 
and promotion of sites and artefacts of cultural and historical 
value. The recent pandemic period has highlighted and 
increased the role and importance of digital technologies in 
this field as tools to overcome physical inaccessibility and 
experience heritage access differently (Tausch et al. 2020, 
Raimo et al., 2021). Among CH settings, museum collections 
are immense, fascinating and fragile treasures. With a view to 
innovating traditional museum exhibitions and increasing the 
attractiveness of the preserved collections, the demand for 
artefact 3D digitisation is constantly growing. However, the 
3D reproduction ("digital twin") of museum assets is generally 
a hard-working task, since: 
• virtualisation projects typically include vast collections; 
• lighting conditions, artefact material and shape, available 

spaces, among others, constrain the data acquisition phase;  
• artefacts differ in size and materials (reflective, textureless, 

thin, etc.), and digitisation equipment should be flexible 
enough to tackle data acquisition in various situations; 

• reasonable times must be planned for processing and 
delivering 3D results.  

This work sums up experiences and lessons learnt from 
massive photogrammetric surveying of museum artefacts to 
realise digital libraries, virtual interactive exhibitions, and 
AR/VR applications.  
In the image-based 3D reconstruction process, many factors 
can affect the quality of the produced 3D results. While image 
quality, sharpness, and camera network define the achievable 
accuracy and completeness of the model, image orientation 
and dense image matching quality impact the level of noise of 
the dense reconstruction and the efforts required to generate a 
photo-realistic and precise 3D model.  
The work investigates three key aspects of the acquisition and 
processing pipeline through experiments and analyses, with 
the aim to reduce operational time while guaranteeing 
adequate and satisfactory results: depth of field (DoF – Section 
3), background masking (Section 4) and point cloud cleaning 
(Section 5). Figure 1 shows the general photogrammetric 
pipeline, where acquisition and processing phases are paired 

to achieve high-quality results, both in terms of geometry and 
texture. 

 
Figure 1. A schematic photogrammetric pipeline (acquisition 
and processing) for the production of textured 3D models. The 
steps discussed in this paper are shown in brackets.  
 
 

2. RELATED WORKS 

When massively digitising museums' artefacts for 
conservation, preservation, restoration, visualisation and 
dissemination purposes, three main requirements are generally 
to be satisfied: 
• a faithful, complete and precise reconstruction of the object's 

shape and geometry, limiting occlusions and avoiding loss 
of information; 

• a high-resolution and truthful texture for optimised (low-
poly) geometries, to virtually inspect in web-based and/or 
augmented/virtual reality applications (AR/VR);  

• a limited acquisition and processing time per object to 
perform massive digitisation activities. 

Both range and image-based techniques (Cignoni and 
Scopigno, 2008; Remondino et al., 2013; Gonizzi-Barsanti et 
al., 2014; Guidi et al., 2015; Russo et al., 2015; Roncella et al., 
2021) demonstrated to fulfil the first need, although passive 
methods are preferable for the second requirement (Gattet et 
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al., 2015; Menna et al., 2016; Menna et al., 2017; Collins et 
al., 2019; De Paolis et al., 2020; Rodríguez-Martín and 
Rodríguez-Gonzálvez, 2020; Apollonio et al., 2021; Roncella 
et al., 2021).  
However, some phases of the photogrammetric workflow can 
be critical in massive 3D digitisation, and a few tricks can be 
helpful to limit digitisation times and improve the quality of 
the results.  
One of the key acquisition aspects is to ensure proper sensor 
settings to achieve sufficient image quality and sharpness 
while meeting the planned 3D model's resolution. The DoF is 
a typical issue when acquiring medium and small-sized 
artefacts, especially with macro lenses. Effective but time-
consuming solutions, like focus stacking or shape from focus 
(Niederöst et al., 2003), can solve this well-known problem in 
macro photography, but they are hardly applicable in massive 
digitisation. Further processing approaches rely on masking 
unsharp and out-of-focus areas by also resorting to automatic 
defocus estimating algorithms (Verhoeven, 2018), which 
present several limitations. However, DoF effects in 3D 
reconstruction is still a topic scarcely investigated (Menna et 
al., 2012; Sapirstein, 2018; Lastilla et al., 2019; Webb et al., 
2020). Knowing the employed digital camera and its 
specifications (focal length, aperture, object distance), various 
smartphone apps and web-based tools are available to assess 
which camera settings are required to achieve a desired level 
of sharpness in the images. 
A second crucial point for significantly reducing manual 
efforts in an image-based 3D digitisation pipeline is 
background masking. This operation is frequently necessary 
(i) when a turntable is used, and the background is static, (ii) 
for jointly processing images where the artefact has been 
flipped (e.g. front and back side) or (iii) to limit the area where 
Multi-View Stereo (MVS) algorithms are applied to decrease 
the computational time and unwanted 3D points. Removing 
backgrounds with manual or semi-manual procedures is a 
pretty easy task, and some commercial software offer tools for 
lightening the needed effort. Few operations are required to 
generate masks in these cases, although images must be edited 
one by one. Therefore, this process remains highly time-
consuming, with thousands of pictures to mask. Since image 
masking is an image segmentation problem, deep learning 
methods and Convolutional Neural Networks (CNNs) were 
also explored (Long et al., 2015; Liu et al., 2020). The main 
issue of these fully automatic methods is the amount of input 
data required for training models and the availability of proper 
image datasets for handling the image classification and 
semantic segmentation tasks. Moreover, as artefacts are 
different from one another, segmentation models based on U-
Net, Mask R-CNN, etc. (He et al., 2020; Knyaz et al., 2020; 
Grilli et al., 2021; Minaee et al., 2021) are not suitable. 
Another key and demanding step in the reconstruction process 
is the dense point cloud cleaning. Noise and outlier removal 
from MVS point clouds is necessary to generate clean 
polygonal models. Point cloud filtering is a wide investigated 
field with many algorithms for tackling this process (Han et 
al., 2017). Traditional methods can be mainly categorised as 
statistical-based, neighbourhood-based, projection-based and 
PDEs-based, although further hybrid procedures were 
investigated. Recently, learning-based methods were also 
presented for point cloud denoising (Duan et al., 2019; 
Hermosilla et al., 2019; Erler et al., 2020; Luo and Hu, 2020; 
Rakotosaona et al. 2020; Luo and Hu, 2021). Although 
promising, these techniques are frequently sensitive to outliers 
and generally fail with a high level of noise in the data. 
 
 

3. DEPTH OF FIELD (DOF) 

3.1 The Depth of Field (DoF) problem 
 
While assuring to meet the planned spatial resolution, an 
adequate DoF is crucial to prevent unsharp areas in the images, 
leading to noisy 3D reconstructions. The DoF defines the 
range of acceptable image sharpness around the plane of sharp 
focus, and it depends on the average object distance, the focal 
length c, the scale number S, the F-number, and the value of 
the Circle of Confusion (CoC)  (Luhmann et al., 2019) (Eq.1): 
 

 𝐷𝑜𝐹 =	
2 ∗ 𝐶𝑜𝐶 ∗	𝐹!"#$%& ∗ (1 + 𝑆)

𝑆' − (𝐶𝑜𝐶 ∗	𝐹!"#$%&𝑐 )'
 Eq.1 

 
Following Menna et al. (2012), the CoC should not be set 
larger than the required resolution: it is the diameter of the blur 
spot measured on the sensor, calculated as the ratio GSD/S. 
Images must be “acceptably” sharp for the image-based 
pipeline, although the range of acceptability embodied in the 
circle of confusion has not been quantified yet (Verhoeven, 
2018). In massive digitization, selecting adequate camera 
settings for avoiding or limiting unsharp areas can prevent 
further image pre-or post-processing efforts. The choice of the 
capturing parameters should balance the final image quality, 
the need to maximize the frame with the object view (as 
required by image-based modelling applications), and return 
an accurate product according to the planned GSD or required 
spatial resolution. Once acquisition distance and focal length 
are fixed to meet these requirements, the DoF problem can be 
controlled by selecting proper lens aperture parameters. 
Smaller aperture values return deeper DoF, but a limit to the 
aperture choice is imposed by blurring effects caused by 
diffractions, which affect and decrease the image quality. 
 
3.2 Experiments  
 
Two artefacts were considered: a small and complex statue 
portraying Moses (6x6x15 cm) and a flat and reflective 2-euro 
coin (25 mm diameter). They both simulate archaeological 
objects' shape, size and materials causing image acquisition 
problems when very high-resolution details are needed. For 
both objects, ground-truth 3D data acquired with a 
triangulation-based laser scanner, were available (spatial 
resolution of 0.015 mm and 0.01 mm, respectively). The 
performed tests focused on verifying the influence of lens 
aperture settings (i.e. DoF ranges) on the final 3D models' 
quality when:  
• the acquisition distance is bound by the planned spatial 

resolution while maximising the imaging frame with the 
surveyed artefact; 

• the image masking of unsharp areas is avoided for limiting 
the processing times. 

In the experiments, a Nikon D750 (full frame CMOS sensor, 
5.95 µm pixel size) coupled with a Sigma 105 macro f2.8 was 
employed in both cases. All images were captured at ISO 100, 
keeping the focus fixed (on the central part of the objects). The 
planned GSD was 0.05 mm and 0.025 mm, respectively. The 
same camera network and a consistent illumination 
(modifying shutter speed values) were kept during the 
acquisitions while changing the aperture settings (F5.6, F11, 
F16 and F22). As known, the higher the F-number, the larger 
is the DoF. At the same time, with high F-numbers, some 
diffraction effects can decrease the lens's resolving power 
(Verhoeven, 2018). 
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F-number F5.6 F11 F16 F22 
DoF [mm] 6.1 12.2 17.2 24.3 

 Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev. 
C2C 0.1931 0.4157 0.1218 0.3104 0.0989 0.2561 0.0908 0.2498 

C2Mesh -0.0455 0.4626 -0.0316 0.3396 -0.0251 0.2826 -0.0255 0.2733 

Table 1. Metric evaluation (Cloud-to-Cloud and Cloud-to-Mesh comparisons [mm]) of the dense reconstructions achieved with several 
aperture settings for the Moses statue (105 mm focal length, 500 mm object distance). 
 

F5.6 F11 F16 F22 

    

Figure 2. Cloud-to-Cloud comparison [mm] with F5.6, F11, F16 and F22 for the Moses statue. Range [0.00/0.50 mm]. 3D data derived 
from images acquired with a higher F-number present fewer discrepancies from the ground-truth data. 
 

F5.6 F11 F16 F22 

    

Figure 3. Cloud-to-Mesh comparison [mm] with F5.6, F11, F16 and F22 for the Moses statue. Range [-0.50/0.50 mm]. Results confirm 
fewer divergences from the ground truth with higher F-numbers.  
 
The Moses statue was surveyed using a turntable, capturing 
images every 15° from two different standpoints and keeping 
an acquisition distance of 500 mm to maximise the frame with 
the object view. The MVS was performed at half-image size. 
As expected, 3D results (Table 1, Figures 2-3) show that, 
without masking unsharp areas produced by the DoF effect, 
the dense point cloud reconstructions achieved with lower F-
numbers are noisier, thus requiring a longer editing time for 
the following steps. In these experiments, with larger F-
numbers, the reduced resolving power of the images did not 
affect the final resolution, returning cleaner results. 
The 2-euro coin was surveyed keeping an acquisition distance 
of 200 mm and testing the same aperture settings of the Moses 
case. Table 2 and Figures 4-5 report the achieved metrics. Also 
in this case, higher aperture settings provided better results. 

However, a slight worsening of metrics is notable in the largest 
F-value (F22) case, compared to the F16 setting.  
Both examples, featuring objects with similar characteristics 
of museum artefacts, confirm that higher aperture settings and 
thus deeper DoF can significantly improve the reconstruction 
results when digitising such small objects with macro-lenses. 
However, as proved by the 2-euro coin example, some 
threshold aperture values should be considered for tiny 
objects, since the decreased image quality could affect the 
quality of the reconstruction.  
It should be noted that, when handling massive digitisation, 
limited times for image acquisitions could influence the choice 
of the capturing parameters, as smaller apertures typically lead 
to longer acquisition processes.  
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F-number F5.6 F11 F16 F22 
DoF [mm] 0.6 1.2 1.7 2.3 

 Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev. 
C2C 0.4084 0.5587 0.2756 0.3034 0.0666 0.0653 0.0930 0.1243 

C2Mesh 0.2331 0.6525 -0.0128 0.4103 0.0151 0.0993 -0.0156 0.1614 

Table 2. Metric evaluation (Cloud-to-Cloud and Cloud-to-Mesh comparison [mm]) for the dense reconstruction of the 2-euro object 
performed with several aperture settings (105 mm focal length, 200 mm object distance). 
 

F5.6 F11 F16 F22 

    

Figure 4. Cloud-to-Cloud comparison [mm] with F5.6, F11, F16 and F22 for the 2-euro case study. Range [0/1 mm]. 

F5.6 F11 F16 F22 

    

Figure 5. Cloud-to-Mesh comparison [mm] with F5.6, F11, F16 and F22 for the 2-euro case study. Range [-1/1 mm].  

 
4.  BACKGROUND MASKING 

4.1 Developed masking approaches 
 
Masking backgrounds is a demanding but frequently necessary 
task in massive digitisation to allow and facilitate tie point 
extraction and dense image matching (MVS) steps. Typical 
acquisition setups for acquiring small and medium-sized 
museum assets include turntables and uniform backgrounds. 
The artefact, when possible, is tilted and turned upside down 
on the turntable for entirely capturing the object geometry, and 
the 360° acquisition is repeated from fixed camera positions 
and several viewing angles. The image orientation step, in 
these cases, can be performed by first separately processing 
groups of images captured from the same camera position and 
then co-registering them, or jointly processing all the (masked) 
images. The second solution is preferable for avoiding image 
orientation issues, although masking the background in all the 
pictures is then required for orienting cameras.  
Automatic techniques can help handle demanding and time-
consuming masking tasks. The solutions developed and 
explored in this work include (Figure 6): 
1.    Unsupervised learning approach: it is based on the K-
Means Clustering (Likas et al., 2003), which divides an 
unlabelled dataset into K groups of data points (referred to as 
clusters) based on their similarities. Since colour similarities 
are essential features in image segmentation, image datasets 
can be pre-processed to improve the results before running the 
clustering. RGB pictures are converted in the CIELAB (or 

L*a*b*) colour space, with L* as the Lightness channel, while 
chromatic a* axis extends from green to red and b* axis from 
blue to yellow. The predominant chromatic object range 
determines the selection of the suitable channel. A binary mask 
is finally generated from the output of the K-Means algorithm 
on the converted dataset. Some morphological operations 
(erosion and dilation) refine the masks removing small 
unwanted items.  
2.    Supervised learning approach: pixel features and user 
annotations are used to train a Random Forest classifier 
(Breiman, 2001) and assign a class label (object and 
background) to every image pixel. Employed pixel features are 
based on colours, edge filters and texture descriptors, extracted 
in a multi-scale approach. A model that extends the semantic 
segmentation to the entire set of images or even to similar 
datasets is finally generated from small representative 
annotations on one/a few dataset images. At last, the 
segmentation output is converted into binary masks, again 
refined with some morphological operations.  
3.    Depth map-based approach: the procedure relies on 
preliminary low-resolution data processing for generating and 
exporting a depth map per image. Then, the low-resolution 
dense reconstructions are roughly cleaned by removing points 
belonging to the background. Once the depth maps are 
generated, they are exported and adjusted, increasing their 
brightness and contrast values. Subsequently, two image filters 
can be applied: (i) a Gaussian blur filter (also known as 
Gaussian smoothing) to reduce image noise and details; (ii) a 
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Posterisation filter to ease the number of image colours and 
return sharper edges. From depth maps to image masks, the 
post-processing phase is carried out in a single round. It is 
worth noting that depth maps could also be quickly predicted 
using monocular approaches and deep learning networks 
(Ming et al., 2021). Although promising for handling the 
traditional ill-posed problem, these methods are not very 
suitable for masking artefact datasets. Further investigations 
are needed. 

 
Figure 6. The proposed automated solutions to mask 
unwanted object's backgrounds. The respective processing 
times is also reported.   

 
4.2 Experiments 
 
The aforementioned masking techniques were tested on two 
sets of images depicting different heritage artefacts. The first 
object, a prehistoric wooden bowl of 17 cm diameter and 10 
cm height, was surveyed using a rotating platform and taking 
pictures from four viewing angles. The artefact was flipped on 
the turntable during the acquisitions for capturing its entire 
geometry. The second test case is a small Roman bronze 
statue, some 18 cm high, including the base. Images were 
acquired from two different camera standpoints by rotating the 
object (constant background). In both cases, image masking 
was needed to orient all images correctly and derive cleaner 
dense point clouds.  
Unsupervised techniques proved to be helpful and effortless 
for the operator if the object and background are clearly 
distinguishable. However, artefacts frequently share a similar 
pattern or colour with the background scenario. In these 
situations, the algorithm will include a portion of the 
background in the same segment, affecting the generation of 
correct masks (Figure 7). 
With supervised learning approaches, patches and features 
should be carefully selected for training the classifier (e.g. 

 
1 https://github.com/3DOM-FBK/Mask_generation_scripts 

Random Forest) and creating the model for the entire dataset. 
However, once verified that the pre-trained model is efficient, 
mask generation is rapid, the manual effort is reduced, and 
results are sufficient for orientation purposes (Figures 8). 
Lastly, the depth map processing method generally delivers 
the most precise masks, although the low-resolution data 
processing and the rough point cloud cleaning require 
additional operational times (Figure 8). 
 

 
Figure 7. Mask generation with an unsupervised approach 
with incomplete and inoperative results.  

 

 
Figure 8. Masking results achieved with different 
approaches: unsupervised (K-Means Clustering), 
supervised (Random Forest) and depth-based.   

 
Figure 9 shows MVS results using masks generated with 
supervised and depth map methods: the latter approach seems 
to allow dense point cloud with less noise and unwanted 3D 
points.    
The scripts for testing the presented masking methods are 
available on the 3DOM-FBK Github page1. 
 
 

5. POINT CLOUD CLEANING 

5.1 Tested point cloud denoising methods 
 
Point cloud cleaning is a tedious but unavoidable task for 
generating accurate geometries for meshing and optimization 
steps (Figure 1). 
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Figure 9. Dense point cloud results applying image masks 
within the MVS reconstruction process. 

 
 
Among the available methods, those tested in this work 
include:  
1. Statistical Outlier Removal (S.O.R.) (CloudCompare, 

2021; Rusu and Cousins, 2011): it is a statistical analysis 
technique that removes points exceeding the average 
distance from their neighbours plus some standard 
deviations. 

2. PointCleanNet (PCNet - Rakotosaona et al. 2020): it is a 
data-driven learning-based approach that firstly classifies 
and discards outlier samples, and then projects noisy 
points onto the original clean surfaces through estimated 
correction vectors.  

3. Score-Based Point Cloud Denoising (Luo and Hu, 2021): 
a neural network is employed to estimate the score of p*n, 
where p is the distribution of a noise-free point cloud 
convolved with a noise model n. The predicted score is 
used for denoising data, increasing the log-likelihood of 
each point via gradient ascent, and iteratively updating 
each point's position without removing any point from the 
dataset.  

 
5.2 Experiments 
 
Firstly, a synthetic dataset (a cube with an edge length of 20 
cm) was created and used to estimate the efficiency of the 
aforementioned methods in removing outliers and reducing 
noise in unordered point clouds. Random noise was added on 
the cube faces, with a standard deviation ranging from 1% to 
5% of the object edge length. Cleaning methods were then 
applied, and from the results (Figures 10-11) clear messages 
may be derived: 
• while the S.O.R. and the PointCleanNET methods remove 

most of the points detected as outlier and noise, the Score-
Based Denoising algorithm merely adjust and update points' 
position closer to the main object's surface, and this could 
affect its performance when data include numerous outliers; 

• while S.O.R. and PointCleanNET maintain  relatively 
constant and similar performance as the noise level 
increases, the Score-based denoising metrics get worse 
significantly as the noise level rises; 

• like most learning-based methods, the computing 
requirements and calculation times are much higher with 
respect to statistical techniques.  
 

 

 

 

 
 
Figure 10. A close view of the synthetic (noisy) cube used 
for the experiments. From top to bottom, the standard 
deviation of the random noise corresponds to the 1%, 2%, 
3%, 5% of the object edge length (20 cm). 

 

 
Figure 11. Average RMSE of the plane fitting on the six 
faces of the synthetic cube, testing several denoising 
approaches and noise intensity levels (1-5% of the cube 
length). 

 
Secondly, the three methods were tested on the dense point 
cloud of the Moses statue, affected by some noise due to image 
imperfections, triangulation and matching inaccuracies. A 
visual comparison of the cleaning results is shown in Figure 
12. The S.O.R. filter removed about 13% of the original points, 
while the PointCleanNet only 1%. In both cases, no significant 
cleaning improvement on the statue is evident. On the other 
hand, results based on the Score-based denoising method seem 
to visually outperform the other methods, delivering a cleaner 
and smoother dense reconstruction. The best result achieved 
with the Score-based denoising method, apparently in contrast 
with the results on the synthetic cube (Figure 11), can be 
explained by the low noise level affecting the Moses 3D 
reconstruction. However, further investigations are desirable 
when dealing with reality-based 3D data of artefacts. 
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Unfiltered data 
(1,718,166 points) 

S.O.R. 
(1,494,152 points) 

Processing time: ca 2 sec 

PoinCleanNET 
(1,697,239 points) 

Processing time: ca 1 hour 

Score-based denoising 
(1,718,166 points) 

Processing time: ca 17 min 

    
Figure 12: A visual comparison of denoising methods tested on the dense point cloud of the Moses statue. It should be noted that 
this method is not removing any 3D point from the cloud, it is only moving them based on a neural model. 
 

6. CONCLUSIONS 

The paper presented some experiments, analyses and lessons 
learnt on decisive steps of the photogrammetric workflow 
while surveying medium and small museums' artefacts. Based 
on past experiences, the three investigated aspects are among 
the most critical and demanding in massive digitisation.  
The tests on DoF effects (Section 3) when images are acquired 
with macro-lenses proved that adequate capture settings are 
crucial for delivering precise and clean geometric results. 
Since masking blurry areas is a time-consuming task in 
massive digitisation, high aperture values and thus unsharp 
images should be prevented. On the other hand, smaller 
apertures, and thus lower image quality and longer acquisition 
times, should be carefully considered in the parameters' 
selection. DoF effects in 3D reconstructions are still under 
research, and further investigations in this field are planned. 
The paper also explored some automatic solutions to speed up 
and lighten the image masking tasks (Section 4). Among the 
proposed approaches, the unsupervised method, based on 
colour similarities, proved to frequently fail, especially when 
objects and backgrounds share analogues chromatic ranges. 
On the contrary, both supervised and depth map-based 
approaches delivered quite accurate masks, sufficient for 
supporting 3D reconstruction processes. While the supervised 
technique is generally less accurate on edges and subsequent 
reconstructions are thus noisier, the method based on depth 
maps requires longer processing times, despite the quite 
optimal results.  
Finally, the last experiments addressed the dense point cloud 
cleaning and denoising task (Section 5). A statistical-based 
approach and two deep learning techniques were compared for 
investigating their performance. Results show that the 
learning-based approaches are promising, although the actual 
processing times and computational requirements are still too 
high for handling massive digitisation. Further tests need to be 
performed as these methods were tested only on simple 
objects. 
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